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Abstract

Purpose: Chemoresistance to 5-Fluorouracil (5-FU) is common during colorectal cancer (CRC) treatment.
This study measured the chemotherapeutic effects of 5-FU, calcitriol, and/or metformin single/dual/triple
regimens as complementary/alternative therapies.

Methods: Ninety male mice were divided into: negative and positive (PC) controls, 5-FU, Cal, Met, 5-
FU/Cal, 5-FU/Met, Cal/Met, and 5-FU/Cal/Met groups. Treatments lasted four weeks following CRC
induction by azoxymethane. The therapeutic regimens were also applied in the SW480 and SW620 CRC
cell lines.

Results: The PC mice had abundant tumours, markedly elevated proliferation markers (survivin/CCND1)
and PI3K/Akt/mTOR alongside reduced p21/PTEN/Cytochrome-C/Caspase-3 and apoptosis. All
therapies reduced tumour numbers, with 5-FU/Cal/Met most prominent regimen. All protocols also
decreased cell proliferation markers, inhibited PI3K/Akt/mTOR molecules, increased pro-apoptotic
molecules with apoptosis index, and 5-FU/Cal/Met revealed the strongest anti-cancer effects. In vitro, all
therapies equally induced G1-phase arrest in SW480 cells, whereas metformin-alone showed maximal
SW620 cell numbers in GO/G1-phase. 5-FU/Met co-therapy also showed the highest apoptotic SW480 cell
numbers (13%), whilst 5-FU/Cal/Met disclosed the lowest percentage (81%) of viable SW620 cells.
Moreover, 5-FU/Cal/Met revealed maximal inhibitions of cell cycle inducers (CCND1/CCND3), cell survival
(BCL2) and the PI3K/Akt/mTOR molecules alongside highest expression of cell cycle inhibitors
(p21/p27), pro-apoptotic markers (BAX/Cytochrome-C/Caspase-3), and PTEN in both cell lines.

Conclusions: Metformin monotherapy was superior to calcitriol, whereas the 5-FU/metformin protocol
showed better anti-cancer effects relative to the other dual therapies. However, the 5-FU/Cal/Met
approach displayed the best in vivo and in vitro tumoricidal effects related to cell cycle arrest and
apoptosis, justifiably by enhanced modulations of the PI3K/PTEN/Akt/mTOR pathway.

Introduction

Colorectal cancer (CRC) is the third most common malignancy and fourth among all cancer-related
deaths worldwide [1,2]. Colon oncogenesis involves abnormal upregulations in cyclin D1 (CCND1),
CCND3, B-cell ymphoma 2 (BCL2), and survivin proteins that promote cell cycle progression and cell
survival [3,4]. By contrast, colon carcinogenesis is linked with reductions in cyclin-dependent kinase
(CDK)-inhibitors (p21 and p27), BCL2-associated X protein (BAX), cytochrome C (Cyto-C) and caspase-3
(Casp-3) proteins [5-7]. The main drug used for treating advanced CRC, 5-Fluororacil (5-FU), inhibits
cancer progression by increasing expression of CDK-inhibitors and several pro-apoptotic molecules [8,9].
However, 5-FU has limited therapeutic efficiency, and is associated with low success and survival rates
due to development of resistance by neoplastic enterocytes [10,11].

The phosphatidylinositol-3-kinase (PI3K) is a cell membrane-associated kinase and its class IA, which is
a heterodimer of the p85 regulatory and p110 catalytic subunits, promotes the development and

Page 3/32



progression of many cancers, including CRC [12,13]. Mammalian target of rapamycin (mTOR) is a
serine/threonine kinase that acts as a downstream effector for PI3K and involved in the regulation of cell
metabolism, growth, and survival [14,15]. The activation of PI3K is induced by phosphorylation of the
p85a-subunit that activates mTOR through the intracellular mediator, protein kinase B (Akt), and
hyperactivated PI3K/Akt/mTOR pathway, is linked with CRC progression and resistance to chemotherapy
[12,13]. In contrast, the endogenous inhibitor of the PI3K/Akt/mTOR pathway, phosphatase and tensin
homolog (PTEN), is commonly lost during colon carcinogenesis [16,17]. Moreover, the use of specific
inhibitors for the PI3K/Akt/mTOR has shown promising anti-cancer effects [16,17].

Interestingly, many non-chemotherapeutic drugs exhibited potent anti-cancer activities against CRC by
modulating the cell cycle regulatory and pro-apoptotic molecules alongside inhibiting the
PI3K/Akt/mTOR pathway. In this regard, several studies revealed negative correlations between the levels
of serum vitamin D and CRC development [18,19]. Moreover, active vitamin D5 (VD3) attenuated the
expression of the PI3K/Akt/mTOR pathway, inhibited cell proliferation and promoted apoptosis in colon
cancer cell lines [20-23]. Other studies have also reported potent anti-tumorigenic effects for metformin
against CRC that were portrayed by cell cycle arrest, increased apoptosis, and downregulations in the
PI3K/Akt/mTOR network [24-28]. Additionally, others have shown enhanced tumoricidal actions against
CRC by combining VD5 or metformin with 5-FU [21,29-31], as well as by adding both agents together
[32,33].

However, none of the earlier studies explored the potential anti-cancer effects of 5-FU, VD3 and metformin

triple therapy against CRC. Hence, this study measured the tumoricidal effects related to cell cycle
progression, apoptosis, and inhibition of the PI3K/Akt/mTOR pathway following 5-FU, VD, and/or

metformin single, dual, and triple therapies in vivo and in vitro.

Materials And Methods

Chemicals and reagents

Azoxymethane (AOM; #A5486-100MG) of 98% purity was obtained from Sigma-Aldrich Co. (MO, USA),
whilst both active VD5 (Calcitriol; #HY-10002) and metformin (#HY-17471A) were from MedChemExpress
LLC (NJ, USA). Moreover, 5-FU was purchased from Hospira Australia Ltd. (Melbourne, Australia), and all
drugs were freshly prepared as per the manufacturers’ instructions prior to their use. DMEM media
(#10566032), foetal bovine serum (FBS; #A3160802), antibiotic-antimycotic solution (#15240062) and
all the utilised cell culture materials were from Thermo Fisher scientific (CA, USA).

Experimental animal studies and treatment protocols

Ninety male BALB/c mice weighing 25-30 gm each and of 12 weeks of age were equally divided into nine
groups (10 mice/group) as follow: the negative (NC) and positive (PC) controls, 5-FU (5-FU), calcitriol
(VD3) and metformin (Met) monotherapy groups, the dual therapy groups that simultaneously received
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VD4/5-FU (VF), Met/5-FU (MF) or VD5/Met (VM), and the triple therapy group (VMF) that was treated with
all drugs. All animal experiments were conducted in compliance with the European guidelines for the care

and use of laboratory animals and the study was approved by the Committee for the Care and Use of
Laboratory Animals at Umm Al-Qura University (AMSEC 19/05-10-20).

AOM was injected for two consecutive weeks (10 mg/Kg/week) in all groups, expect the negative control
mice, to induce CRC as previously reported [21]. The animals were observed for another 20 weeks with no
intervention and received standard laboratory chow with water ad /ibitum. All treatment protocols were
initiated at week-21 post-AOM and continued for four weeks. Freshly prepared calcitriol (0.07 ug/Kg/day;
five times/week) and metformin (430 mg/Kg/day; five times/week) were administrated orally to the
designated groups, and the delivered amounts were equivalent to the highest daily recommended doses
for a 60 Kg body weight adult human for calcitriol (0.25 pg/day; 0.0042 ug/Kg/day) [34] and metformin
(1500 mg/day; 25 mg/Kg/day) [35] as per the dose conversion formula between human and mice [36]. 5-
FU was administrated to the designated groups for four successive cycles as a single weekly
intraperitoneal injection (50 mg/Kg/week) as previously described [21].

Types of animal samples

Euthanasia was performed on the first day of week-25 post-AOM by cervical dislocation under
anaesthesia a described earlier [21]. The colon from each animal was removed, flushed with cold
phosphate buffer saline (PBS), cut longitudinally, and soaked in 10% formalin overnight between layers
of filter papers [37].

Gross examination and tumour counting

The numbers of tumours/colon were grossly counted in the next morning by two researchers followed by
cutting each colon into three equal parts representing proximal, middle, and distal segments to the
caecum [37]. All parts were stained for 10 minutes by 1% Alcian blue solution (#sc-214517; Santa-Cruz
Biotechnology Inc.; CA, USA) in 3% acetic acid (pH 2.5) and then examined under a dissecting microscope
(Human Diagnostics; Wiesbaden, Germany) to identify mucin depleted foci (MDF) as well as count the
small tumours that were not detected by naked eye [37].

Each colonic segment was halved longitudinally, and a specimen was Swiss-rolled and processed by
conventional histopathology techniques. Total RNA was extracted from the residual colonic samples with
tumours by PureLink™ RNA Mini Kit (#12183025; Thermo Fisher Scientific), whilst total proteins were
extracted by homogenising colonic specimens in RIPA lysis buffer (#89900) with protease inhibitors
(#78429; Thermo Fisher Scientific). While the RNA quality and quantities were measured with a Qubit4
Fluorometer (Thermo Fisher Scientific), the concentrations of extracted total protein were measured by a
Pierce™ Rapid Gold BCA Protein Kit (#A53225; Thermo Fisher Scientific). The total protein samples were
then diluted with deionized water (2000 pug/ml) to be used for Enzyme Linked Immunosorbent Assay
(ELISA).
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Histopathological studies of colon tissues

Tissue sections of 5 pm thickness from each colon were stained by H&E and examined on a Leica DMi8
microscope (Leica Microsystems, Wetzlar, Germany) at 100x and 200x magnifications by two expert
researchers who were blind to the source group. Both examiners reported the histological features of
adenocarcinomas in five random fields from each section using a set of well-established criteria [37]. In
case of a wide disagreement between both examiners, an independent expert histopathologist re-
examined the sections. The captured images were analysed by the ImageJ software
(https://imagej.nih.gov/ij/) to measure the surface areas (um?) of adenocarcinomas, as reported earlier
[21,37].

Immunohistochemistry (IHC)

All the primary antibodies were from Cell Signaling Technology Inc. (MA, USA). Rabbit monoclonal
antibodies were used to detect CCND1 (#55506), CDK inhibitor-1A (p21; #37543) and mTOR (#2983),
whereas PI3K-p85a (#13666) was detected by mouse monoclonal IgG antibodies. An avidin-biotin
horseradish peroxidase technique was applied on 5um tissue sections to detect the targeted proteins as
previously described [38]. Briefly, BLOXALL® Solution (#SP-6000-100; Vector Laboratories Inc., CA, USA)
was used to block endogenous peroxidases. The primary antibodies (1:200 concentration for all) were
added and the slides were incubated at 4°C overnight. In the following morning, InmPRESS® HRP Horse
Anti-mouse (#MP-7402) or anti-rabbit (#MP-7401) IgG Plus Polymer Peroxidase Kits were used as per the
manufacturer’s guidelines (Vector Laboratories Inc.). An identical protocol was applied for the negative
control slides, but primary isotype mouse (#sc-2025) or rabbit (#sc-2027) IgG antibodies (Santa-Cruz
Biotechnology Inc) were used to control for non-specific staining. The sections were counterstained with
haematoxylin and examined with 20x objective on a Leica DMi8 microscope. Digital images were
acquired from 10 different fields/section and the protein expression was analysed by ImageJ software
(https://imagej.nih.gov/ij/) using the IHC Image Analysis Toolbox as previously reported [38,39].

Terminal deoxynucleotidyl transferase-dUTP nick end labelling (TUNEL) Assay

Cell apoptosis was detected in colonic tissues with a Click-iT™ Plus TUNEL Assay (#C10617; Thermo
Fisher Scientific) and by using the manufacturer’s protocol. The apoptotic bodies were co-localised with
cleaved Casp-3 by applying a sequential protocol as reported earlier [40,41]. After completing the TUNEL
protocol, anti-cleaved Casp-3 rabbit IgG monoclonal antibodies (#9661; Cell Signaling Technology Inc.)
were added at 1:400 concentration and the slides were incubated for 3h. Donkey anti-rabbit IgG
antibodies tagged with Alexa Fluor™ 555 (#A-31572; Thermo Fisher Scientific) were then added for 30
min followed by DAPI counterstaining (#D3571; Thermo Fisher Scientific). The slides were cover-slipped
with a permanent fluorescence mounting medium (#S3023; Dako, CA, USA) and observed on a Leica
DMi8 microscope at 400x magnification. Images were acquired from 15 non-overlapping fields/section,
and the apoptotic cells' numbers and cleaved Casp-3 staining intensity were measured by ImageJ
software as previously reported [39,42].
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ELISA

The colonic tissue concentrations of survivin (#SEC045Mu), cytochrome C (#SEA594Mu), Akt1
(#SEC231Mu), and PTEN (#SEF822Mu) were measured by specific mouse ELISA kits (Cloud-Clone Corp.;
TX, USA). The samples were processed in duplicate on an automated ELISA machine (Human
Diagnostics) according to the manufacturer's protocols.

Cell culture and treatment protocols

The human SW480 primary and SW620 metastatic colon cancer cell lines were purchased from the
American Type Culture Collection (ATCC; MA, USA). The SW480 and SW620 cells were cultured in DMEM
that contained 10% FBS and 1% antibiotic-antimycotic solution. All cells were grown in a humified
incubator at 37°C and 5% CO,.

The 5-FU (50 uM), VD5 (25 pM) and metformin (39.8 mM) concentrations (IC50) were determined by the
3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cytotoxicity assay at 24h
(Supplementary Figure 1). For cell cycle analysis, the SW480 (2x10°) and SW620 (3x10°) cells were
seeded in 6-well plates for 24h and then treated for 12h with 5-FU, VD5 and/or metformin single, dual, and
triple therapies, resulting in the following groups: untreated control (Ctr), 5-FU, VD5 and Met
monotherapies, VF, MF and VM co-therapies, and VMF triple therapy. The 12h time-point was applied to
assure that any effects of combination therapies could be accurately analysed by cell cycle, apoptosis,
gene, and protein expression techniques.

Cell cycle analysis

Cell cycle analysis was performed following the different treatment regimens in the SW480 and SW620
cells as previously described [21]. Briefly, cells were washed twice with PBS (500x g for 5 min) following
trypsinisation and fixed in ice-cold 70% ethanol for 24h at 4°C. The cells were washed twice in PBS (600x
g for 5 min) and treated for 15 min with RNase A (20 pg/ml; #12091021; Thermo Fisher), and 2 pg/ml
propidium iodide (PI; #P1304MP; Thermo Fisher) was added. Following staining, cell cycle analysis was
immediately performed with a Novocyte 3000 flow cytometer (Agilent Technologies, CA, USA). The
percentages of cells in different phases of cell cycle (Sub-G1, GO/G1, S, G2/M) were determined for
20,000 acquired events using the NovoExpress software cell cycle algorithm, and data are shown as
mean + SD (n = 3).

Apoptosis assay

The Annexin V-FITC/PI Apoptosis Assay Kit (#V13245; Thermo Fisher Scientific) was used according to
the manufacturer’s protocol. The cells were harvested after the different treatment protocols, washed
twice with cold-ice PBS, and re-suspended in 100 pl of 1x Annexin V (AV) binding buffer. For cell staining,
the mixture of AV-FITC (5 pl) and PI (1 pl) were added to each 100 pl of the SW480 and SW620 cell
suspensions followed by incubation in dark for 15 minutes at room temperature. Subsequently, the AV
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binding buffer (400 pl) was added, and the cells were placed on ice and immediately analysed using the
NovoCyte 3000 flow cytometry. The experiments were processed in triplicate and the data represents
percentage (mean = SD) of the different apoptosis stages as follows: live (unstained), early (AV+/PI-) and
late apoptotic (AV+/PI+), and dead (AV-/PI+) cells.

Quantitative reverse-transcription polymerase chain reaction

Following 12h treatment with the different therapies, the SW480 and SW620 cells were trypsinised and
washed in PBS. Total RNA was extracted by a PureLink™ RNA Mini Kit (Thermo Fisher Scientific) and a
high-capacity Reverse Transcription Kit was used for cDNA synthesis (#4368814; Thermo Fisher
Scientific). PCR was performed in triplicate wells/sample and consisted of 40 amplification cycles
(95°C/15s and 60°C/1min) that were processed with a QuantStudio™ 3 System. Each well contained 5yl
SYBR Green, 3pl nuclease-free water, 5 pmol (1pl) of each set of primers (Supplementary Table 1) and 25
ng cDNA (Tpl). A minus-reverse transcription control from the prior RT step and a separate minus-
template PCR, in which the cDNA was replaced by nuclease-free water, were used as negative controls.
The relative expression of CCND1, CCND3, p21, p27, BCL2, BAX, Cyto-C, Caspase-3, PIK3CA, PTEN, AKT1
and mTOR genes was calculated by the 2"22Ct method [43].

Western blot

All primary antibodies were from Cell Signaling Technology Inc. (MA, USA). While mouse monoclonal IgG
antibodies were used to detect CCND3 (#2936), BCL2 (#15071) and PI3K-p85q, rabbit monoclonal
antibodies were used to detect CCND1, p21, p27 (#3686), BAX (#2772), Cyto-C (#4272), cleaved Casp-3,
PTEN (#9188), Akt1 (#75692) and mTOR, proteins by Western blotting. GAPDH loading control mouse
monoclonal antibodies (#MA5-15738-1MG; Thermo Fisher Scientific) were used for normalisation.

Briefly, total proteins were extracted from each cell pellet and 50 pg total protein from each sample were
loaded on gradient 4-20% Mini-PROTEAN® TGX Stain-Free™ SDS-PAGE gels (#4568096; Bio-Rad
Laboratories Inc.; CA, USA). The resolved proteins were then transferred to 0.2 ym Trans-Blot® Turbo™
PVDF membranes using a Trans-Blot® Turbo™ Transfer System (Bio-Rad Laboratories Inc). The
membranes were blocked for 15 min with SuperBlock™ T20 buffer (TBS-T; #37543; Thermo Fisher
Scientific), and incubated with primary antibodies (1:1000 for all antibodies) overnight at 4°C. Next, the
membranes were washed with TBS-T and incubated for Th with WestVision™ secondary anti-mouse
(#WB-2000-.8) or anti-rabbit (#WB-1000-.8) IgG antibodies (1:10,000) conjugated with peroxidase
micropolymer (Vector Laboratories Inc.). The membranes were washed, and the signals developed by
SignalFire” Plus ECL Reagent (#12630; Cell Signaling Technology Inc.). The images were acquired by a
ChemiDocTM XRS+ (Bio-Rad Laboratories Inc.) and the density of each protein band was quantified and
then normalised against the densitometry of the GAPDH band by ImageJ software
(https://imagej.nih.gov/ij/) as previously described [44]. Data are shown as mean + SD of three blots/cell
line for each targeted protein.
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Statistical Analysis

SPSS statistical analysis software version 25 was used to analyse the data, and all variables were
assessed for normality and homogeneity by the Kolmogorov and Smirnov’s test and the Levene test,
respectively. One-way analysis of variance (ANOVA) followed by Tukey’s HSD or Games-Howell post-hoc
tests were performed to compare between the study groups based on variance equality. Significance was
considered when P value was < 0.05.

Results

Effects of treatment regimens on CRC progression in mice

Colonic tissues from the NC group demonstrated normal architecture by dissecting microscope as well as
normal histology following H&E staining (Figure 1A). By contrast, numerous MDF were seen in the PC
group colons and co-existed with large numbers of gross and microscopic tumours. Bright-field
microscope also revealed abundant colonic adenocarcinomas in the PC group that had large surface
areas with poor to moderate differentiated histology (Figure 1).

The numbers of MDF (Figure 1B), dissecting microscope tumours (Figure 1D), total numbers of tumours
(Figure 1E), and the surface areas of adenocarcinomas (Figure 1G) decreased significantly and equally in
all monotherapy groups relative to the PC group. Moreover, the numbers of gross tumours were markedly
lower in the 5-FU and Met groups, but not the VD5 group, compared with the PC mice. Nevertheless, the
numbers of adenocarcinomas by light microscope were comparable between the PC and all monotherapy
groups (Figure 1F).

All dual therapy protocols showed markedly lower numbers of MDF, gross and microscopic tumours, and
adenocarcinomas alongside smaller adenocarcinoma surface areas compared with the PC, 5-FU, VD3
and Met groups. However, the anti-tumorigenic effects were significantly more pronounced in the MF
group relative to the VF and VM co-therapy groups (Figure 1). On the other hand, the lowest numbers of
MDF, gross tumours, and adenocarcinomas were detected in the triple therapy (VMF) group colons
compared with the PC as well as all single and dual therapy groups (Figure 1).

Effects of the different treatment protocols on cell cycle
In vivo expression of CCND1 and p21

While the gene and protein expression of CCND1 increased significantly, the p21 mRNA and protein
diminished, in the PC colonic tissues compared with the NC group (Figure 2). All monotherapies equally
demonstrated marked declines in the mRNA and protein of CCND1 with concurrent significant increases
in p21 gene and protein expression relative to the PC colonic tissues. Additional significant inhibitions in
the CCND1 gene and protein expression alongside marked upregulations in the p21 gene and protein
were detected in all co-therapy groups relative to the monotherapy groups (Figure 2). Moreover, the
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CCND1 gene and protein expression were significantly lower and coincided with markedly higher p21
mRNA and protein in the MF group than the VF and VM co-therapies (Figure 2). Nonetheless, the highest
p21 gene and protein expression together with the lowest levels of CCND1 mRNA and protein were
observed in the VMF group compared with the PC, 5-FU, VD5, Met, VF, MF, and VM groups (Figure 2).

In vitro cell cycle arrest and expression of cell cycle requlatory molecules

Single treatment with 5-FU and metformin equally and markedly augmented the SW480 cell counts in the
Sub-G1 phase (2-fold; for both), the highest increases were seen in the VM group (2.4-fold), compared
with non-treated cells (Figure 3A). Alternatively, all monotherapies showed equal increases in the SW620
cell numbers in the Sub-G1 phase (1.3-fold for all), whilst the MF co-therapy revealed the maximal
increase (2.8-fold) relative to control cells (Figure 3B). All treatments, except VD5 monotherapy, markedly
increased the SW480 cell numbers in the GO/G1-phase (~1.5-fold) compared with untreated cells, and the
results were comparable between the different therapies (Figure 3A). Although all treatments were also
associated with GO/G1-phase arrest in the SW620 cells, metformin monotherapy showed the maximal
significant increase relative to non-treated cells (1.6-fold; Figure 3B).

All monotherapies also revealed marked decreases in CCND1 and CCND3 alongside increases in the p21
and p27 genes (Supplementary Figure 2) and proteins (Figure 4) relative to untreated SW480, and SW620
cells, and the effects of metformin-alone were more prominent in both cell lines. The dual therapies
further downregulated CCND1 and CCND3, whilst promoting p21 and p27, genes and proteins compared
with all monotherapies in both cell lines, and the MF approach was markedly more effective relative to
the other dual therapies. However, the lowest CCND1 and CCND3 alongside the highest upregulations in
p21 and p27 genes (Supplementary Figure 2) and proteins (Figure 4) were detected with the triple therapy
in both cell lines compared with untreated cells as well as with the other therapeutic approaches.

Effects of the different treatment protocols on cell death and apoptosis markers
Colonic cell apoptosis and apoptosis markers in vivo

In the NC group colonic tissues, apoptotic bodies and cleaved Casp-3 protein were mainly detected in
glandular luminal and cryptic epithelium together with stomal cells (Figure 5A). The numbers of apoptotic
bodies, cleaved Casp-3 protein, colonic tissue levels of Cyto-C protein, and apoptosis index decreased
substantially and concurred with a marked increase in survivin protein relative to the NC group (Figure 5).
All monotherapies revealed marked declines in colonic tissue survivin concentrations alongside increases
in colonic tissue Cyto-C levels with higher apoptosis index and Casp-3 protein expression compared with
the PC group. While the expression of Casp-3 protein and apoptosis index were significantly higher in the
5-FU group than the VD5 and Met groups (Figure 5B), colonic survivin and Cyto-C tissue concentrations
were similar between all monotherapies (Figure 5C). Moreover, cleaved Casp-3 and apoptosis index were
markedly higher in the Met group than the VD5 group (Figure 5B).

Page 10/32



Although colonic Cyto-C, cleaved Casp-3 and apoptosis index were markedly higher in all co-therapy
groups and coincided with significant reductions in survivin relative to the PC and monotherapy groups,
the results were significantly stronger in the MF group than the VD and VM groups (Figure 5). The VMF
group, on the other hand, demonstrated the maximal cyto-C concentrations, the highest apoptosis index
and cleaved Casp-3 expression, and the lowest survivin levels compared with the PC, all monotherapies,
and dual therapy groups (Figure 5).

In vitro cell apoptosis and expression of apoptosis markers

All treatment protocols significantly reduced the numbers of living cells in the cell lines used relative to
untreated cells, except for VD5 single treatment that showed comparable results to the SW620 control
cells (Figure 6). In the SW480 cells, 5-FU with metformin dual treatment displayed the highest rate of cell
death that was depicted with marked increases in the numbers of cells in early and late apoptosis relative
to all therapeutic protocols (Figure 6A). On the other hand, the minimal numbers of viable SW620 cells
were detected in the VMF group that concord with the maximal increases in the percentages of early and
late apoptotic cells compared with all groups (Figure 6B).

The monotherapies also revealed marked decreases in BCL2 along with increases in BAX, Cyto-C and
Casp-3 genes (Supplementary Figure 3) and proteins (Figure 7) compared with untreated SW480 and
SW620 cells, and the metformin single therapy was more prominent relative to all monotherapy groups.

In contrast, and although the dual therapies also reduced the expression of BCL2, whereas increased BAX,
Cyto-C and Casp-3, genes and proteins in both cell lines, the MF co-therapy was the most efficient
compared with the other dual therapies. Moreover, the triple therapy regimen showed the best
downregulation in the mRNAs (Supplementary Figure 3) and proteins (Figure 7) of BCL2 along with the
maximal increases in BAX, Cyto-C & Casp-3 relative to all therapies in the tested cell lines.

Effects of the different treatment protocols on the expression of PI3K/Akt/mTOR oncogenic pathway
Protein expression of PI3K/Akt/mTOR in colonic tissues

The PI3K-p85a and mTOR protein expression alongside tissue levels of Akt1 protein increased
significantly, whereas PTEN protein concentrations declined, in the PC colonic tissues relative to the NC
group (Figure 8). Although 5-FU monotherapy significantly reduced the expression of PI3K-p85a protein
compared with the PC group, the levels of Akt1, PTEN and mTOR proteins were comparable between both
groups. Single treatment with metformin and VD5 also showed substantial reductions in PI3K-p85a and
Akt1 alongside increases in PTEN proteins compared with the PC group. However, metformin
monotherapy showed significantly more effective modulatory effects on the targeted proteins relative to
the 5-FU and VD4 groups (Figure 8). All dual therapy protocols showed further significant declines in PI3K-
p85a, Akt1 and mTOR with concurrent increases in PTEN proteins with compared with all monotherapy
groups, and the MF group was significantly more effective than the other co-therapy groups. However, the
triple therapy regimen showed the lowest PI3K-p85a, Akt1 and mTOR proteins alongside the highest
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concentrations of PTEN protein compared with the PC group and all single and dual treatment protocols
(Figure 8).

In vitro gene and protein expression of the PI3K/Akt/mTOR oncogenic pathway

The monotherapy groups disclosed significant inhibitions in the PI3K-p85a, Akt1, and mTOR genes
(Supplementary Figure 4) and proteins (Figure 9) alongside increases in PTEN mRNA and protein in the
SW480 cells, and metformin monotherapy showed the most significant modulations compared with
untreated cells and the other single therapies. In the SW620 metastatic colon cancer cells, however, 5-FU
and VD3 monotherapies showed negligible effects on the targeted genes and proteins, whereas
metformin exhibited marked modulations at the transcriptional and translational levels. Although the MF
co-therapy approach showed the most prominent decreases in the genes (Supplementary Figure 4) and
proteins (Figure 9) of PI3K-p85a, Akt1, and mTOR with concurrent increases in PTEN mRNA and protein
relative to all dual therapy protocols, the maximal significant modulatory effects in both cell lines were
observed with the triple therapy.

Discussion

This study compared the anti-cancer effects of single, dual, and triple treatments with 5-FU, active VD5
and/or metformin against CRC in vivo and in vitro. The gold standard chemotherapy used for treating
CRC, 5-FU, provokes cell cycle arrest at the S-phase by inhibiting thymidylate synthase, an enzyme
required for DNA replication [8,9]. Others have also shown arrest at the GO/G1-phase of cell cycle
following 5-FU single therapy in the HCT116 and SW620 CRC cell lines [45,46]. Concurrently, 5-FU halts
the progression of colon cancer by modulating many pro-apoptotic pathways [21,47]. However, cancerous
cells often resist 5-FU actions through several mechanisms, including increasing energy supply by
switching to aerobic glycolysis to sustain survival, a phenomenon known as the Warburg effect [48].
Under this theme, the PI3K/Akt/mTOR signalling pathway is a central regulator of cell metabolism and
survival, and during colon carcinogenesis the pathway is abnormally hyperactivated, whilst the
expression of its endogenous inhibitor, PTEN, declines [16,47,49]. The aberrant activation of the
PI3K/Akt/mTOR network suppresses apoptosis by upregulating the cell survival molecule, BCL2, that
inhibits BAX and subsequently the release of Cyto-C from mitochondria [16,49,50]. The dysregulation in
the PI3K/PTEN/Akt/mTOR pathway also promotes the metabolic shifting to glycolysis, thus reducing the
efficacy of 5-FU by decreasing its absorption, due to acidification of the tumour microenvironment as well
as hindering cell apoptosis [16,49,50].

Herein, 5-FU monotherapy moderately decreased the numbers of MDF and tumours, but not
adenocarcinomas, compared with the PC mice. Single treatment with 5-FU also induced cell cycle arrest
at the GO/G1-phase in the SW480 and SW620 cells and was associated with marked increases in the
numbers of apoptotic cells, both in vivo and in vitro. Moreover, 5-FU monotherapy significantly reduced
the cell cycle inducing (CCND1/CCND3) and survival (survivin/BCL2) markers alongside promoted the
cell cycle inhibitory (p21/p27) and pro-apoptotic (BAX/Cyto-C/Casp-3) molecules at the gene and protein
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levels in treated mice as well as in SW480 cells. However, the cytotoxic drug showed limited efficacy on
the expression of cell cycle and apoptosis regulatory molecules in the SW620 metastatic cells.
Additionally, 5-FU single therapy showed negligible effects on the gene and protein expression of PI3K,
Akt, PTEN, and mTOR in vivo and in vitro. Our results agree with many studies that have shown cell cycle
arrest and apoptosis in colon cancer cells with 5-FU single treatment [8,9,21,45-47], and further support
the notion that resistance to chemotherapy could, at least in part, be related to a limited efficacy in
modulating the PI3K/PTEN/Akt/mTOR pathway by 5-FU monotherapy [16,48,49].

Chemoresistance is a major clinical problem during the treatment of CRC, especially during the late
stages of malignancy, and the quest for developing alternative and/or complementary therapies has
therefore been the target of many studies [10,11]. In this context, the overall and cancer-specific survival
rates were significantly higher in diabetic CRC patients and who were using metformin relative to non-
users [51,52]. Other in vitro studies have likewise reported persuasive anti-tumorigenic effects for
metformin single therapy that were depicted by marked suppression of cell cycle progression, induction
of apoptosis, and inhibition of the PI3K/Akt/mTOR molecules [24-28]. Similarly, several epidemiological
studies disclosed inverse links between serum VD levels with the prevalence of CRC [18,19]. Active VD4
treatment also reduced cell proliferation, altered mitochondrial membrane potential, inhibited the
PI3K/Akt/mTOR pathway and suppressed glycolysis alongside inducing cell cycle arrest and apoptosis in
several human colon cancer cell lines [20-23]. Moreover, the chemopreventive actions of VD5 and
metformin against CRC were compared by only two studies, and their results exhibited equal efficacies
for both drugs in vitro [32] and in vivo [33], whereas their combination showed boosted anti-tumorigenic
actions. Additionally, others have revealed enhanced anti-cancer effects against CRC by adding VD4
[21,29] or metformin [30,31] with 5-FU. However, none of the earlier studies compared the therapeutic
efficacies between the metformin with VD5, and/or 5-FU, dual and triple therapies against CRC
progression.

This study revealed cell cycle arrest with increased p21 and p27 alongside decreased CCND1 and CCND3
genes and proteins following in vivo and in vitro treatment with VD3 and metformin monotherapies,
confirming many reports that proclaimed suppression of cell cycle by both agents [20,21,24-28]. However,
in vivo, and in vitro metformin single treatment also showed higher cell death, increased gene, and protein
expression of apoptosis markers and PTEN, and downregulations of the PI3K/Akt/mTOR molecules,
whereas the VD5 monotherapy effects were weaker. While all dual therapy protocols disclosed enhanced
modulations of the PI3K/PTEN/Akt/mTOR pathway, higher numbers of apoptotic cells, and boosted
expression of pro-apoptotic molecules compared with all monotherapies, the effects were markedly more
pronounced with Met/5-FU co-therapy relative to the VD3/5-FU and Met/VD; groups, both in vivoand in
vitro. To the best of our knowledge, this study is also the first to demonstrated enhanced anti-tumorigenic
effects for VD3/Met/5-FU triple therapy in the treatment of colon cancer. Our data revealed that the VMF
group had the highest expression of PTEN along with the cell cycle inhibitory and pro-apoptotic
molecules that coincided with the lowest levels of CCND1, CCND3, BCL2, PI3K, Akt, and mTOR compared
with all therapeutic regimens in animals and the colon cancer cell lines used.
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The current data suggest that metformin monotherapy is superior to VD3 single therapy, as well as
metformin appears to be a better chemosensitizer to 5-FU cytotoxicity than VD5 for the treatment of CRC.
A plausible explication for the disagreement between the present and the earlier in vivo and in vitro
studies on the VD4 anti-cancer efficacy could be related to the relatively shorter treatment durations (4
weeks & 12h, respectively) in our study compared with longer timepoints (= 8 weeks & = 24h,
respectively) in the prior reports [21,32,53,54]. We also hypothesise that the superiority of metformin pro-
apoptotic effects over VD3, with and without 5-FU, could involve better attenuations of the
PI3K/Akt/mTOR oncogenic molecules by inducing the expression of the tumour suppressor protein,
PTEN, thus promoting oxidative metabolism and subsequently mitochondrial-induced apoptosis in
neoplastic cells [24-28]. Moreover, the triple therapy in the present study showed the best tumoricidal
actions against CRC and could represent the best strategy for treating early and late stages of colon
neoplasia. However, more studies that apply several timepoints (e.g., 12, 24, 48 and 72h) of VD4
treatment as well as measure the markers of glycolysis and oxidative phosphorylation following the
different therapeutic protocols are needed to confirm our suggestions.

There are several drawbacks to the present study. Firstly, we only measured the expression of PTEN, and
other negative regulators of the PI3K/Akt/mTOR pathway (e.g., AMPK, GSK-3p) should be included in
future studies. Moreover, we only applied concomitant combination protocols and additional studies that
use consecutive combinatory regimens (e.g., Met followed by VD5 and/or 5-FU) are needed to precisely
identify the most effective approach for CRC treatment. The expression of enzymes involved in oxidative
metabolism alongside the markers of glycolysis should also be measured in future studies to corroborate
the present findings.

In conclusion, metformin single therapy was superior in its anticancer effects to active VD5, showing
higher expression of p21, p27, PTEN, BAX, Cyto-C, and Casp-3, inhibitions in CCND1, CCND3, BCL2 and
the PI3K/Akt/mTOR network, alongside higher rates of apoptosis, both in vivo and in vitro. Although all
dual therapy protocols revealed enhanced modulations of the PI3K/PTEN/Akt/mTOR pathway, alongside
higher expression of the cell cycle inhibitors and pro-apoptotic molecules than the monotherapies, the
Met/5-FU co-therapy was better relative to the other dual therapies. In contrast, the triple therapy regimen
exhibited the best anti-cancer effects related to cell cycle arrest and apoptosis compared with the single
and dual protocols, possibly by boosted attenuations of the PI3K/Akt/mTOR oncogenic pathway.
Nevertheless, more studies are needed to measure the tumoricidal effects of VD5 and/or metformin
concomitant and sequential therapies, with and without 5-FU, using multiple time-points, as well as to
measure the metabolic markers of glycolysis and oxidative phosphorylation, to accurately determine their
therapeutic values against CRC.
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Figures

Figure 1

(A) Mouse colon mucosa from all the study groups by dissecting microscope (n = 10 mice/group; x20
magnification; red arrow = tumours & yellow arrow = mucin depleted foci [MDF]) alongside colonic tissue
sections from all groups by H&E stain (n = 10 mice/group; x200 magnification; scale bar = 15 ym).
Furthermore, the numbers of (B) MDF, (C) gross tumours, (D) microscopic tumours, (E) total tumours and
(F) adenocarcinomas alongside (G) the adenocarcinomas’ surfaces areas are shown as graph bars (n =
10 mice/group; data was analysed by ANOVA followed by Games-Howell post-hoc test and is shown as
mean + SD; a = P < 0.05 compared with the NC group; b = P < 0.05 compared with the PC group; c = P <
0.05 compared with 5-FU monotherapy; d = P < 0.05 compared VD5 monotherapy, e = P < 0.05 compared
with Met monotherapy; f = P < 0.05 compared with VF dual therapy; g = P < 0.05 compared with MF dual
therapy and h = P < 0.05 compared with VM dual therapy).
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A. Gene Expression of CCND1 & p21
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B. CCND1 & p21 Relative Protein Expression
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C. Immunohistochemsitry (IHC)

Figure 2

the relative (A) gene and (B) protein expression of the targeted molecules in colonic tissues from the
different groups are shown as graph bars (n = 10 mice/group; data was analysed by ANOVA followed by
Tukey’s HSD post-hoc test and is shown as mean + SD; a = P < 0.05 compared with the NC group; b = P <
0.05 compared with the PC group; ¢ = P < 0.05 compared with 5-FU monotherapy; d = P < 0.05 compared
VD3 monotherapy, e = P < 0.05 compared with Met monotherapy; f = P < 0.05 compared with VF dual
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therapy; g = P < 0.05 compared with MF dual therapy and h = P < 0.05 compared with VM dual therapy).
Moreover, (C) Localisation of CCND1 and p21 proteins by immunohistochemistry (IHC) in colonic tissues
from the different groups (n = 10 mice/group; 20x objective; Scale bar = 15 pm).
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Figure 3

Percentages of cells (mean + SD) in the different phases of cell cycle in untreated control cells, and
following treatments with 5-Fluorouracil, calcitriol and/or metformin single (5-FU, VD5 & Met), dual (VF,

MF & VM), and triple (VMF) therapies for 12h in the (a) SW480 and (b) SW620 colon cancer cell lines (n =
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3/group; data was analysed by ANOVA followed by Games-Howell post-hoc test and is shown as mean +
SD; a = P < 0.05 compared with control untreated cells; b = P < 0.05 compared with 5-FU monotherapy; ¢ =
P < 0.05 compared VD5 monotherapy, d = P < 0.05 compared with Met monotherapy; e = P < 0.05

compared with VF dual therapy; f = P < 0.05 compared with MF dual therapy and g = P < 0.05 compared

with VM dual therapy).
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Detection of CCND1, CCND3, p21 and p27 proteins by Western blot alongside their relative protein
expression (mean * SD) following treatments with 5-Fluorouracil, calcitriol and/or metformin single (5-FU,
VD4 & Met), dual (VF, MF & VM), and triple (VMF) therapies for 12h in the (a) SW480 and (b) SW620 colon
cancer cell lines (n = 3/group; data was analysed by ANOVA followed by Games-Howell post-hoc test and
is shown as mean + SD; a = P < 0.05 compared with control untreated cells; b = P < 0.05 compared with 5-
FU monotherapy; c = P < 0.05 compared VD5 monotherapy, d = P < 0.05 compared with Met monotherapy;
e = P < 0.05 compared with VF dual therapy; f = P < 0.05 compared with MF dual therapy and g = P < 0.05
compared with VM dual therapy).
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C. Colonic Survivin & Cytochrome C Proteins by ELISA
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Figure 5

(A) Co-detection of apoptotic bodies by TUNEL (green) with cleaved Casp-3 (red) by immunofluorescence
in the colonic tissues from all the study groups (n = 10 mice/group; 40x objective; scale bar = 8 um).
Moreover, (B) the relative expression of Casp-3 protein alongside apoptosis index and (C) in the colonic
tissues concentrations of survivin and cytochrome C proteins from all groups are displayed as graph bars
(n = 10 mice/group; data was analysed by ANOVA followed by Tukey’s HSD test and is shown as mean +
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SD; a = P < 0.05 compared with the NC group; b = P < 0.05 compared with the PC group; c = P < 0.05
compared with 5-FU monotherapy; d = P < 0.05 compared VD; monotherapy, e = P < 0.05 compared with

Met monotherapy; f = P < 0.05 compared with VF dual therapy; g = P < 0.05 compared with MF dual
therapy and h = P < 0.05 compared with VM dual therapy).
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Percentages (mean = SD) of living, early and late apoptotic alongside dead cells in untreated control cells,
and following treatments with 5-Fluorouracil, calcitriol and/or metformin single (5-FU, VD5 & Met), dual
(VF, MF & VM), and triple (VMF) therapies for 12h in the (a) SW480 and (b) SW620 colon cancer cell

lines (n = 3/group; data was analysed by ANOVA followed by Games-Howell post-hoc tests and is shown
as mean = SD; a = P < 0.05 compared with control untreated cells; b = P < 0.05 compared with 5-FU
monotherapy; ¢ = P < 0.05 compared VD3 monotherapy, d = P < 0.05 compared with Met monotherapy; e
=P < 0.05 compared with VF dual therapy; f = P < 0.05 compared with MF dual therapy and g = P < 0.05
compared with VM dual therapy).
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b. SW620 cells
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Figure 7

Detection of BCL2, BAX, Cytochrome C and cleaved caspase-3 proteins by Western blot alongside their
relative protein expression (mean = SD) following treatments with 5-Fluorouracil, calcitriol and/or
metformin single (5-FU, VD5 & Met), dual (VF, MF & VM), and triple (VMF) therapies for 12h in the (a)
SW480 and (b) SW620 colon cancer cell lines (n = 3/group; data was analysed by ANOVA followed by
Games-Howell post-hoc test and is shown as mean + SD; a = P < 0.05 compared with control untreated
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cells; b = P < 0.05 compared with 5-FU monotherapy; c = P < 0.05 compared VD3 monotherapy, d = P <

0.05 compared with Met monotherapy; e = P < 0.05 compared with VF dual therapy; f = P < 0.05
compared with MF dual therapy and g = P < 0.05 compared with VM dual therapy).
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Localisation of PI3K-p85a and mTOR proteins by immunohistochemistry (IHC) in colonic tissues from the
different groups (20x objective; Scale bar = 15 pm). Additionally, (B) the relative protein expression of
PI3K-p85a and mTOR and (C) the colonic tissue concentrations of Akt1 and PTEN proteins in the
different study groups are displayed as graph bars (n = 10 mice/group; data was analysed by ANOVA
followed by Tukey’s HSD post-hoc test and is shown as mean + SD; a = P < 0.05 compared with the NC
group; b = P < 0.05 compared with the PC group; ¢c = P < 0.05 compared with 5-FU monotherapy;d = P <
0.05 compared VD5 monotherapy, e = P < 0.05 compared with Met monotherapy; f = P < 0.05 compared
with VF dual therapy; g = P < 0.05 compared with MF dual therapy and h = P < 0.05 compared with VM
dual therapy).
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a. SW480 cells b. SW620 cells
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Figure 9

Detection of PI3K-p85a, PTEN, Akt1 and mTOR proteins by Western blot alongside their relative protein

expression (mean + SD) following treatments with 5-Fluorouracil, calcitriol and/or metformin single (5-FU,
VD5 & Met), dual (VF, MF & VM), and triple (VMF) therapies for 12h in the (a) SW480 and (b) SW620 colon
cancer cell lines (n = 3/group; data was analysed by ANOVA followed by Games-Howell post-hoc test and
is shown as mean + SD; a = P < 0.05 compared with control untreated cells; b = P < 0.05 compared with 5-
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FU monotherapy; ¢ = P < 0.05 compared VD; monotherapy, d = P < 0.05 compared with Met monotherapy;
e = P < 0.05 compared with VF dual therapy; f = P < 0.05 compared with MF dual therapy and g = P < 0.05
compared with VM dual therapy).
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