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Abstract

We present ABACUS-R, a method based on deep learning for designing amino acid sequences that au-

tonomously fold into a given target backbone. This method predicts the sidechain type of a central residue

from its 3D local environment by using an encoder-decoder network trained with a multi-task learning

strategy. The environmental features encoded by the network include the types but not the conformations

of the sidechains of surrounding residues. This eliminates the needs for reconstructing and optimizing

sidechain structures, and drastically simplifies the sequence design process. Thus iteratively applying the

encoder-decoder to different central residues is able to produce self-consistent overall sequences for a

target backbone. Extensive results of wet experiments, including five structures solved by X-ray crys-

tallography, show that ABACUS-R outperforms state-of-the-art energy function-based de novo sequence

design methods by significant margins in success rate and design precision. ABACUS-R constitutes a

robust tool for wide applications in protein design and protein engineering.

1 Introduction

Computational protein design brings the capability of inventing de novo proteins [1, 2] to fulfill various structural and

functional needs from therapeutics [3, 4] to bio-catalysis [5, 6]. One of the general problems to be solved in computa-

tional protein design is inverse protein folding, which is to select amino acid sequences that autonomously fold into a

given backbone target. Although a few existing methods to solve this problem have been repeatedly verified with ex-

perimentally solved structures of designed proteins [7, 8, 9, 10], these methods still suffer from deficiencies including

low success rates [11, 12], high sensitivity to target structures [13, 14], and overly monotonous designed sequences

that lack the diversity and variability of natural amino acid sequences [10, 15]. To overcome these limitations calls for

further method innovations [16, 17].

Conventional methods for inverse protein folding are based on optimizing empirical energy functions with re-

spect to the sidechain types (and the sidechain conformations [18]). The energy functions are either physics-based

(e.g. RosettaDesign [8], Proteus [19] and EvoEF2 [20]) or statistically learned from data (e.g. ABACUS [9, 10]

and TERM [16]). Invariably, these energy functions employ the approximation of treating complicated, many-body

molecular interactions as linear combinations of one-body and two-body terms [8, 9, 10, 18]. This approximation has

been a fundamental accuracy-limiting factor despite continuous improvements [21] of conventional energy functions.

Previously, we developed a statistical energy model named ABACUS [9, 10] (a backbone-based amino acid usage

survey). Proteins designed with ABACUS have been verified with experimentally-solved structures in a number of

studies [9, 10, 22, 23, 24]. Although the energy terms in ABACUS were devised to consider high-order coupling be-
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tween various physical factors, the non-linear integration of coupled effects was restricted to the single-residue and the

residue-pair-wise levels, beyond which separately learned energy terms were combined only in a linear way. Replac-

ing this linear combination with an approach that can integrate non-linear coupling at higher orders may significantly

increase the robustness and accuracy of this data-driven method.

A suitable approach that does not depend on the linear combination approximation is deep learning [25]. Deep

learning has already tremendously advanced protein structure prediction (i.e., forward folding) [26, 27, 28]. Its ap-

plication in structure-based sequence design (i.e., inverse folding) were explored in several recent studies [17, 29, 30,

31, 32, 33, 34]. Although promising methods have been demonstrated to outperform conventional energy function-

based approaches in computational tests, in tests by wet experiments, deep learning methods have not yet exhibited

performances comparable to established energy function-based methods (for a recent review, see ref [35]). Only until

recently, a study using a deep learning method has reported experimentally-solved structures for two sequences de-

signed for an ideal TIM-barrel backbone [17]. Thus inverse protein folding by deep learning still needs significant

improvements to have real impacts on computational protein design.

Nevertheless, we anticipate a well-developed deep learning method to significantly surpass conventional statistical

energy models such as ABACUS in both in silico tests and wet experiments, because a deep learning-based method can

retain features that have been proven to work while eliminating known problems. In the current study, we have moved

along this direction by developing ABACUS-R, a model that uses deep learning (without using the linear combination

approximation) to establish a vector representation that encodes the 3D local environment of a focused central residue.

From this representation, a range of attributes of the central residue, including its sidechain type, can be decoded. To

design an overall sequence for a given target backbone, we apply the pre-trained encoder-decoder to different residues

of the backbone iteratively to obtain closed, self-consistent, decoding solutions. We have evaluated ABACUS-R by

using both in silico metrics and wet experiments.

2 Results

2.1 Overview of the model

The encoder part of the encoder-decoder network of ABACUS-R (see Figure 1A) is a Transformer [36] whose input

comprises the sidechain types and 3D backbone structure information of all the structurally neighboring residues of

a central residue. We emphasize that the sidechain type of the central residue is not used as input. Neither are the

sidechain conformations of the neighboring residues. The encoder is invariant with respect to both the translation

and rotation in 3D and the permutation of the order of the neighboring residues. The encoder’s output constitutes the

desired vector representation that is to be decoded into various attributes of the central residue. This encoder-decoder
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Figure 1. An overview of the ABACUS-R method. A, The framework of the encoder-decoder model. The input of the encoder

includes backbone-only structure features and the sidechain types of surrounding residues (Residue neighborhood modeling). The

encoder is a Transformer of 12 blocks, the output of which constitutes a general, integrated representation of the input features (Lo-

cal environment representation). To benefit from multi-task learning, this representation is decoded into several different attributes

(including the sidechain type) of the central residue (Decoding central node). B, The iterative approach for designing self-consistent

overall sequences. In each iteration, the encoder-decoder network is applied to each residue in a randomly chosen subset of residues

to update its sidechain type according to its current, sequence-dependent local environment.

network has been trained on a selected set of PDB [37] structures.

The self-consistent iterations for designing the overall sequences for a given target backbone are illustrated in

Figure 1B. The process starts from an initial sequence which can be chosen randomly; then for one or more randomly

chosen central residues, their sidechain types are updated by applying the pre-trained encoder-decoder network to their

local environments (which depend on the sidechain types of the surrounding residues in the current sequence); this

operation is repeated for different central residues in successive iterations until the sidechain types no longer change

for as many residues as possible (i.e., have converged).

2.2 Accuracy of the encoder-decoder network

A set of non-redundant PDB structures have been used to train the encoder-decoder network (see Method). We have

learned two groups of network parameters by splitting the selected PDB structures into training and test sets in two

different ways. The first group of network parameters (Modeleval) have been learnt by using about 95% of the protein

structures for training and the remaining 5% for testing, with the structures for testing belonging to single-domain

topology classes (according to the CATH 4.2 classification of protein structures [38]) in the dataset of the selected

structures. With this choice of test proteins, none of the test structures belonged to the same CATH topology as a

training structure. Thus Modeleval can be used for unbiased computational evaluations. The second group of network
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Settings Results
AAtype SS3+SS8 SASA B-factor χ1+ χ2 Accuracy(% ) SS3(% ) SS8(% ) SASA B-factor χ1 χ2

√ 43.0 - - - - - -
√ √ 47.4 97.0 94.7 - - - -
√ √ √ 48.8 97.3 95.2 0.899 - - -
√ √ √ √ 48.9 97.3 95.2 0.899 0.541 - -
√ √ √ √ √ 49.3 97.3 95.2 0.900 0.540 0.754 0.586

A

B C D

Figure 2. Performance of Modeleval in computational tests. A, Accuracy of the encoder-decoder. The “✓” symbols in the “Set-

tings” columns mark which attributes of the central residue have been included as the decoding objectives in multi-task learning; the

“Results” columns give the decoding accuracies for various attributes of the central residue (“Accuracy” for sidechain type; “SS3”

and “SS8” for secondary structure state categorized according to the three-state scheme and the eight-state scheme, respectively;

and χ1 and χ2 for sidechain torsional angles with the accuracies computed by tolerating decoding errors of less than 40◦). B, The

confusion matrix of decoding the sidechain type of the central residue. Darker cells indicate that higher fractions of residues of

the corresponding native sidechain types (the horizontal axis) have been decoded into the corresponding decoded sidechain types

(the vertical axis). C, Scattering plot of the actual versus the decoded solvent accessible surface areas of the central residues. D,

Scattering plot of experimentally measured ∆∆G versus −∆∆logits from the decoder for the dataset of protein mutants. R is the

Pearson correlation coefficient in B and C.

parameters (Modelfinal) have been learnt by randomly splitting the selected protein structures into roughly 95% for

training and 5% for testing, disregarding their CATH structure classification. Modelfinal has been used to design the

experimentally examined sequences.

The encoder has been trained by using a multi-task learning strategy, in which multiple attributes of the central

residue have been simultaneously considered as decoding objectives, including the sidechain type, the secondary

structure state (the three-state and the eight-state schemes of categorizing the secondary structure type [39] have been

considered simultaneously), the solvent accessible surface area (SASA), the sidechain torsional angles (i.e. χ1 and

χ2), and the crystallographic B factor of the Cα atom.

The decoding accuracies of Modeleval for the different attributes are reported in Figures 2A-C and Supplementary

Figure 1. Similar results for Modelfinal are reported in Supplementary Table 1. Briefly, both Modeleval and Modelfinal

are able to recover the sidechain type of the central residue with an accuracy of around 50%. Moreover, for a significant
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fraction of the decoding results that did not recover the exact native sidechain types, the decoder produces sidechain

types physicochemically similar to the native types (e.g., lysine for arginine, phenylalanine for tyrosine, etc., see

Figure 2B). The original and the decoded SASAs are compared in Figure 2C; similar comparisons for the other

attributes are shown in Supplementary Figure 1. It is interesting to note that by adding the decoding accuracies for

attributes other than the sidechain type to the overall loss in network training, the accuracies for decoding the sidechain

type have been significantly improved (Figure 2A, from 45.3% to 49.3% for Modeleval, and Supplementary Table 1,

from 47.2% to 53.0% for Modelfinal).

For the categorical sidechain type attribute, the actual output of the decoder is a vector of “logits” values which

are transformed into (normalized) “probabilities” with the Softmax function (see Method). To examine if the nega-

tives of the logits values can be interpreted as effective “energies” of different residue types, we chose a dataset of

protein mutants with experimentally measured changes of protein stability [40], and examined the Pearson correlation

coefficient between the stability changes (as measured by ∆∆G) of different mutants with the changes in −∆∆logits

(see Method). The resulting value of 0.51 (see Figure 2D) is comparable to that reported for a deep learning network

specifically trained to reproduce the effects of mutations on protein stability [40]. This observation supports the use of

the “−logits” value as a surrogate of the effective “energy” of a sidechain type in a specific local 3D environment.

2.3 Convergence of the sequence design iterations

We have applied Modeleval and self-consistent iterations to design overall sequences for 100 target structures taken

from the test set of Modeleval. These target structures cover three main CATH classes (Supplementary Table 2). For

each target structure, 10 sequences have been designed using 10 different runs, each run starting from a different

random initial sequence. As the iterative approach is effectively a greedy algorithm to maximize the (predicted)

probabilities of the sidechain types, we monitored the evolution of the negative logorithms of the probabilities of the

designed sidechain types (the −logP values) during the iterative runs. Figure 3A shows how the averaged per residue

−logP value has decreased and converged to a plateau value. In the meanwhile, the sidechain types of most residues

were converging towards the corresponding types in the final sequences (Figure 3B). For all target structures, the

iterative runs can produce self-consistent sequences that are converged either completely or up to having only a very

small number of fluctuating positions (see the inset of Figure 3B and Supplementary Figure 2A).
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Figure 3. Results of overall sequence design for natural backbones. The results have been obtained with Modeleval and are averages

over 100 target backbones. A, Evolution of −logP per residue during the self-consistent iterations. B, The evolution of the number

of residues with unconverged sidechain types (i.e., the sidechain types are different from those in the final sequences) during the

self-consistent iterations. C, The rates of recovering the native sidechain types for backbone targets in three CATH architecture

classes. D, The distributions of sidechain types in the designed sequences and in the native sequences. E, Scattering plot of the

Rosetta energies per residue of the designed sequences versus the Rosetta energies per residue of corresponding native sequences.

Blue (red) points correspond to sequences designed by ABACUS-R (ABACUS2). A grey line is drawn along the diagonal. F,

Scattering plot of the ABACUS-R −logits values per residue of the designed sequences versus the ABACUS-R −logits values of

corresponding native sequences. Blue (red) points are for sequences designed by ABACUS-R (ABACUS2). A grey line is drawn

along the diagonal.
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If not all positions can fully converge in a sequence design run, the sequence of the lowest total −logP recorded

during the run is taken as the final design result. This choice is for convenience and not critical, because both the

number of unconverged positions and the fluctuations of −logP are very small between the sequences recorded dur-

ing the plateau stage (see the inset of Figures 3A and 3B), suggesting all these sequences to be equally acceptable.

Nevertheless, we inspected the unconverged residues in several target structures (results not shown), and found that

they were usually groups of two to three residues interacting with each other with few interactions outside of the cor-

responding groups. In the final iterations, the decoded sidechain type combinations of such a group oscillated between

a few possibilities instead of converging to a single combination, indicating that optimum sidechain types cannot be

selected simultaneously for all the residues in such a group.

For the same target structure, the runs starting from different random initial sequences usually lead to not exactly

the same but still highly similar sequences. For the 100 targets considered here, the sequence identities between the

(almost completely converged) self-consistent sequences from different runs ranged from 0.76 to 0.89, with the per

residue −logits values varied only within a narrow range (i.e., ±0.50, which is smaller than the differences between

the −logits values of the corresponding designed and native sequences, see Method). Thus the sequences designed

by different runs can be considered as equally plausible.

2.4 Designed sequences compared with native sequences

For the 100 target structures considered, the average identity between the designed sequences and corresponding native

sequences is 43.1%±5.4% (for different targets, this identity varied from 32% to 61%). While the native sidechain type

recovery rate does not exhibit strong dependency on the CATH class of the overall structure (Figure 3C), this recovery

rate has the expected tendency of decreasing with increasing solvent accessibility (see Supplementary Figure 2B).

The amino acid compositions of the designed and the native sequences are highly similar: the Pearson correlation

coefficient between the set of frequencies of the 20 sidechain types in the designed sequences and those in the native

sequences is 0.93 (Figure 3D). Nevertheless, some sidechain types including glutamic acid, alanine, and lysine have

been used more frequently in the designed than in the native sequences, while the sidechain types of obviously reduced

usages in the designed sequences include glutamine, histidine, and methionine (Figure 3D).

The designed sequences and the native sequences have been further compared in their Rosetta per residue energies

computed after backbone relaxation by Rosetta [8, 41]. For the same target backbone structure, the Rosetta per residue

energies of the designed and the native sequences are similar (Figure 3E). Thus the designed sequences are as suitable

as the native sequences for the corresponding target structures according to the independent metric of Rosetta energy.

Notwithstanding such similar Rosetta energies, the designed sequences are of substantially lower per residue

−logits values in comparison with the native sequences (Figure 3F). This is anticipated because the −logits values
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Figure 4. Results of experimental analysis of designed proteins. For each of the three backbone targets considered,

the results of one designed protein are shown (A, 1r26-A3; B, 1cy5-A7; and C, 1ubq-A4). From left to right: Results

of size exclusion chromatography experiments; 1H NMR spectra; thermal capacity versus temperature curves from

differential scanning calorimetry experiments; The experimentally solved structures (1r26-A3, 1cy5-A7) or NMR

HSQC (1ubq-A4). The Cα RMSDs of the structures from the corresponding backbones are 0.57 Å for 1r26-A3 and

0.88 Å for 1cy5-A7. For 1ubq-A4, the target backbone is shown together with the HSQC spectrum.

of the designed sequences have been effectively minimized through the self-consistent iterative process. The results

in Figures 3E and 3F together indicate that the −logits metric has constituents that are orthogonal to the Rosetta en-

ergy. The partial orthogonality between the two metrics is also exemplified by the moderate correlations between the

per residue −logits values and the Rosetta energies of the designed and the native sequences (the respective Pearson

correlation coefficients are 0.24 and 0.17; see Supplementary Figure 2C. ).

2.5 Experimental analysis of designed sequences

We experimentally examined the sequences designed by ABACUS-R for three natural backbones (the PDB IDs of the

targets are 1r26, 1cy5, and 1ubq). These backbones have been chosen because they had been used to evaluate the ABA-

CUS model by wet experiments [9, 10, 22, 23]. To assess the method in an unbiased way, the automatically generated

sequences have been used as is for experimental examination without any post-design selection or adjustment.

Two batches of wet experiments have been carried out to examine proteins designed using two different protocols.
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Table 1. Overview of experiments on designed sequences.

Targeta -logitsb Identity(%)c Identity(%)d
Examined/

Expressed/

Soluble

Crystallization attempted/

Crystal obtained

Structure

solved

HSQC spectra

measured

1r26
-6.76±0.21 53.4±2.9 83.9±5.3 10/10/10 5/4 3 0

-6.50±0.17 47.1±3.9 57.4±2.2 10/8/7 1/1 1 2

1cy5
-6.75±0.19 37.0±1.4 80.8±2.6 10/10/10 7/2 1 0

-6.49±0.18 40.9±2.4 55.1±2.3 10/7/6 2/0 0 1

1ubq
-6.30±0.22 45.1±2.7 78.9±4.8 7/6/6 6/1 0 1

-6.12±0.20 43.2±4.1 61.4±2.2 10/10/10 1/0 0 2

Total number of experimental examined designs: 57.

Total number of designs that are soluble and well-folded based on

at lease on 1H-NMR: 49.

Total number of designs with HSQC spectrum measurede: 6.

Total number of designs with solved crystal structurese: 5.

(RMSDf : 0.51 ∼ 0.88 Å)
a For each target, the first and the second rows correspond to designs examined in the first batch and the second batches of experiments, respectively.
b Average −logits per residue.
c Average identity between native sequence and designed sequences.
d Average identity with other designed sequences in the same batch.
e These two groups of designs do not overlap.
f The main Cα atoms RMSD of designs from targets.

The first protocol employs the self-consistent iterations described above to maximally converge the sidechain types of

all residues. While this protocol effectively minimizes the −logits values, the designed sequences are highly similar

to each other (the identities between different sequences designed for the same backbone are around 80%, see Table 1

and Supplementary Table 3). In the second protocol, the sidechain types are not chosen to be the ones of the highest

probabilities as predicted by the decoders. Instead, they are sampled from distributions derived from the output of

the decoders (see Method). The second protocol leads to more variable sequences from different runs, albeit with

somewhat higher −logits values(see Table 1 and Supplementary Table 4).

Among the 27 sequences examined in the first batch, 26 have led to successful protein expression in E.coli.

All the expressed proteins could be readily purified in soluble forms. The purified proteins have been subjected to

a range of experimental analysis including size exclusion chromatography, 1H NMR spectrum measurement, NMR

heteronuclear single quantum coherence (HSQC) spectrum measurement, differential scanning calorimetry (DSC),

and protein crystallization and X-ray structure determination (Table 1) . Complete data from these experiments are

reported in Supplementary Figures 3-5. Representative results for three designed sequences (one sequence for each

backbone target) are shown in Figures 4A-C as examples.

The size exclusion chromatography results and the 1H NMR spectra have covered all the purified proteins in

the first batch (Supplementary Figures 3-5 and Supplementary Table 5). They indicate that all these proteins are

monomers and likely to fold into well-defined 3D structures. Five proteins covering the three target backbones have

been measured by DSC experiments, which showed that all these proteins unfold cooperatively at high temperatures

from 97 to 117 ◦C (Supplementary Figure 6). High resolution structures of four proteins, including three designed
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Figure 5. Variable sidechain types and sidechain packing have been designed around a core residue (residue 24) in the 1r26

backbone. A, Crystal structures of the different proteins showing (as sticks) the sidechains of residue 24 surrounded by residues (22,

26, 36, 37, 40, 52, 54, and 75. 1r26 is the native sequence. 1r26-A3, 1r26-A6, 1r26-A7 and 1r26-B4 are ABACUS-R designed

sequences). B, Diagrams showing the sidechain types of residue 24 and its surrounding residues in the different proteins. In each

diagram, the orange circle indicates the central residue; the green circles indicate residues that are of the native sidechain types;

the yellow circles indicate residues for which non-native sidechain types have been designed; the circles with bold borders indicate

residues whose sidechain types did not completely converge in the self-consistent iterations.

for the 1r26 backbone and one designed for the 1cy5 backbone, have been solved with X-ray crystallography. All the

solved structures agree with the corresponding design targets with high precision (the root mean square deviations or

RMSDs of Cα atoms ranged from 0.51 to 0.88 Å. See Supplementary Figures 3-4). For proteins designed for the 1ubq

backbone, we only obtained crystals for one protein (1ubq-A4), which were twinned and no X-ray structure had been

solved. However, the NMR HSQC spectrum and the DSC results of 1ubq-A4 (Figure 4C) prove that this protein folds

into a well-defined 3D structure, which we expect to agree well with the 1ubq target backbone because the sequence

identity between 1ubq-4A and 1ubq is 46.1%.

In the second batch of experiments, we examined proteins obtained by using the modified protocol that designs

more diverse sequences. Table 1 shows that the identities between the different sequences designed for the same target

are around 58%. The averaged −logits values listed in the same table are slightly higher than those of the sequences

examined in the first batch. Among the 30 designed proteins analyzed, 25 led to successful protein expression in

E.coli, and 23 could be purified in soluble form. The purified proteins have been subjected to the same types of

experimental analysis as the first batch proteins (Table 1 and Supplementary Table 6). The results are reported in

Supplementary Figures 6-10. Again, the size exclusion chromatography and NMR data (Supplementary Figure 7-9)

and also Supplementary Figure 10 showing HSQC spectra suggest that all these proteins are monomeric and fold

into well-defined 3D structures. The DSC curves for five proteins covering the three target backbones indicate that
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these proteins unfold cooperatively at high temperatures from 85 to 118 ◦C (see Supplementary Figure 6). One high

resolution structure for a second batch protein has been solved (1r26-B4), whose Cα RMSD from the 1r26 target

backbone is 0.67 Å (Supplementary Figure 7). Thus the modified protocol leads to somewhat decreased but still

acceptable success rate. Moreover, those successfully designed proteins are still very stable, although their unfolding

temperatures appear to be somewhat lower than the proteins designed using the maximum convergence protocol for

the same targets (see the DSC curves of the first and second batch proteins in Supplementary Figure 6. Note that there

are exceptions to this observation).

3 Discussion

3.1 The computational model of ABACUS-R compared with related models

A number of previous studies have investigated deep learning-based approaches to inverse protein folding. Some

of them did not consider any sidechain type-dependent coupling between different residues and thus only aimed at

predicting sequence profiles [31, 32, 33, 34]. The other studies considered this coupling and had attempted designing

overall sequences from scratch [17, 29, 30]. Among the latter type of methods, the ProteinSolver method treated

sequence design as a constraint satisfaction problem and tried to solve it using deep graph neural networks [30].

The other methods [17, 29] used deep learning networks to predict the sidechain type of a central residue based its

local environment. This is conceptually similar to the encoder-decoder network of ABACUS-R. However, there are

large variations between different models in the network architectures as well as in what information about the local

environment has been used, and how.

All methods have used information about backbone structures, with some methods having used somewhat incom-

plete information (e.g., only inter-residue distances [30]) and other methods having used more complete information

by considering both distances and orientations [29] or by using a “voxel” grid to map the types and locations of

all atoms [17]. Information about sidechains were not used in methods that only predicted sequence profiles. The

sequence generator proposed by Ingraham et al. [29] also did not use any sidechain information in its network for en-

coding the local environment. Instead, this model autoregressively considered the influences of the sidechain types of

upstream residues on the downstream residues while sequentially sampling the sidechain types of individual residues

along the sequence. We note that a drawback of this approach based on autoregression is that the effects of any

improperly chosen upstream residue will be accumulated and propagated downstream, which may lead to an expo-

nentially decaying probability of generating truly foldable overall sequences with increasing sequence length. The 3D

convolution network (3DCNN) model [17, 33] has used both sidechain type and sidechain conformation information

by mapping the atom types and locations of all atoms, including sidechain atoms, to a voxel grid. A major difficulty
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for this approach is that accurate coordinates of sidechain atoms are not available in sequence redesign, and these

coordinates can only be approximately constructed by using rotamers [18], which may lead to significant degradation

of overall accuracy. Besides this, the solution space of sequence design by 3DCNN was spanned by not only the

dimensions of the sidechain types but also the dimensions of the sidechain atomic coordinates, which may make the

overall optimization problem too complicated to be solved by a simple approach such as self-consistent iteration.

In its modeling of the 3D local environment, ABACUS-R differs from previous methods in an aspect that is fun-

damentally important for sequence design: the input of the encoder of ABACUS-R has included, alongside with those

backbone-only structural features, the sidechain types but not the sidechain conformations of the neighboring residues.

On the one hand, the use of sidechain type information accounts for the sidehcain type-dependent coupling between

the central residue and its neighbors. Thus not just sequence profiles but actual overall sequences can be designed

through the self-consistent iteration approach, which does not suffer from the error accumulation and propagation

problem of the autoregressive approach. On the other hand, by leaving out sidechain conformations from the input of

the encoder of ABACUS-R, only the sidechain types need to be updated during the self-consistent iterations. This 1)

eliminates the use of approximate rotamers and 2) makes sequence design an easy optimization problem. Thus it is

the distinctive way in which ABACUS-R models the 3D local environments of individual residues that has provided

the basis for ABACUS-R to overcome some of the most serious problems of previous models.

3.2 The performance of ABACUS-R compared with previous deep learning methods

The performances of sequence design methods were most commonly evaluated by carrying out sequence design for

natural backbones and examining the rates of recovering the native sidechain types. Although the native sidechain

type recovery rates for methods that only predict sequence profiles have been reported to range from 36% to 56% [31,

32, 34], these methods alone cannot be used to design physically plausible overall sequences (to do so they need to

be integrated with other models that can treat sidechain type-dependent inter-residue interactions). As for other deep

learning models, an average recovery rate of 39.2% was reported for the autoregressive sequence generator applied

to 40 targets of natural backbones [29], while the recovery rate ranges for different target backbones were reported to

be from 25% to 45% for the 3DCNN model [17] and from 37% to 44% for the ProteinSolver model [30]. Compared

with these values, the average recovery rate by ABACUS-R is significantly higher. The same conclusion can be

drawn by comparing the design results of different methods for the same specific target backbones: for the same

40 target backbones used to benchmark the auoregressive model, the average native recovery rate of ABACUS-R is

44.6%, which is to be compared with the averages of 39.2% reported in ref [29] (for a fair comparison, the ABACUS-R

network parameters used in this particular benchmark have been learned using a set of training structures that excluded

structures in the same CATH topologies as the targets in ref [29]); for four target backbones for which the average
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native sidechain type recovery rates of 3DCNN were reported to be 30.0% to 35.4%, the average native recovery rates

of ABACUS-R is 33.7% to 44.1% (Supplementary Table 7).

The most critical evaluation of a sequence design method should be based on examining de novo designed se-

quences using wet experiments. For the 3DCNN model [17], a number of selected designs for several natural back-

bones have been experimentally assessed to have desired secondary structure contents and to fold cooperatively ac-

cording to circular dichroism (CD) signatures. The same types of results were reported for several designs generated

by ProteinSolver [30]. So far, the only experimentally solved atomic structures for de novo sequences designed using

a deep learning method were the X-ray crystal structures of two sequences designed by the 3DCNN model [17]. The

target backbone of these sequences was a de novo TIM-barrel of four-folded symmetry, which comprised structure el-

ements that were likely to be far more regular or ideal than those in natural backbones. Thus when it comes to de novo

sequence design for (natural) backbones that are abundant with diverse, none-ideal structure elements, we do not know

about previous experimental validations of a deep learning method by atomic structures solved using crystallography

or NMR.

Given these backgrounds, the experimental results reported here for ABACUS-R represent significant advances:

the success rates of ABACUS-R are high (49 of 57 experimentally examined proteins are soluble monomers that

appear to be well-folded, with these proteins covering three distinctive target backbones and having been examined

“as is” without considering any post-design filtering); data from NMR HSQC measurements, DSC measurements, and

crystallographic analysis are all consistent with that the respective proteins are of well-defined 3D structures, of high

unfolding temperatures, and of structures that precisely match the corresponding target backbones at the atomic level.

3.3 ABACUS-R compared with previous energy function-based methods

For the three target backbones considered here, ABACUS-R has exhibited far higher success rates than our previous

ABACUS model. Almost all designs (26 of 27 in the first batch) by ABACUS-R could be expressed and purified as

soluble, monomeric, and well-folded proteins. This is contrast to that more than half of the original ABACUS designs

on these three targets could not be be expressed or purified; only after introducing mutations through directed evolu-

tion, structures of ABACUS designs for the 1r26 and 1cy5 targets had been successfully solved [9, 22]. The solved

structures of the ABACUS-R sequences have much smaller RMSDs (all below 1 Å) from the corresponding targets

than the structures of the ABACUS sequences. The success rates found here for ABACUS-R are also significantly

higher than those reported for the RosettaDesign method [8]. Recently, Marin et al. [14] have investigated the sensitiv-

ity of RosettaDesign to the structure of the target backbone by experimentally examining proteins designed for eight

different backbones of thioredoxin proteins (the 1r26 target used here is also a thioredoxin). They reported that in the

most favorable case (i.e., by considering the target backbone for which RosettaDesign exhibited the highest success
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rate), only three out of eight experimentally examined designed proteins could be purified as monomers. In an earlier

study of these authors, the crystal structure of one protein designed by Rosetta for a thioredoxin backbone had been

determined, with the various models in an asymmetric unit having RMSDs of 1.8 to 2.0 Å from the target backbone.

These RMSDs are obviously larger than the corresponding RMSDs exhibited by the ABACUS-R designed proteins.

Thus the ABACUS-R redesigned sequences can much more precisely recover the none-ideal backbone features in the

targets than sequences designed by ABACUS2 [10] or RosettaDesign [8].

In Figure 3E and F, we compared the Rosetta energies of the ABACUS-R-designed sequences, the ABACUS2-

designed sequences, and the native sequences for 100 test backbone targets. Interestingly, while the ABACUS-R

sequences are of comparable Rosetta energies to the native sequences, the ABACUS2 sequences are of systematically

lower Rosetta energies than both the native and the ABACUS-R sequences. This indicates that the Rosetta energy

function has not captured factors that contributed to the higher success rate of folding of the ABACUS-R sequences

relative to the ABACUS2 sequences. Nor has it captured factors that contributed to the higher thermal stability (as

suggested by the high unfolding temperatures of the ABACUS-R designs for 1r26, 1cy5 and 1ubq) of the ABACUS-R

sequences relative to the native sequences.

Besides success rate and structure precision, ABACUS-R can also be more robust than ABACUS or other energy

function-based methods for the purpose of designing more diverse sequences. For the energy function-based methods,

an important factor that limits their ability to design diverse sequences is that they may not be able to extensively

explore the different ways of sidechain packing inside the core regions of a given backbone, because these models

intrinsically suffer from the incompatibility between the inaccurately reconstructed positions of sidechain atoms using

rotamers and the high sensitivity of some of the energy terms (e.g., the van der Waals repulsion terms) to atomic

positions. As ABACUS-R does not explicitly use sidechain structures, it does not suffer from this limitation. This

may facilitate ABACUS-R to design varied sequences that use alternative sidechain combinations to form equally well-

packed cores. As an example to illustrate this, Figure 5 shows how a group of core residues of different combinations

of sidechain types are packed in the native 1r26 structure and in the crystal structures of four ABACUS-R designed

proteins for this backbone. Besides the variations of the core residues, the diversity of the overall sequences designed

by ABACUS-R can be further increased by applying the sidechain type sampling protocol as described in Method. The

results of our second batch experiments show that by applying this protocol, the diversity of the designed sequences

can be increased to the levels of less than 60% sequence identity with some (acceptable) compromises in success rate.

15



4 Conclusions

The ABACUS-R method is based on deep learning and self-consistency. It uses a Transformer to encode the 3D lo-

cal environment of a central residue. The output of this encoder constitutes a general representation, from which the

sidechain type and other attributes of the central residue can be decoded. In computational tests of redesigning the over-

all sequences for natural protein backbones, ABACUS-R reaches significantly higher native sidechain type recovery

rates than existing deep learning methods. In evaluations based on wet experiments, ABACUS-R outperforms state-of-

the-art energy function-based methods by large margins, achieving stronger robustness (namely, significantly higher

success rates and more diverse designed sequences) and higher structural precision (RMSDs between the structures

of the designed proteins and the target backbones below 1 Å) at much lower computational costs. To our knowledge,

this is the first time that a deep learning-based method has been proven by experiments to outperform conventional

methods of de novo protein sequence design by large margins. Thus ABACUS-R represents a significant advance both

in the application of deep learning in the study of proteins and in the method development of protein design. This

method can find wide applications in studies that use protein design and protein engineering.

5 Method

5.1 Modeling the 3D local environment

The set of residues that form the 3D local environment of a central residue is defined to be its k-nearest neighbor

residues according to the Cα−Cα distances. As input of the encoder, we have considered the following three types of

features for each neighboring or surrounding residue: its location and orientation relative to the central residue (XSPA),

its sequence position relative to the central residue (XRSP), and its sidechain type (XAA). The raw input for the different

types of information are defined as below.

The components of XSPA are defined using 1) the Cα − Cα distance from the environment residue to the central

residue; 2) the Cartesian coordinates of the environment residue’s Cα in a local coordinate frame defined using the

backbone N , Cα and C atoms of the central residue (in this frame, Cα is at the origin, the Cα −N direction is along

the x axis, and the N − Cα − C plane corresponds to the x − y plane); and 3) the rigid body rotation that aligns the

orientations of the two local coordinate frames of the central and the environment residues. The Cα − Cα distance is

mapped to a vector of 16 components using a set of Gaussian radial basis functions centered around 16 distance values

ranged from 0 to 20 Å; the Cartesian coordinates are used as is; the rigid body rotation is mapped to a 3D vector whose

direction corresponds to the axis of the rotation and whose length corresponds to the magnitude of the rotated angle.
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After these mappings, XSPA for each residue is a vector of 22 real-valued components.

The components of XRSP are defined based on the difference between the position indices of the neighboring

residues and the central residue, i.e., ∆i = i− icentral. The XRSP is a one-hot vector that encodes 129 states, with each

integer value of ∆i from -64 to +63 corresponding to one of 128 states, and the remaining one state encoding whether

the corresponding neighboring residue is not on the same peptide chain as the central residue.

The XAA is a one-hot vector that encodes the 20 sidechain types plus a special ‘MASKED’ type (for the central

residue, see below).

Features of the central residue is mapped to vectors of the same dimensions as the neighboring residues, only that

all components of its XSPA vector are zeros, and its XAA value is mapped to the ‘MASKED’ type. Besides these, the

backbone conformation centered around the central residue (XBB) is also considered. The components of XBB are the

15 backbone torsional angles φi−2, ψi−2, ωi−2 · · · φi+2, ψi+2, ωi+2, in which i is the position index of the central

residue. The angles are divided by π to obtain values in [−1,+1). To maintain the same input dimensions for vectors

encoding the central and the neighboring residues, the XBB vectors are also formally considered for all the neighboring

residues, but the values of all their components are zero.

To produce input for the Transformer encoder from the above raw input feature vectors, the one-hot-encoded

feature vectors XAA and XRSP are linearly transformed, while the feature vectors XSPA and XBB which are of real-

valued components are transformed using a linear layer. The resulting intermediate vectors are respectively noted as

EAA, ERSP, ESPA, and EBB, which are simply concatenated together to form the overall input vector E, namely,

EAA = WAAXAA,

ERSP = WRSPXRSP,

ESPA = WSPAXSPA + bSPA,

EBB = WBBXBB + bBB,

E = [EAA ERSP ESPA EBB],

(1)

where the matrices WAA, WRSP, WSPA, WBB and the biasing vectors bSPA and bBB are comprised of trainable

elements, which are shared between all residues.

5.2 Architecture of the Transformer-based encoder

We note the set of E vectors for all residues as {En;n = 0, 1, 2, ..., k}, in which E0 is the vector for the central residue.

These set of vectors are fed to a Transformer of 12 blocks, as shown in Figure 1. Each block of the Transformer is

composed sequentially of a multi-head self-attention module [36], a layer normalization transformation [42], a feed-
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forward module, and a second layer normalization transformation, as formulated below,
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i F

i
n, Ki
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i Fi

n, Vi
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i F
i
n,

F′i
n = LN(Fi

n + MHA(Qi
n, {K

i
m,V

i
m;m = 0, 1, 2, ..., k})),

Fi+1
n = LN(F′i

n + FFN(F′i
n)),

(2)

where the residue index n is from 0 to k, the block index i is from 1 to 12, the MHA(·, ·), LN(·) and FFN(·) operations

refer to the multi-head self-attention module, the feed-forward module, and the layer normalization transformation,

respectively. From the output of the above Transformer, the vector F12
0 is taken as a general representation of the local

environment of the central residue.

5.3 The decoders and training losses

Different attributes of the central residues are decoded by passing F12
0 through different perceptron networks (de-

coders), each decoder network having a single hidden layer.

For the sidechain type decoder, its output layer contains twenty perceptron nodes, the output values (the logits)

are transformed using Softmax to yield normalized probabilities predicted for the 20 sidechain types. Namely, for

sidechain type a,

pa = elogitsa/
20∑

b=1

elogitsb . (3)

The cross-entropy loss function is used to measure the decoding loss, namely, for each training item,

LAA = −

20∑

a=1

yalog(pa), (4)

where a is sidechain type index, y = (y0, y1, · · · , y20) is the one-hot vector produced by the ground-truth label (i.e.,

the native sidechain type), and p = (p0, p1, · · · , p20) is the vector of the predicted probabilities.

The decoders and losses for the secondary structure (SS) state are defined in the same way as that for the sidechain

type. Both the three-state and the eight-state categorization schemes are used at the same time. The cross-entropy

losses are respectively noted as LSS3 and LSS8.

For the numerical attributes including the solvent accessible surface area (SASA) and the X-ray B factor, we first

normalized the attributes using the means and standard variations computed from the training data. The correspond-

ing decoders regress the normalized attributes. The losses LSASA and LBfactor are defined as the L-1 errors of the

regressions.
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The total loss for the multi-task learning task is given by

L = LAA + λ1(LSS3 + LSS8) + λ2LSASA

+ λ3LBfactor + λ4(Lχ1
+ Lχ2

),

(5)

where λ1, λ2, λ3 and λ4 are the trade-off parameters to balance the different losses.

5.4 The self-consistent iterations for overall sequence design

For a given target backbone, we start from an initial sequence with randomly chosen sidechain types for all residues.

In each iteration, we randomly select a number of residues, consider each of them as the central residue, apply the

pre-trained encoder-decoder network to its current 3D local environment, and update the sidechain type of the central

residue according to the output of the (sidechain type) decoder. Within one iteration, the calculations for all the selected

residues are executed in parallel to take advantage of parallel computation. The initial number of residues selected

for parallel sidechain type updating is set to be 80% of the sequence length, and this number is gradually reduced in

subsequent iterations until the final iterations in which the residues are considered one by one.

During the iterations, we monitor the total −logP value of the evolving sequence, which is defined as

−logPtotal =

L∑

i=1

−logpiai
, (6)

where L is the length of the sequence, i is the residue index, ai is the index of the sidechain type at position i in

the current sequence, and piai
is the probability of the corresponding sidechain type predicted by the encoder-decoder

network according to the current local environment of residue i (which depends on the current sidechain types of i’s

neighboring residues).

In generating the sequences for examination by wet experiments, two different protocols have been applied to

update the sidechain type of a central residue during the iterations. In the first “normal” protocol, the sidechain type

of the maximum probability (as predicted by the corresponding decoder) is always chosen. This protocol is used

to generate maximally self-consistent overall sequences examined by the first batch of experiments. In the second

protocol, the sidechain type is sampled according to a probability distribution derived from the output of the encoder.

To control the diversity of the sampled sidechain type, we mapped the original distribution predicted by the decoder

into a new distribution using the following formula,

p′a = (pa)
α/

20∑

b=1

(pb)
α. (7)
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The value of the parameter α controls the diversity of the sampled sidechain type: for a very large positive value of α,

the first and the second protocol become equivalent; decreasing the value of α increases the diversity of the designed

sequences, but it will also cause the −logits metric to increase (Supplementary Figure 11). To design the sequences

(which have inter-sequence identity of around 60% for sequences designed for the same target) for examination in the

second batch of experiments, we have used the value of 1.5 for α, which still lead to −logits values below those of

the native sequences (Supplementary Figure 11).

5.5 Other implementation and computation details

The ABACUS-R model has been implemented in Python. The encoder-decoder network has been implemented using

the PyTorch package. Hyperparameters that have been explored during the optimization of the model include the

number of nearest neighbor residues (i.e., the value of k) to be considered, the number of blocks of the Transformer

encoder, the dimensions of all the internal layers or modules, and the weights of the different losses. Some of the

finally used values are: 20 for k; 12 for the number of blocks of the Transformer; 0.2, 0.2, 0.2 and 0.5 for λ1, λ2,

λ3 and λ4. The networks have been trained by using the Adam optimizer [43] as implemented in PyTorch with the

parameters β1 = 0.9, β2 = 0.99 and with a gradually decreasing learning rate from 10−4 to 10−6. The PDB structures

for training and testing are 25234 X-ray structures selected by using the PISCES [44] server with a resolution cutoff

of 2.5 Å and a sequence-identity cutoff of 50%.

The sequence design runs for the target proteins considered here usually take around 350 to 400 iterations to reach

convergence (see also Figures 3A and B). For the sake of simplicity, we used 1000 iterations for all the targets. For a

target of about 100 residues, 1000 iterations take about 30 seconds on a computer with a GeForce RTX 3090 GPU.

The Rosetta energies have been computed using the RosettaDesign program [8] version 3.12. As ABACUS-R

does not explicitly reconstruct sidechain conformations, all sidechains of all the evaluated sequences (i.e., the na-

tive sequences and the designed sequences) have been repacked by using the FixBB option of Rosetta, and then the

complete structures have been relaxed using Rosetta RelaxBB to determine the minimized energies.

5.6 Experimental methods

DNA sequences of designed proteins were constructed into the NdeI and XhoI sites of pET-22b(+) by General Biotech

and TsingKe Biotech. Plasmids encoding the designs were transformed into Escherichia coli BL21(DE3) cells.

Protein expression was induced at OD600 = 0.7 with 1 mM IPTG for 20 hours at 16◦C. For 1H-15N HSQC NMR

study, uniformly 15N-labeled proteins were prepared by growing the bacteria in inorganic medium (24 g/L KH2PO4,

5 g/L NaOH, 0.5 g/L NH4Cl, 2.2 mM MgSO4, 0.1 mM CaCl2 and 2.5 g/L glucose) using 15NH4Cl as isotope source.

Cells were harvested and sonicated in buffer containing 20 mM Tris and 500 mM NaCl at pH 7.8. The soluble
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supernatant was purified by Ni2+ affinity chromatography and concentrated in buffer containing 20 mM Tris, 300 mM

NaCl and 1 mM EDTA, pH 7.8 and then subjected to size exclusion chromatography in a Superdex 75 column with

the ÄKTA purifier system (GE Healthcare).

The thermal stability of designed proteins were evaluated by nano differential scanning calorimetry (nanoDSC)

(TA Instruments, DE). The protein samples were prepared in buffer containing 300 mM NaCl, 20 mM Tris, 1 mM

EDTA, pH8.0 with a protein concentration of 3-6 mg/mL. The protein melting temperature were monitored in a 0.33

mL cell from 25 to 125 ◦C at a heating rate of 1 ◦C/min. Responses of proteins were measured by reheating and

scanning for three times. The nanoDSC scans were background-corrected and analyzed with Launch NanoAnalyze

software.

All NMR data were collected at 298 K on a Bruker DMRX600 spectrometer equipped with triple resonances,

self-shielded z-axis gradient probes. Two-dimensional HSQC-NMR samples typically contained 0.35-0.5 mM 15N-

labeled proteins, 25 mM NaH2PO4, 150 mM NaCl, 2 mM EDTA (pH 6.9) and 10% (v/v) D2O. Data were processed

using the programs NMRDraw/NMRPipe [45] and SPARKY [46].

Crystallization screening was conducted at 289 K by the hanging-drop vapor diffusion method using various

screening kits. Purified and concentrated proteins (15-20 mg/mL) were used for crystallization. The crystals for

data collection were obtained in 24-48 hours in PEG 1500 for 1r26-A3, 2.5 M Ammonium sulfate and 0.1 M BIS-

TRIS propane, pH7.0 for 1r26-A6, 2% v/v 1.4-Dioxane, 0.1 M BICINE pH9.0, 10% w/v PEG 20000 for 1r26-A7, 27

% w/v PEG 2000 MME and 0.1 M Sodium cacodylate, pH6.5 for 1r26-B4. Crystals of 1cy5-A7 appeared in 7 days in

buffer containing 12% w/v Polyethylene glycol 3,350 and 4% v/v Tacsimate, pH7.0. All crystals were shortly soaked

in reservoir solution supplemented with 30% glycerol (v/v) and then flash frozen in liquid nitrogen. The diffraction

data were collected on BL19U1 [47] and BL02U1 beamlines at 0.9785 to 0.9791 Å. Data sets were processed by

using HKL2000 program [48] for 1r26-A3, 1r26-A6, 1r26-A7 and XDS program [49] for 1cy5-A7 and 1r26-B4. The

designed structures served as search model for molecular replacement with MOLREP [50]. The final structures were

refined by PHENIX [51]. The statistics for data collection and structural refinement are summarized in Supplementary

Table 8.
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Complete lists of the training and testing proteins, the amino acid sequences designed for the 100 targets by Modeleval,

and the amino acid sequences and DNA sequences of the experimentally examined proteins can be downloaded from

https://github.com/liuyf020419/ABACUS-R. The experimentally solved protein structures have been deposited in the

Protein Data Bank with accession codes 7VQL (1r26-A3), 7VQV (1r26-A6), 7VQW (1r26-A7), 7VTY (1cy5-A7) and

7VU4 (1r26-B4).

9 Code availability

The codes for training and applying ABACUS-R can be downloaded from https://github.com/liuyf020419/ABACUS-

R.
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