1. Short, K.R., et al., Pathogenesis of influenza-induced acute respiratory distress syndrome. The Lancet Infectious Diseases, 2014. 14(1): 57-69.
2. Fukuyama, S. and Y. Kawaoka, The pathogenesis of influenza virus infections: the contributions of virus and host factors. Current Opinion in Immunology, 2011. 23(4): 481-486.
3. Peiris, J.S.M., et al., Innate immune responses to influenza A H5N1: friend or foe? Trends in Immunology, 2009. 30(12): 574-584.
4. Watanabe, T., et al., Pandemic potential of avian influenza A (H7N9) viruses. Trends in Microbiology, 2014. 22(11): 623-631.
5. Park, J.-E. and Y. Ryu, Transmissibility and severity of influenza virus by subtype. Infection, Genetics and Evolution, 2018. 65: 288-292.
6. Lobo, S.M., et al., Excess mortality is associated with influenza A (H1N1) in patients with severe acute respiratory illness. Journal of Clinical Virology, 2019. 116: 62-68.
7. Damjanovic, D., et al., Immunopathology in influenza virus infection: Uncoupling the friend from foe. Clinical Immunology, 2012. 144(1): 57-69.
8. Dunning, J., et al., Antiviral combinations for severe influenza. The Lancet Infectious Diseases, 2014. 14(12): 1259-1270.
9. Tian, L., et al., Evaluation of the anti-neuraminidase activity of the traditional Chinese medicines and determination of the anti-influenza A virus effects of the neuraminidase inhibitory TCMs in vitro and in vivo. J Ethnopharmacol, 2011. 137(1): 534-42.
10. To, K.K.W., et al., The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities. The Lancet Infectious Diseases, 2013. 13(9): 809-821.
11. Yang, Y., et al., Epidemiological and clinical characteristics of humans with avian influenza A (H7N9) infection in Guangdong, China, 2013–2017. International Journal of Infectious Diseases, 2017. 65: 148-155.
12. Abdelwhab, E.M., J. Veits, and T.C. Mettenleiter, Biological fitness and natural selection of amantadine resistant variants of avian influenza H5N1 viruses. Virus Research, 2017. 228: 109-113.
13. Feng, L., et al., Pudilan xiaoyan oral liquid alleviates LPS-induced respiratory injury through decreasing nitroxidative stress and blocking TLR4 activation along with NF-KappaB phosphorylation in mice. J Ethnopharmacol, 2018. 214: 292-300.
14. Cheng, L., et al., Evaluation of the effect of a toothpaste containing Pudilan extract on inhibiting plaques and reducing chronic gingivitis: A randomized, double-blinded, parallel controlled clinical trial. J Ethnopharmacol, 2019. 240: 111870.
15. Tian, G., et al., GC-MS based metabolomic profiling of lung tissue couple with network pharmacology revealed the possible protection mechanism of Pudilan Xiaoyan Oral Liquid in LPS-induced lung injury of mice. Biomed Pharmacother, 2020. 124: 109833.
16. Thakur A.K. and Fezio W.L. A computer program for estimating LD50 and its confidence limits using modified Behrens-Reed-Muench cumulant method. Drug Chem Toxicol. 1981, 4(3):297-305.
17. Zhang et al., w09, a novel autophagy enhancer, induces autophagy-dependent cell apoptosis via activation of the EGFR-mediated RAS-RAF1-MAP2K-MAPK1/3 pathway. Autophagy, 2017, 13(7): 1093-1112.
18. Yan, H., et al., Cirsimaritin inhibits influenza A virus replication by downregulating the NF-κB signal transduction pathway. Virol J, 2018. 15, 88. https://doi.org/10.1186/s12985-018-0995-6.
19. Zhang et al, Evaluation of mitochondrial toxicity in Marmota himalayana treated with metacavir, a novel 2',3'-dideoxyguanosine prodrug for treatment of hepatitis B Virus, Antimicrob Agents Chemother. 2011, 55(5):1930-1936.
20. Rong, R., et al., Mahuang-Xixin-Fuzi decoction reduces the infection of influenza A virus in Kidney-Yang deficiency syndrome mice. J Ethnopharmacol, 2016. 192: 217-224.
21. Lobo, S.M., et al., Excess mortality is associated with influenza A (H1N1) in patients with severe acute respiratory illness. J Clin Virol, 2019. 116: 62-68.
22. Huo, C., et al., Lethal influenza A virus preferentially activates TLR3 and triggers a severe inflammatory response. Virus Res, 2018. 257: 102-112.
23. Elshabrawy, H.A., et al., TLRs, future potential therapeutic targets for RA. Autoimmun Rev, 2017. 16(2): 103-113.
24. Arora, S., et al., TLRs in pulmonary diseases. Life Sciences, 2019. 233: 116671.
25. Karpala, A.J., J.W. Lowenthal, and A.G. Bean, Activation of the TLR3 pathway regulates IFNbeta production in chickens. Dev Comp Immunol, 2008. 32(4): 435-44.
26. Zhang, S.Y., et al., TLR3 immunity to infection in mice and humans. Curr Opin Immunol, 2013. 25(1): 19-33.
27. Ludwig, S., et al., Influenza, a One Health paradigm--novel therapeutic strategies to fight a zoonotic pathogen with pandemic potential. Int J Med Microbiol, 2014. 304(7): 894-901.
28. Park, J.E. and Y. Ryu, Transmissibility and severity of influenza virus by subtype. Infect Genet Evol, 2018. 65: 288-292.
29. Ison, M.G., Antivirals and resistance: influenza virus. Current Opinion in Virology, 2011. 1(6): 563-573.
30. Svitek, N., et al., Severe seasonal influenza in ferrets correlates with reduced interferon and increased IL-6 induction. Virology, 2008. 376(1): 53-59.
31. Fukuyama, S. and Y. Kawaoka, The pathogenesis of influenza virus infections: the contributions of virus and host factors. Curr Opin Immunol, 2011. 23(4): 481-486.
32. Hsieh, C.F., et al., Ching-fang-pai-tu-san inhibits the release of influenza virus. J Ethnopharmacol, 2012. 144(3): 533-544.
33. Law, A.H.-Y., et al., Antiviral effect of forsythoside A from Forsythia suspensa (Thunb.) Vahl fruit against influenza A virus through reduction of viral M1 protein. J Ethnopharmacol, 2017. 209: 236-247.
34. Ma, Q., et al., Liu Shen Wan inhibits influenza a virus and excessive virus-induced inflammatory response via suppression of TLR4/NF-κB signaling pathway in vitro and in vivo. J Ethnopharmacol, 2020. 252: 112584.
35. Le Goffic R, Balloy V, Lagranderie M, et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2006, 2(6):e53. doi: 10.1371/journal.ppat.0020053.