1. Sharon S. Chiou, Nina Turner, Joyce Zwiener, Darlene L. Weaver and WEH Effect of Boot Weight and Sole Flexibility on Gait and Physiological Responses of Firefighters in Stepping Over Obstacles. https://doi.org/10.1177/0018720811433464
2. Kuklane K, Geng Q, Holmér I (1999) Thermal effects of steel toe caps in footgear. Int J Ind Ergon 23:431–438. https://doi.org/10.1016/S0169-8141(97)00074-7
3. Hillermeier R, Hasson T, Friedrich L, Ball C (2013) Advanced thermosetting resin matrix technology for next generation high volume manufacture of automotive composite structures. SAE Tech Pap 2:1–9. https://doi.org/10.4271/2013-01-1176
4. Kropidłowska P, Irzmańska E, Zgórniak P, et al (2021) Evaluation of the mechanical strength and protective properties of polycarbonate toecaps subjected to repeated impacts simulating workplace conditions Evaluation of the mechanical strength and protective properties of polycarbonate toecaps subjected to repeated impacts simulating workplace conditions. Int J Occup Saf Ergon 27:698–707. https://doi.org/10.1080/10803548.2020.1796295
5. Lee SM, Lim TS, Lee DG (2005) Damage tolerance of composite toecap. Compos Struct 67:167–174. https://doi.org/10.1016/J.COMPSTRUCT.2004.09.009
6. Lee MJ, Rahimifard S (2012) An air-based automated material recycling system for postconsumer footwear products. Resour Conserv Recycl 69:90–99. https://doi.org/10.1016/j.resconrec.2012.09.008
7. Staikos T, Rahimifard S (2010) A decision-making model for waste management in the footwear industry. https://doi.org/101080/00207540701450187 45:4403–4422. https://doi.org/10.1080/00207540701450187
8. Witik RA, Payet J, Michaud V, et al (2011) Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Compos Part A Appl Sci Manuf 42:1694–1709. https://doi.org/10.1016/j.compositesa.2011.07.024
9. Duflou JR, De Moor J, Verpoest I, Dewulf W (2009) Environmental impact analysis of composite use in car manufacturing. CIRP Ann - Manuf Technol 58:9–12. https://doi.org/10.1016/j.cirp.2009.03.077
10. Meng F, Pickering SJ, Mckechnie J (2018) An Environmental Comparison of Carbon Fibre Composite Waste End-of-life Options. 7
11. Song YS, Youn JR, Gutowski TG (2009) Life cycle energy analysis of fiber-reinforced composites. Compos Part A Appl Sci Manuf 40:1257–1265. https://doi.org/10.1016/j.compositesa.2009.05.020
12. De Souza CSR, Opelt CV, Cândido GM, et al (2019) Reuse of Uncured Carbon Fiber/Epoxy Resin Prepreg Scraps: Mechanical Behavior and Environmental Response. ACS Sustain Chem Eng 7:2200–2206. https://doi.org/10.1021/acssuschemeng.8b04852
13. Nilakantan G, Nutt S (2018) Reuse and upcycling of thermoset prepreg scrap: Case study with out-of-autoclave carbon fiber/epoxy prepreg. J Compos Mater 52:341–360. https://doi.org/10.1177/0021998317707253
14. Nilakantan G, Olliges R, Su R, Nutt S (2014) Reuse Strategies for carbon fiber-epoxy prepreg scrap. CAMX 2014 - Compos Adv Mater Expo Comb Strength Unsurpassed Innov
15. Bianchi I, Forcellese A, Marconi M, et al (2021) Environmental impact assessment of zero waste approach for carbon fiber prepreg scraps. Sustain Mater Technol e00308. https://doi.org/10.1016/j.susmat.2021.e00308
16. Landi D, Marconi M, Bocci E, Germani M (2020) Comparative life cycle assessment of standard, cellulose-reinforced and end of life tires fiber-reinforced hot mix asphalt mixtures. J Clean Prod 248:119295. https://doi.org/10.1016/j.jclepro.2019.119295
17. Forcellese A, Marconi M, Simoncini M, Vita A (2020) Life cycle impact assessment of different manufacturing technologies for automotive CFRP components. J Clean Prod 271:122677. https://doi.org/10.1016/j.jclepro.2020.122677
18. Vita A, Castorani V, Germani M, Marconi M (2019) Comparative life cycle assessment and cost analysis of autoclave and pressure bag molding for producing CFRP components. Int J Adv Manuf Technol 105:1967–1982. https://doi.org/10.1007/s00170-019-04384-9
19. Sahli M, Roizard X, Colas G, et al (2020) Modelling and numerical simulation of steel sheet fine blanking process. Procedia Manuf 50:395–400. https://doi.org/10.1016/J.PROMFG.2020.08.072
20. Abe Y, Yonekawa R, Sedoguchi K, Mori K ichiro (2018) Shearing of ultra-high strength steel sheets with step punch. Procedia Manuf 15:597–604. https://doi.org/10.1016/J.PROMFG.2018.07.283
21. Ramahi A, Saleh Y (2010) DESIGN AND FABRICATION OF A DEEP DRAWING MACHINE: EXPERIMENTAL STUDY OF DRAWING FORCE VS DRAWING STROKE. 27–29
22. Kim H, Altan T, Yan Q (2009) Evaluation of stamping lubricants in forming advanced high strength steels (AHSS) using deep drawing and ironing tests. J Mater Process Technol 209:4122–4133. https://doi.org/10.1016/J.JMATPROTEC.2008.10.007
23. Dong X, Yang H, Zhu X, Ji S (2019) High strength and ductility aluminium alloy processed by high pressure die casting. J Alloys Compd 773:86–96. https://doi.org/10.1016/J.JALLCOM.2018.09.260
24. Liu W, Peng T, Kishita Y, et al (2021) Critical life cycle inventory for aluminum die casting: A lightweight-vehicle manufacturing enabling technology. Appl Energy 304:117814. https://doi.org/10.1016/j.apenergy.2021.117814
25. Dalquist S, Gutowski T (2004) Life cycle analysis of conventional manufacturing techniques: Sand casting. Am Soc Mech Eng Manuf Eng Div MED 15:631–641. https://doi.org/10.1115/IMECE2004-62599
26. Wang HS, Wang YN, Wang YC (2013) Cost estimation of plastic injection molding parts through integration of PSO and BP neural network. Expert Syst Appl 40:418–428. https://doi.org/10.1016/J.ESWA.2012.01.166
27. Guevara-Morales A, Figueroa-López U (2014) Residual stresses in injection molded products. J. Mater. Sci. 49:4399–4415
28. Chhanda NJ, Suhling JC, Canumalla S (2014) Effects of moisture exposure on the mechanical behavior of polycarbonate materials used in electronic packaging. In: Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference. Institute of Electrical and Electronics Engineers Inc., pp 355–364
29. Rosato D V, Rosato D V, Rosato M V (2004) Plastic Product Material and Process Selection Handbook
30. Nilakantan G, Nutt S (2015) Reuse and upcycling of aerospace prepreg scrap and waste. Reinf Plast 59:44–51. https://doi.org/10.1016/j.repl.2014.12.070
31. Wu MS, Centea T, Nutt SR (2018) Compression molding of reused in-process waste–effects of material and process factors. Adv Manuf Polym Compos Sci 4:1–12. https://doi.org/10.1080/20550340.2017.1411873
32. Nilakantan G, Olliges R, Su R, Nutt S (2014) Reuse Strategies for carbon fiber-epoxy prepreg scrap. CAMX 2014 - Compos Adv Mater Expo Comb Strength Unsurpassed Innov
33. International organization for standarization (2004) Environmental Management - Life Cycle Assessment - Principles and Framework (ISO 14040:2006). Environ Manag Syst Requir 44:
34. ISO UNIEN (2011) Valutazione del ciclo di vita Requisiti e linee guida. Environ Manage
35. Frischknecht R, Wyss F, Büsser Knöpfel S, et al (2015) Cumulative energy demand in LCA: the energy harvested approach. Int J Life Cycle Assess 20:957–969. https://doi.org/10.1007/s11367-015-0897-4
36. Stocker TF, Qin D, Plattner GK, et al (2013) Climate change 2013 the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change
37. Witik RA, Teuscher R, Michaud V, et al (2013) Carbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfilling. Compos Part A Appl Sci Manuf 49:89–99. https://doi.org/10.1016/j.compositesa.2013.02.009
38. Ramahi A, Saleh Y (2010) Design and Fabrication of a Deep Drawing Machine: Experimental Study of Drawing Force Vs Drawing Stroke. 27–29
39. Kubik C, Hohmann J, Groche P (2021) Exploitation of force displacement curves in blanking—feature engineering beyond defect detection. Int J Adv Manuf Technol 113:261–278. https://doi.org/10.1007/s00170-020-06450-z
40. Roberts M (2003) Modified life cycle inventory of aluminium die casting. undefined
41. Dalquist S, Gutowski T (2004) LIFE CYCLE ANALYSIS OF CONVENTIONAL MANUFACTURING TECHNIQUES: DIE CASTING