3.1 Equalization Tank
Assuming number of tanks, N = 4 Nos.
Flow rate for each tank, Q = \(\frac{{Q}_{P}}{N}\) = \(\frac{295.5}{4}\) = 73.9 MLD
Assuming detention time, T = 2 hours
Volume, V = \(Q\times T\) = \(73.9\times 0.5\) = 6145.7 m3
Assuming depth, H = 5 m (excluding 0.5 m free board) and width, W = 30 m
Length, L = \(\frac{V}{H\times W}\) = \(\frac{6154.7}{5\times 30}\) = 41 m
Air requirement for mixing, QA = \(V\times a\) = \(6145.7\times 1.1\) = 6760.3 m3/h ~ 6761 m3/h
[Mixing factor, a = 1.1 m3/m3] (Kodavasal, 2011)
Assuming minimum air flux of diffuser, FA = 12 m3/hour (Kodavasal, 2011)
Number of diffusers, ND = \(\frac{{Q}_{A}}{{N}_{D}}\) = \(\frac{6761}{12}\) = 563.4 ~ 564 Nos.
Specification of equalization tanks are shown in Table 3.
Table 3
Specification of equalization tank
Parameter
|
Value
|
Quantity
|
4 Nos.
|
Flow Rate
|
73.9 MLD
|
Detention Time
|
2 hours
|
Volume
|
6145.7 m3
|
Length
|
41 m
|
Width
|
30 m
|
Height
|
5 m
|
Free Board
|
0.5 m
|
Air Requirement
|
6761 m3/h
|
Diffuser Quantity
|
564 Nos.
|
3.2 Bar Screen Chamber
Two screens will be used. Coarse screen precedes medium screen.
Coarse Screen: Assuming,
Length, L = 1000 mm, Width, W = 10 mm,
Opening, O = 50 mm, Inclination, I = 45 Degree. (Metcalf et al., 2003)
Assuming number of bar screen chambers, N = 4 Nos.
Flow rate for each tank, Q = \(\frac{{Q}_{P}}{N}\) = \(\frac{295.5}{4}\) = 73.9 MLD = \(\frac{73900}{24\times 3600}\) = 0.86 m3/s
Velocity into screen, vi = 0.6 m/s
Cross-section area of channel, AC = \(\frac{Q}{{v}_{i}}\) = \(\frac{0.86}{0.6}\) = 1.43 m2
Gross area of channel, AG = \({A}_{C}\times (1+\frac{W}{O})\) = \(1.43\times (1+\frac{10}{50})\) = 1.72 m2
Velocity above screen, vo = \({v}_{i}\times \frac{O}{O+W}\) = \(0.6\times \frac{50}{(10+50)}\) = 0.5 m/s
Bar Shape Factor, B = 2.42 [MS Flat Sheet Bar]

= \(2.42\times {\left(\frac{10}{50}\right)}^{4/3}\times \frac{{0.6}^{2}}{2\times 9.81}\times \text{sin}45\) = 0.35 m
Assuming submergence depth, H = 1 m
Width of the channel, WC = \(\frac{{A}_{G}}{H}\) = \(\frac{1.72}{1}\) = 1.72 m = 1720 mm
Number of bars, NB = \(\frac{1720}{(50+10)}\) = 28.5 ~ 29 Nos.
Medium Screen: Assuming,
Length, L = 1000 mm, Width, W = 10 mm,
Opening, O = 20 mm, Inclination, I = 60 Degree. (Metcalf et al., 2003)
According to the previous calculations,
Cross-section area of channel, AC = 1.42 m2
Gross area of channel, AG = 2.14 m2
Velocity above screen, vo = 0.4 m/s
Head loss, hL = 1.5 m
Assuming submergence depth, H = 1 m
Width of the channel, WC = 2.14 m = 2140 mm
Number of bars, NB = 71.2 ~ 72 Nos.
Specification of bar screen chambers are shown in Table 4.
Table 4
Specification of bar screen chamber
Parameter
|
Coarse Screen
|
Medium Screen
|
Quantity of Screen Chamber
|
4 Nos.
|
4 Nos.
|
Flow Rate
|
73.9 MLD
|
73.9 MLD
|
Length of Bar
|
1000 mm
|
1000 mm
|
Width of Bar
|
10 mm
|
10 mm
|
Opening
|
50 mm
|
20 mm
|
Inclination
|
45 degrees
|
60 degrees
|
Cross-section Area of Channel
|
1.43 m2
|
1.42 m2
|
Gross Area of Channel
|
1.72 m2
|
2.14 m2
|
Head Loss
|
0.35 m
|
1.5 m
|
Submergence Depth
|
1 m
|
1 m
|
Width of Channel
|
1.72 m
|
2.14 m
|
Quantity of Bar
|
29 Nos.
|
72 Nos.
|
3.3 Grit Chamber
Assuming number of horizontal grit chambers, N = 8 Nos. for periodic cleaning.
Flow rate for each tank, Q = \(\frac{{Q}_{P}}{N}\) = \(\frac{295.5}{8}\) = 36.95 MLD
Plant operating time, TO = 24 hours in a day.
Assuming detention time, T = 180 seconds.
Assuming surface loading rate, L = 750 m3/m2.day
Surface area, A = \(\frac{Q}{L}\) = \(\frac{36950}{750}\) = 49.24 m2
Diameter, D = \(\sqrt{\frac{4A}{\pi }}\) = \(\sqrt{\frac{4\times 49.24}{\pi }}\) = 8 m
Volume, V = \(\frac{Q\times T}{{T}_{O}\times 3600}\) = \(\frac{36950\times 180}{24\times 3600}\) = 77 m3
Side wall height, H = \(\frac{V}{A}\) = \(\frac{77}{49.24}\) = 1.56 ~ 1.6 m
Bottom slope factor, SF = 0.083 (Metcalf et al., 2003)
Bottom slope, SL = \(H\times {S}_{F}\) = \(1.6\times 0.083\) = 0.13 m
Center height, HC = \(H+{S}_{L}\) = \(1.6+0.13\) = 1.73 ~ 1.8 m
Specification of grit chambers are shown in Table 5.
Table 5
Specification of grit chamber
Parameter | Value |
---|
Quantity | 8 Nos. |
Flow Rate | 36.95 MLD |
Detention Time | 3 minutes |
Surface Loading Rate | 750 m3/m2.day |
Diameter | 8 m |
Height | 1.6 m |
Center Height | 1.8 m |
Free Board | 0.5 m |
3.4 Primary Clarifier
Assuming overflow rate, OA = 40 m3/m2.day for average flow. So, average flowrate of the sewage will be used for calculation.
Assuming number of primary clarifiers, N = 4 Nos.
Average flow rate for each clarifier, QA = \(\frac{{Q}_{P}}{N}\) = \(\frac{98.5}{4}\) = 24.62 MLD
Detention time, T = 2.5 hours.
Surface area, A = \(\frac{{Q}_{A}}{{O}_{A}}\) = \(\frac{24620}{40}\) = 615.5 m2
Diameter, D = \(\sqrt{\frac{4A}{\pi }}\) = \(\sqrt{\frac{4\times 615.5}{\pi }}\) = 28 m
Volume, V = \(\frac{{Q}_{A}\times T}{{T}_{O}}\) = \(\frac{24620\times 2.5}{24}\) = 2564.5 m3
Side wall height, H = \(\frac{V}{A}\) = \(\frac{2564.5}{615.5}\) = 4.17 ~ 4.2 m
Bottom slope factor, SF = 0.083 (Metcalf et al., 2003)
Bottom slope, SL = \(H\times {S}_{F}\) = \(4.2\times 0.083\) = 0.35 m
Center height, HC = \(H+{S}_{L}\) = \(4.2+0.35\) = 4.55 m
Weir loading, WL = 250 m3/m2.day (Metcalf et al., 2003)
Scour Velocity, VH = \(\sqrt{\left(\frac{8k\left(s-1\right)gd}{f}\right)}\) (5)

Cohesion Constant, k = 0.05
Specific Gravity, s = 1.25
Acceleration due to gravity, g = 9.8 ms−2
Diameter of Particles, d = 100 µm
Darcy-Weisbach Friction Factor, f = 0.025
Specification of primary clarifiers are shown in Table 6.
Table 6
Specification of primary clarifier
Parameter
|
Value
|
Quantity
|
4 Nos.
|
Flow Rate
|
24.62 MLD
|
Detention Time
|
2.5 hours
|
Overflow Rate at Average Flowrate
|
40 m3/m2.day
|
Overflow Rate at Peak Flowrate
|
120 m3/m2.day
|
Surface Area
|
615.5 m2
|
Diameter
|
28 m
|
Side Wall Height
|
4.2 m
|
Center Height
|
4.55 m
|
Free Board
|
0.5 m
|
Weir Loading
|
250 m3/m2.day
|
3.5 Aeration Tank
Assuming number of aeration tanks, N = 8 Nos.
Flow rate for each tank, Q = \(\frac{{Q}_{P}}{N}\) = \(\frac{295.5}{8}\) = 36.95 MLD
Inlet BOD, YI = 350 mg/l and outlet BOD, YO = 35 mg/l
[The underflow rate and the BOD removal of the primary clarifier are neglected to get the better performance]
Efficiency, η = \(\frac{{Y}_{I}-{Y}_{O}}{{Y}_{I}}\) = \(\frac{350-35}{350}\) = 90%
Assuming, F/M = 0.12 and MLSS = 3500 mg/l (Samal, 2016)
Volume, V = \(\frac{Q\times {Y}_{I}}{F/M\times MLSS}\) = \(\frac{36950\times 350}{0.12\times 3500}\) = 30791.67 m3
Assuming Width, W = 70 m and Depth, H = 5.5 m [Excluding 0.5 m free-board]
Length, L = \(\frac{V}{W\times H}\) = \(\frac{30791.67}{70\times 5.5}\) = 80 m
Aeration Period, TA = \(\frac{30791.67\times 24}{36950}\) = 20 hours.
Solids Retention Time, SRT
$$V\times MLSS=\frac{\alpha \times Q({Y}_{I}-{Y}_{O})\times SRT}{1+K\times SRT}$$
6
[α = 1.0 and K = 0.06]
$$30791.67\times 3500=\frac{1\times 36950\times (350-35)\times SRT}{1+0.06\times SRT}$$
SRT = 20.83 ~ 21 days
BOD load/day, YD = \((Q\times 1000)\times \frac{{Y}_{I}}{{10}^{6}}\) = \((36950\times 1000)\times \frac{350}{{10}^{6}}\) = 12932.5 kg/day
BOD load/hour, YH = \(\frac{{Y}_{D}}{{T}_{A}}\) = \(\frac{12932.5}{20}\) = 646.63 kg/hour
Air requirement for BOD, AB = \({Y}_{H}\times 115\) = \(646.63\times 115\) = 74362.5 ~ 74363 m3/h (Kodavasal, 2011)
Air requirement for mixing, AM = \(V\times 1.1\) = \(30791.67\times 1.1\) = 33870.84 m3 ~ 33871 m3/day
As air requirement for BOD is greater than for mixing, higher value will be used for further calculation
Minimum air flux of diffuser, AF = 12 m3/hour
Number of diffusers, ND = \(\frac{{A}_{M}}{{A}_{F}}\) = \(\frac{74363}{12}\) = 6196.9 ~ 6197 Nos.
Specification of aeration tanks are shown in Table 7.
Table 7
Specification of aeration tank
Parameter
|
Value
|
Quantity
|
8 Nos.
|
Flow Rate
|
36.95 MLD
|
Aeration Period
|
20 hours
|
Length
|
80 m
|
Width
|
70 m
|
Depth
|
5.5 m
|
Free Board
|
0.5 m
|
Solids Retention Time
|
21 days
|
Air Requirement
|
81799 m3/day
|
Air Flux of Diffuser
|
12 m3/hour
|
Number of diffusers
|
6197 Nos.
|
3.6 Secondary Clarifier
Assuming overflow rate, OA = 24 m3/m2.day for average flow. So, average flowrate of the sewage will be used for calculation.
Assuming number of secondary clarifiers, N = 4 Nos.
Average flow rate for each clarifier, QA = \(\frac{{Q}_{P}}{N}\) = \(\frac{98.5}{4}\) = 24.62 MLD
Assuming residual MLSS in clarifier, MLSSC = 16000
Recycle ratio, R = \(\frac{MLSS}{{MLSS}_{C}-MLSS}\) = \(\frac{3500}{16000-3500}\) = 0.28
Total inflow, QT = \(Q\times (1+R)\) = \(24.62\times (1+0.28)\) = 31.51 MLD
Detention time, T = 2 hours.
Surface area, A = \(\frac{{Q}_{A}}{{O}_{A}}\) = \(\frac{31510}{24}\) = 1312.9 m2
Diameter, D = \(\sqrt{\frac{4A}{\pi }}\) = \(\sqrt{\frac{4\times 1312.9}{\pi }}\) = 40.9 ~ 41 m
Volume, V = \(\frac{{Q}_{A}\times T}{{T}_{O}}\) = \(\frac{31510\times 2}{24}\) = 2625.83 m3
Side wall height, H = \(\frac{V}{A}\) = \(\frac{2625.83}{1312.9}\) = 2 m
Bottom slope factor, SF = 0.083 (Metcalf et al., 2003)
Bottom slope, SL = \(H\times {S}_{F}\) = \(2\times 0.083\) = 0.17 ~ 0.2 m
Center height, HC = \(H+{S}_{L}\) = \(2+0.2\) = 2.2 m
Weir loading, WL = 250 m3/m2.day (Metcalf et al., 2003)
Specification of secondary clarifiers are shown in Table 8.
Table 8
Specification of secondary clarifier
Parameter
|
Value
|
Quantity
|
4 Nos.
|
Flow Rate
|
31.51 MLD
|
Detention Time
|
2 hours
|
Overflow Rate at Average Flowrate
|
24 m3/m2.day
|
Overflow Rate at Peak Flowrate
|
72 m3/m2.day
|
Surface Area
|
1312.9 m2
|
Diameter
|
41 m
|
Side Wall Height
|
2 m
|
Center Height
|
2.2 m
|
Free Board
|
0.5 m
|
Weir Loading
|
250 m3/m2.day
|
3.7 Chlorination Chamber
Assuming number of chlorination chambers, N = 4 Nos.
Flow rate for each tank, Q = \(\frac{{Q}_{P}}{N}\) = \(\frac{295.5}{4}\) = 73.9 MLD
Chlorine contacts time, T = 0.5 hours (Maximum contact time) (Metcalf et al., 2003)
Volume, V = \(\frac{Q\times T}{{T}_{O}}\) = \(\frac{73900\times 0.5}{24}\) = 1539.6 m3
Assuming height, H = 3 m and width, W = 20 m.
Length, L = \(\frac{V}{H\times W}\) = \(\frac{1539.6}{3\times 20}\) = 25.6 ~ 26 m
Assuming maximum required chlorine dosage, CCl,p = 20 mg/L
Chlorinator capacity, MP = \(\frac{Q\times {C}_{Cl,p}}{1000}\) = \(\frac{73900\times 20}{1000}\) = 1478 kg/day
Assuming average chlorine dosage, CCl,a = 10 mg/L
Daily consumption of chlorine, MP = \(\frac{{Q}_{A}\times {C}_{Cl,a}}{1000}\) = \(\frac{24620\times 10}{1000}\) = 246.2 kg/day
Specification of chlorination chambers are shown in Table 9.
Table 9
Specification of chlorination chamber
Parameter
|
Value
|
Quantity
|
4 Nos.
|
Flow Rate
|
73.9 MLD
|
Aeration Period
|
0.5 hour
|
Length
|
26 m
|
Width
|
20 m
|
Height
|
3 m
|
Free Board
|
0.5 m
|
Average Chlorine Dosage
|
10 mg/L
|
Maximum Chlorine Dosage
|
20 mg/L
|
Chlorinator Capacity
|
1478 kg/day
|
Chemical
|
Bleaching (NaClO)
|
3.8 Gravity Thickener
From concentration profile of sludge stream based on simulation results,
Total primary sludge, QPS = 1600 m3/d and total waste activated sludge, QWAS = 6896 m3/d
Total mixed sludge influent flow, QMS = QPS + QWAS = 1600 + 6896 = 8496 m3/d
Solids load in the influent sludge, STSS = 73570 kg/d. [From simulation]
Solids loading rate for mixed sludge = 25-80 kg TS/m2.day (Qasim, 2017)
So, assuming solids loading rate, SLR = 60 kg TS/m2.day and removal efficiency = 90%
Area, A = \(\frac{{S}_{TSS}}{SLR}\) = \(\frac{73570}{57}\) = 1226.2 m2
Hydraulic loading rate, HLR = \(\frac{8496}{1226.2}\) = 6.93 m3/m2.day
20-30 m3/m2. d HLR is recommended for gravity thickener. (Andreoli et al., 2007)
Assuming, HLR = 20 m3/m2.day
So, dilution water needed, QW = \(\left(HLR\times A\right)-{Q}_{MS}\) = \(\left(20\times 1226.2\right)-8496\) = 16028 m3
Total flow = 8496 + 16028 = 24524 m3
This flow increment does not affect the thickener performance. (Jordão e Pessôa, 1995)
Diameter, D = \(\sqrt{\frac{4A}{\pi }}\) = \(\sqrt{\frac{4\times 1226.2}{\pi }}\) = 39.5 ~ 40 m
New area for the diameter, An = \(\frac{\pi \times {D}^{2}}{4}\) = \(\frac{3.1416\times {40}^{2}}{4}\) = 1256.64 m2
Minimum side wall depth 3 m and maximum hydraulic retention time 24 hours are needed to avoid septic condition. (ABNT, 1989)
Assuming side wall height, H = 3 m
Bottom slope factor, SF = 0.083 (Metcalf et al., 2003)
Bottom slope, SL = \(H\times {S}_{F}\) = \(3\times 0.083\) = 0.25 m
Center height, HC = \(H+{S}_{L}\) = \(3+0.25\) = 3.25 m
Volume, V = \(A\times H\) = \(1256.64\times 3\) = 3769.92 m3
Hydraulic retention time (HRT) without dilution, T = \(\frac{3769.92}{8496}\) = 0.44 day = 10.6 hours
Hydraulic retention time (HRT) with dilution, TD = \(\frac{3769.92}{24524}\) = 0.15 day = 3.6 hours
Specification of thickener is shown in Table 10.
Table 10
Specification of gravity thickener
Parameter
|
Value
|
Quantity
|
1 No.
|
Flow Rate with Dilution
|
24.52 MLD
|
Detention Time
|
3.6 hours
|
Surface Area
|
1256.64 m2
|
Diameter
|
40 m
|
Side Wall Height
|
3 m
|
Center Height
|
3.25 m
|
Free Board
|
0.5 m
|
Removal efficiency
|
90%
|
3.8 Anaerobic Sludge Digester
Detention time 18-25 days and volumetric organic load 0.8-1.6 kg VSS/m3.day. (CIWEM, 1996)
From simulation results,
Total influent sludge flow, QT = 1550 m3/day, solid load, STSS = 66710 kg TSS/m3.day and TSS/VSS ratio, r = 0.65 [From simulation]
Volatile solids load, SVSS = \({S}_{TSS}\times r\) = \(66710\times 0.65\) = 43361.5 kg VSS/day
Assuming volatile solids loading rate, SLRVSS = 1.4 kg VSS/m3.day.
Volume, V = \(\frac{{S}_{VSS}}{{SLR}_{VSS}}\) = \(\frac{43361.5}{1.4}\) = 30972.5 m3
15% extra volume should be reserved for bio-gas accumulation. (Andreoli et al., 2007)
Headspace volume for gas, VG = \(V\times 0.15\) = \(30792.5\times 0.15\) = 4618.9 m3
Total volume, VT = \(V+{V}_{G}\) = \(30972.5+4618.9\) = 35618.4 m3
Hydraulic detention time, T = \(\frac{V}{{Q}_{T}}\) = \(\frac{30972.5}{1550}\) = 20 days.
Assuming number of single-stage high-rate digesters, N = 2 Nos.
Flow rate for each digester, Q = \(\frac{Q}{N}\) = \(\frac{1550}{2}\) = 775 m3/d
Assuming height, H = 15 m

Diameter, D = \(\sqrt{\frac{4A}{\pi }}\) = \(\sqrt{\frac{4\times 1187.3}{\pi }}\) = 38.88 m ~ 39 m
Diameter to height ratio = \(\frac{39}{15}\) = 2.6
Bottom slope factor, SF = 0.083 (Metcalf et al., 2003)
Bottom slope, SL = \(H\times {S}_{F}\) = \(15\times 0.083\) = 1.25 m
Center height, HC = \(H+{S}_{L}\) = \(15+1.25\) = 16.25 m
Specification of anaerobic digesters are shown in Table 11.
Table 11
Specification of anaerobic digester
Parameter
|
Value
|
Quantity
|
2 Nos.
|
Flow Rate
|
775 MLD
|
Detention Time
|
20 days
|
Volume
|
30972.5 m3
|
Headspace Volume for Gas
|
4618.9 m3
|
Diameter
|
39 m
|
Side Wall Height
|
15 m
|
Center Height
|
16.25 m
|
3.9 Belt Press Filter
Total influent flow to filter, QT = 1550 m3/day and solids content, CS = 2.09%
Assuming number of belt press filters, N = 4 Nos.
Flow rate for each filter, Q = \(\frac{Q}{N}\) = \(\frac{1550}{4}\) = 387.5 m3/d
Assuming,
Solid capture, η = 95%, specific gravity of sludge, SGS = 1.03, cake solids content, SGC = 22% and nominal belt capacity, CB = 320 kg TSS/m.hour (Metcalf et al., 2003)
Assuming operation hour, TH = 12 hours/day and operation day, TD = 7 days/week.
Wet solids load, SW = \(Q\times {T}_{D}\times {SG}_{S}\times 1000\) = \(387.5\times 7\times 1030\) = 2793.88 ton/week
Dry solids load, SD = \({S}_{W}\times {C}_{S}\) = \(2793.88\times 0.0209\) = 58.39 ton/week
Hourly solids rate, SDH = \(\frac{{S}_{D}}{{T}_{D}\times {T}_{H}}\) = \(\frac{58390}{7\times 12}\) = 695.12 kg/hour.
Belt width, W = \(\frac{{S}_{DH}}{{C}_{B}}\) = \(\frac{695.12}{320}\) = 2.17 m ~ 2.2 m
Specification of belt press filters are shown in Table 12.
Table 12
Specification of belt press filter
Parameter
|
Value
|
Quantity
|
4 Nos.
|
Flow Rate
|
387.5 MLD
|
Operation Hour
|
12 hours in a day
|
Operation Day
|
7 days in a week
|
Belt Capacity
|
320 kg TSS/m.hour
|
Belt Width
|
2.2 m
|
Removal Efficiency
|
95%
|