1 Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515-1518 (2020).
2 Plastics – the Facts 2019 An analysis of European plastics production, demand and waste data. (2019).
3 Peng, B. Y. et al. Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ Int 145, 106106, (2020).
4 Wei, R. et al. Possibilities and limitations of biotechnological plastic degradation and recycling. Nature Catalysis 3, 867-871 (2020).
5 Leal Filho, W. et al. An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. Journal of Cleaner Production 214, 550-558 (2019).
6 Restrepo-Flórez, J.-M., Bassi, A. & Thompson, M. R. Microbial degradation and deterioration of polyethylene – A review. International Biodeterioration & Biodegradation 88, 83-90 (2014).
7 Kumar Sen, S. & Raut, S. Microbial degradation of low density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering 3, 462-473 (2015).
8 Montazer, Z., Habibi Najafi, M. B. & Levin, D. B. Challenges with Verifying Microbial Degradation of Polyethylene. Polymers (Basel) 12 (2020).
9 Ru, J., Huo, Y. & Yang, Y. Microbial Degradation and Valorization of Plastic Wastes. Front Microbiol 11, 442 (2020).
10 Yoshida S, H. K., Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196-1199 (2016).
11 Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216-219 (2020).
12 Ma, Y. et al. Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering. Engineering 4, 888-893 (2018).
13 Peng, B. Y. et al. Biodegradation of Polystyrene by Dark ( Tenebrio obscurus) and Yellow ( Tenebrio molitor) Mealworms (Coleoptera: Tenebrionidae). Environ Sci Technol 53, 5256-5265 (2019).
14 Brandon, A. M. et al. Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environ Sci Technol 52, 6526-6533 (2018).
15 Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N. & Fava, F. Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia. Mar Environ Res 158, 104949 (2020).
16 Z. Klrbas, N. K., A. Güner. Biodegradation of Polyvinylchloride (PVC) by White Rot Fungi. Bull. Environ. Contam. Toxicol. 63, 335-342 (1999).
17 Das, G., Bordoloi, N. K., Rai, S. K., Mukherjee, A. K. & Karak, N. Biodegradable and biocompatible epoxidized vegetable oil modified thermostable poly(vinyl chloride): thermal and performance characteristics post biodegradation with Pseudomonas aeruginosa and Achromobacter sp. J Hazard Mater 209-210, 434-442 (2012).
18 Vivi, V. K., Martins-Franchetti, S. M. & Attili-Angelis, D. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiol (Praha) 64, 1-7 (2019).
19 Ali, M. I. et al. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J Basic Microbiol 54, 18-27 (2014).
20 Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N. & Fava, F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. N Biotechnol 52, 35-41 (2019).
21 Khatoon, N., Jamal, A. & Ali, M. I. Lignin peroxidase isoenzyme: a novel approach to biodegrade the toxic synthetic polymer waste. Environ Technol 40, 1366-1375 (2019).
22 Lear, G. et al. Plastics and the microbiome: impacts and solutions. Environmental Microbiome 16 (2021).
23 Zhang, J. et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci Total Environ 704, 135931 (2020).
24 Yang, S. S. et al. Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere 212, 262-271 (2018).
25 Yang, X., Steck, J., Yang, J., Wang, Y. & Suo, Z. Degradable Plastics Are Vulnerable to Cracks. Engineering 7, 624-629 (2021).
26 Gewert, B., Plassmann, M. M. & MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17, 1513-1521 (2015).
27 Talavera, A. et al. Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors. Science advances 4, eaap9714 (2018).
28 Jolly, C. & Morimoto, R. I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92, 1564-1572 (2000).
29 Deangelis, K. M. et al. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol 4, 280 (2013).
30 Miflin, B. J. & Habash, D. Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp. Bot. 53, 979-987 (2002).
31 Wang, C. et al. Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids. Water Res 183, 116082 (2020).
32 Koutny, M., Lemaire, J. & Delort, A. M. Biodegradation of polyethylene films with prooxidant additives. Chemosphere 64, 1243-1252 (2006).
33 Santo, M., Weitsman, R. & Sivan, A. The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration & Biodegradation 84, 204-210 (2013).
34 Danko, A. S., Luo, M., Bagwell, C. E., Brigmon, R. L. & Freedman, D. L. Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl Environ Microbiol 70, 6092-6097 (2004).
35 Vaillancourt, F. H., Labbe, G., Drouin, N. M., Fortin, P. D. & Eltis, L. D. The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates. J Biol Chem 277, 2019-2027 (2002).
36 Anwar, M. S. et al. Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride. Protoplasma 253, 1023-1032 (2016).
37 Khandare, S. D., Chaudhary, D. R. & Jha, B. Bioremediation of polyvinyl chloride (PVC) films by marine bacteria. Mar Pollut Bull 169, 112566 (2021).
38 Rodriguez-Medina, N., Barrios-Camacho, H., Duran-Bedolla, J. & Garza-Ramos, U. Klebsiella variicola: an emerging pathogen in humans. Emerg Microbes Infect 8, 973-988 (2019).
39 Feng, Y., Feng, J. & Shu, Q. L. Isolation and characterization of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae and Klebsiella variicola strains from various environments. J Appl Microbiol 124, 1195-1211 (2018).
40 Zhang, J. et al. Zn2+-dependent enhancement of Atrazine biodegradation by Klebsiella variicola FH-1. Journal of Hazardous Materials 411 (2021).
41 Dos Santos Melo-Nascimento, A. O. et al. Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1. PLoS One 15, e0243739 (2020).
42 Gopinath.S.M, I. S., Ashalatha, Shreya Ranjit. Isolation, Screening and Purification of Cellulase from Cellulase Producing Klebsiella variicola RBEB3 (KF036184.1). International Journal of Science and Research 3, 1398-1403 (2014).
43 Meyer-Cifuentes, I. E. et al. Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium. Nat Commun 11, 5790 (2020).
44 Singh, B. & Sharma, N. Mechanistic implications of plastic degradation. Polymer Degradation and Stability 93, 561-584 (2008).
45 Krueger, M. C., Harms, H. & Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99, 8857-8874 (2015).
46 Gravouil, K. et al. Transcriptomics and Lipidomics of the Environmental Strain Rhodococcus ruber Point out Consumption Pathways and Potential Metabolic Bottlenecks for Polyethylene Degradation. Environ Sci Technol 51, 5172-5181 (2017).
47 Abraham, J., Ghosh, E., Mukherjee, P. & Gajendiran, A. Microbial degradation of low density polyethylene. Environmental Progress & Sustainable Energy 36, 147-154 (2017).
48 Delcher, A. L., Bratke, K. A., Powers, E. C. & Salzberg, S. L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673-679 (2007).