The BRIC-20 experiment examined the proteomes and transcriptomes of etiolated 3-day old Arabidopsis seedlings grown aboard the International Space Station (ISS) and identical samples grown on Earth. Arabidopsis seeds were densely planted on 0.5x MS agar plates supplemented with sucrose and germinated on orbit. After 76 hours of etiolated growth within the Biological Research in Cannisters (BRIC) hardware, seedlings were fixed with RNAlater and frozen until return to earth. Total protein, divided into soluble and insoluble fractions, and RNA, were extracted from the samples. RNA-seq reads were obtained by Illumina HiSeq 2500. Proteins were ITRAQ-labeled, and discovery proteomics was performed using LC-MS/MS. Total protein levels, as well as PTMs, were compared between flight and ground samples with a decision rule of P ≤ 0.1 to allow for PTM detection in the absence of phosphoenrichment. MS/MS data revealed a subset of phosphorylation events that were significantly (P ≤ 0.1) differentially abundant in space compared to earth.
Overall, 968 genes, 107 soluble proteins, and 103 membrane proteins were identified as significantly differentially expressed (P ≤ 0.05) between spaceflight and ground conditions (Fig. 1). At the transcript level, 480 genes were upregulated and 488 genes were downregulated (at a L2FC of ≥ ±1; 2-fold differential expression) in space as compared to on Earth; 45 membrane and 21 soluble proteins were more abundant in space and 58 membrane and 86 soluble proteins were less abundant in space (L2FC of ≥ ± 0.2). In addition to the differentially expressed proteins, we also observed 16 peptides that were differentially phosphorylated in microgravity (P ≤ 0.1).
The subcellular localization of the differential proteins and the proteins encoded by the differentially expressed transcripts was assessed using SUBA4 (13). One of the most overt differences in cellular localization was the > 25% of transcripts upregulated in spaceflight being localized to the plastid compared to < 1% of the transcripts upregulated on Earth (Fig. 1). This change was not reflected in the protein data and provides a primary indication of dysregulation of plastid genes in the absence of gravity despite, or perhaps because of, the lack of chloroplast development in etiolated seedlings. Extracellular localization was only observed in the soluble proteins downregulated in space, with 8 extracellular localized proteins. These proteins are primarily regulators of oxidation and cell wall dynamics (Table 1).
Gene Ontology (GO) Analysis Reveals Processes Altered in Microgravity
To determine the global physiological effects of spaceflight conditions, an enrichment analysis of GO terms was performed. In an effort to identify trends in altered physiological function, four discrete groupings of molecular data were analyzed: 1) proteins that were in more abundance in spaceflight samples; 2) proteins more abundant on Earth, 3) transcripts more abundant in the spaceflight samples, and 4) transcripts more abundant on Earth (Fig. 2). Four key features of transcriptomic and proteomic datasets reveal novel physiological adaptations in spaceflight and simultaneously demonstrate the utility of this mixed ‘omics approach. First, genes regulating cell wall organization processes are enriched among upregulated proteins and downregulated transcripts. The differential phosphorylation, protein, and gene expression data all reveal specific aspects of a nuanced regulatory shift in cell-wall related processes as a part of the change associated with microgravity. Second, redox homeostasis and a broad set of GO terms related to reactive oxygen species production and metabolism are enriched among the up and down regulated transcripts but not mirrored in the differentially expressed proteins. A third intriguing feature is the upregulation of plastid-localized gene transcription despite the seedlings being etiolated (as the hardware allows no light to enter). Finally, there is a pervasive shift in the regulation of translation and post-transcriptional regulation as a whole that is solely enriched at the protein level.
Post-Transcriptional Gene Regulation, Alternative Splicing, and Post-Translational Modifications
To determine if any of the proteins identified were altered independent of transcript levels, we compared the lists of significantly altered transcripts (P ≤ 0.05; L2FC of ≥ 1) and the list of significantly altered proteins (P ≤ 0.05; L2FC of ≥ 0.2). Of the genes and proteins showing differential expression/abundance as a result of spaceflight, only 17 appeared in both the RNA and protein datasets (Fig. 3, Table 2) representing 2% and 8% of mRNAs and proteins, respectively. Of the 17 in this group, 12 showed consistent direction of expression (i.e. both increased or both decreased). The remaining five showed expression in opposing directions between the transcript and protein. Hypergeometric distribution analysis indicated a significant (p = 0.036) correlation between these gene sets when considering only the genes that show consistent direction of expression, and a more dramatic correlation when including all 17 overlapping genes (p=9.7 e-4). A cofactor-dependent phosphoglycerate mutase (dPGM, AT5G04120) predicted to be involved in glycolysis was upregulated in both datasets in response to spaceflight (14). Given the etiolated seedlings were grown on sucrose media, this shift in a regulatory component of glycolysis may be representative of an important metabolic target for spaceflight adaptation. Inversely, AT1G19530—an epsilon catalytic subunit A of DNA polymerase—was consistently downregulated in proteomic and transcriptomic analyses (Fig. 3). Notably, a probable aquaporin protein belonging to the tonoplast intrinsic protein family (TIP3.2) was significantly more abundant in space despite TIP3.2 transcripts being more than four-fold downregulated. Of the 17 genes and proteins coordinately differentially expressed, nearly 30% of these genes show opposite directions of differential expression like TIP3.2. Thus, post-transcriptional gene regulation may have important implications for adjustment to spaceflight.
To determine if post-transcriptional regulation is responsible for the low correlation between transcriptomic and proteomic data sets, we filtered the differentially expressed RNAs and proteins to identify genes in post-transcriptional regulation. Transcript and protein levels for many ribosomal subunits were altered between Earth and microgravity, which may have an impact on the translational dynamics of the cell. Twelve transcripts for ribosomal proteins were differentially expressed, with only one, a structural component, downregulated nearly 8-fold in space (Table 3). The remaining eleven were upregulated in the spaceflight samples. Medina (2010) suggested that changes in ribosome biosynthesis as a result of microgravity caused an uncoupling of cellular growth and cellular proliferation (15). The differential expression of various tRNAs and the increased abundance of proteins related to post-transcriptional regulation of gene expression and translational initiation (enriched in proteins upregulated and downregulated in spaceflight, respectively) suggest an even more substantial impact on regulatory dynamics induced by spaceflight (Fig. 2; Supplemental File 2). The increased protein expression of RNA DECAPPING PROTEIN 5 (DCP5, AT1G26110, L2FCmembrane = 0.32) and the RNA-silencing protein ARGONAUTE 4 (AGO4, AT2G27040, L2FCsoluble = 0.44, L2FCRNA = 0.78) further indicate an increased mRNA turnover and siRNA-mediated gene silencing while coping with microgravity. Perhaps the most novel finding relating to this regulatory shift is found in the PTM data. EUKARYOTIC TRANSLATION INITIATION FACTOR ISOFORM 4G-1, GTP BINDING ELONGATION FACTOR TU FAMILY, ELONGATION FACTOR 1-DELTA 1, and a Trigger Factor Type Chaperone family protein all had differential levels of phosphorylation (Table 4) suggesting an additional mechanism for regulating translation. Among these phosphorylation events, we also see evidence for differential splicing as an adaptation to spaceflight. The RNA-binding proteins GRP7 and GRP8, both regulators of alternative splicing (16), were preferentially phosphorylated on Earth at the S118 residue in response to microgravity (L2FCphospho = -0.39 and -0.54, respectively) (Table 5). This suggests an alteration in splicing patterns within the plant in response to spaceflight. A splice aware analysis of transcripts identified 24 genes with at least two transcripts differentially expressed (Figure S1). VILLIN 1, PEROXIN 11E, NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 1 isoforms that are inversely differentially expressed by spaceflight. For example, the actin binding protein VILLIN 1 isoforms AT2G29890.2 (L2FCRNA > 5) and AT2G29890.3 (L2FCRNA < -7.5) approach complete silencing in space and on earth respectively (Additional file 3: Fig. S1). The altered ratio of gene isoforms confirms that transcripts are subject to altered processing in microgravity.
In addition to regulators of translation and RNA splicing/degradation, components of the ubiquitin ligase protein degradation pathway were also identified in the spaceflight samples. Three E3 ligase mRNAs were altered by a L2FC of ≥ ±1 including ARABIDOPSIS TOXICOS EN LEVADURA 9 (ATL9, AT2G35000, L2FCRNA = -1.1), BOI-RELATED GENE 2 (BRG2, AT1G79110, L2FCRNA = 1.9), and RING-H2 FINGER PROTEIN 2B (RHA2B, AT2G01150, L2FCRNA = 1.0). ATL9, expressed in an NADPH-dependent matter, has been implicated in pathogen response due to its chitin-mediated expression, but is not upregulated in response to the canonical defense hormones (17). BRG2 is a member of a subclass of RING-type E3 ligases which contribute Botrytis cinerea resistance and mediate stress and pathogen responses (18). Finally, the E3 ligase RHA2B has an additive effect with its closest homolog, RHA2A, in regulating ABA and drought response (19). In addition to the standard E3 ligases, five members of the F-box superfamily, PHLOEM PROTEIN 2-A13 (PP2-A13, AT3G61060, L2FCRNA = -2.0), AT3G27150 (L2FCRNA = -1.7), PHLOEM PROTEIN 2-A14 (PP2-A14, AT5G52120, L2FCRNA = 1.5), and AT1G23390 (L2FCRNA = -1.3) were differentially expressed.
Other components of the regulated proteolysis pathway were also altered. REGULATORY PARTICLE AAA-ATPASE 2A (RPT2a, L2FCSoluble = -0.32) and a 26S proteasome regulatory subunit (RPN7, AT4G24820, L2FCSoluble = -0.76) were both downregulated in spaceflight samples. NUCLEAR ENCODED CLP PROTEASE 5 (CLPP5, L2FCSoluble = 0.56), SIGNAL PEPTIDE PEPTIDASE (SPPA, L2FCMembrane = 0.21), and the peptidase SHOU4 (AT1G78880, L2FCMembrane = 0.81) were all upregulated in space. An additional 23 proteases were altered at the transcript level (Additional file 1). Overall, microgravity-grown plants appear to display changes in the capacity to produce, regulate, and degrade proteins.
Cell Wall Synthesis in the Spaceflight Environment
Microgravity has been shown to have a significant impact on plant growth (20,21). In these datasets, the most obviously impact is seen in differential expression and regulation of components of cell wall modification. At the protein level, a number of UDP-D-Xylose synthases, transferases, and hydrolases (XT2, GUT1, XS1,XS2, XTH19) were upregulated in microgravity, along with a putative plasmodesmata localized BETA-1,3-GLUCANASE (BG_PPAP, AT5G42100).
Quantitative tracking of PTMs has revealed several novel aspects of spaceflight acclimation in plants, including alterations in cell wall synthesis (Table 5). PLASMA MEMBRANE PROTON ATPASE 2 (AHA2) was differentially phosphorylated between flight and ground controls. AHA2 has been implicated as the link between auxin and acid growth. The redistribution of auxin in response to tropic stimulus initiates transcription of SAUR19, which in turn inhibits a PP2C-D phosphatase allowing for AHA2-mediated acidification of the cell wall and subsequent cellular elongation (22). The phosphorylated form of AHA2 was more abundant on Earth (L2FCphospho = -0.36) (Table 5). Components involved in cellulose deposition also showed altered transcription. CELLULOSE SYNTHASE 1(CESA1) phosphorylation was increased in spaceflight samples (L2FCphospho = 0.23) (Table 3) while, Tubulin-a 1, 3,4 and 6, required for cellulose patterning, were preferentially phosphorylated on Earth (L2FCphospho = -0.24, -0.26, -0.24 and -0.24 respectively) (Table 5) at T349; phosphorylation at T349 is known to encourage microtubule depolymerization (23).
While many plant processes are modulated by auxin, auxin-mediated asymmetric cellular elongation is the primary effector of directional growth responses, including gravitropism, and is an essential component in the regulation of cell wall growth and elongation. Many of the auxin-related pathways are clearly perturbed in response to microgravity, with representatives from many aspects of auxin signaling and response appearing in either the protein or the gene expression dataset. Both of the enzymes in the primary synthesis pathway from tryptophan to IAA are represented. The first, L-tryptophan-pyruvate-aminotransferase 1 (L2FCRNA=0.82), is upregulated nearly two-fold. The transcript for the second enzyme, indole-3-pyruvate-monooxegenase (YUCCA6, L2FCRNA=-0.86), was downregulated nearly two-fold in spaceflight samples. This expression pattern could result in an increased level of Indole-3-pyruvate —the final precursor in auxin synthesis—along with a decrease in conversion of Indole-3-pyruvate to IAA (primary active form of auxin) because of the decreased level of YUCCA6. Several of the genes responsible for auxin redistribution were also present in the datasets. Five auxin carriers were differentially expressed in total: PIN2 (AT5G57090, L2FCRNA=-0.77), PIN-like7 (AT5G65980, L2FCRNA=-0.95), and ABCB15 (AT3G28345, L2FCRNA=-0.87) were down-regulated in space, while PIN-FORMED 4 (PIN4, AT2G01420, L2FCRNA=0.77) and LAX2 (AT2G21050, L2FCRNA=0.87) were up-regulated, suggesting that space-grown plants are altering their auxin distribution in response to the space-flight environment. In addition to auxin biosynthesis and transport, auxin perception and response were also perturbed. AUXIN SIGNALING F BOX PROTEIN 1 (AFB1, AT4G03190, L2FCmembrane=-0.11), a member of the TIR1 family, was less abundant in microgravity in the protein dataset. Auxin-responsive proteins IAA5 (L2FCRNA=2.83) and IAA28 (L2FCRNA=-0.84) genes were found to be differentially expressed, as well as Auxin-response factors ARF4 (L2FCRNA=0.81) and ARF11 (L2FCRNA=0.72). Two small auxin-upregulated RNA (SAUR) genes (both downregulated) and five SAUR-like genes (3 downregulate, 2 upregulated) were differentially expressed in microgravity. These have been shown to be auxin-responsive regulators of adaptive growth, and may be responsible for modulating new growth patterns in the absence of gravity (24). Whether auxin is the predominant regulator of cell wall related adaptions remains to be seen, however, the characterization provided by transcript, protein and PTM data provides an enhanced understanding of cell wall regulatory dynamics—a primary target for optimization of plant growth in space.
Influences on plastid function and regulation
Genes and terms relating to plastid function were among the most pronounced features of the subcellular localization (Fig. 1) and the gene ontology enrichment analysis (Fig. 2). Notably, the enrichment of genes associated with chlorophyll biosynthetic process, protein import into chloroplast stroma, plastid membrane organization, protein targeting to chloroplast, and chloroplast organization were seen in the transcript dataset (Fig. 2; Additional file 2). These results were unexpected because seedlings were sealed inside PDFU’s, which were then sealed inside the BRIC. This environment provides no light to initiate chlorophyll synthesis and chloroplast development Although plastids play an important role in gravity perception through the sedimentation of dense amyloplasts in the root cap and shoot endodermis, many of the differentially expressed genes (e.g. chlorophyll synthase) relate to photosynthesis, rather than amyloplast-related functions. This may suggest a microgravity-induced disruption in plastid operation that goes beyond gravity perception and may impact metabolic-based plastid processes.
Furthermore, gene ontology analysis for the transcript data revealed significant enrichment in terms such as plastid translation, protein import into the stroma, targeting to chloroplast, and plastid organization (Fig. 2; Supplemental File 2). The increased transcript expression of plastid ribosomal proteins SVR8 (AT5G54600, L2FCRNA=1.01), PSRP3/1 (AT1G68590, L2FCRNA=1.13), and RPS17 (AT1G79850, L2FCRNA=1.02), translocons TIC55-II (AT2G24820, L2FCRNA=1.01), and TIC21 (AT2G15290, L2FCRNA=1.03), as well as OUTER ENVELOPE PROTEIN 16 (OEP16) (AT2G28900, L2FCRNA=1.57), PLASTIDIC TYPE I SIGNAL PEPTIDASE 1 (PLSP1) (AT3G24590, L2FCRNA=1.04), and GRANA-LOCALIZED PROTEIN (RIQ2) (AT1G74730, L2FCRNA=1.22) may indicate a disruption in plastid physiology in response to microgravity. The transcript-specific alterations in biological functions and localizationsuggests alterations in plastid homeostasis. This phenomenon may, in part, be linked to the reduced negative impact on growth of PhyD-deficient mutants in the spaceflight environment (25). Identifying the regulatory mechanism responsible for these potentially “wasted” transcripts may provide an ideal target for engineering plants that remain hearty in microgravity.
Altered Redox State and ROS signaling
Reactive oxygen species have emerged as important components of plant signaling, but may also be produced as byproducts of stress metabolism (26). Transcripts for L-ascorbate oxidase (AT5G21100, L2FCRNA = 1.43), L-ascorbate peroxidase S (AT4G08390, L2FCRNA = 0.96), monodehydroascorbate reductase (AT1G63940, L2FCRNA = 0.98), as well as ascorbate transporters (AT4G00370, L2FCRNA = 0.84; AT2G27810, L2FCRNA = 0.68; AT2G34190, L2FCRNA = 0.82) were all up-regulated in the spaceflight samples. In addition to ascorbate related genes, respiratory burst oxidase homolog (RBOH) genes were altered. RBOHB (AT1G09090, L2FCRNA = -1.38) and RBOHI (AT4G11230, L2FCRNA = -1.03) (superoxide-producing NADPH oxidases) were down regulated in microgravity. RBOH genes are known mediators of reactive oxygen species (ROS) signaling (26,27).
To understand the physiological impact of the altered expression of ROS regulators, we examined the oxidation state of the proteome from our LC-MS/MS results. The insoluble spaceflight samples showed a prevalence of oxidized proteins and decreased oxidation in the soluble samples. Analysis of the membrane protein fraction identified a total of 3,659 oxidized peptides, with 174 peptides showing significantly (P ≤ 0.05) altered prevalence between space flown and ground control seedlings. Of those significantly altered, 79% showed a greater prevalence of the oxidized form in space. The trend of increased oxidation may be due in part to the decreased level of several extracellular peroxidase proteins in microgravity. This trend was reversed in the soluble proteins with 88% of the 265 significantly altered peptides showing decreased oxidation in the space-flown seedlings.