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Abstract 

A developing country like Ethiopia suffers a lot from the effects of climate change due to its limited economic 

capability to build irrigation projects to combat climate change's impact on crop production. This study evaluates 

climate change's impact on rainfed maize production in the Southern part of Ethiopia. AquaCrop, developed by FAO 

that simulates the crop yield response to water deficit conditions, is employed to assess potential rainfed maize 

production in the study area with and without climate change. The Stochastic weather generators model LARS-WG 

of the latest version is used to simulate local-scale level climate variables based on low-resolution GCM outputs.  The 

expected monthly percentage change of rainfall during these two-time horizons (2040 and 2060) ranges from -23.18 

to 20.23% and -14.8 to 36.66 respectively.  Moreover, the monthly mean of the minimum and maximum temperature 

are estimated to increase in the range of 1.296 0C to 2.192 0C and 0.98 0C to 1.84 0C for the first time horizon (2031-

2050) and from 1.860C to 3.40C and 1.560C to 3.180C in the second time horizon (2051-2070), respectively. Maize 

yields are expected to increase with the range of 4.13% to 7% and 6.36% to 9.32% for the respective time horizon in 
the study area provided that all other parameters were kept the same. In conclusion, the study results suggest that 

rainfed maize yield responds positively to climate change if all field management, soil fertility, and crop variety 

improve were kept the same to baseline; but since there is intermodal rainfall variability among the seasons planting 

date should be scheduled well to combat water stress on crops. The authors believe that this study is very likely 

important for regional development agents (DA) and policymakers to cope up with the climate change phenomenon 

and take some mitigation and adaptation strategies.  

Keywords: AquaCrop model, Climate change, LARS-WG, Yield estimation. 

1. Introduction  

A warmer world would likely affect all aspects of our environment. Amongst all sectors (energy, agriculture, water, 

fisheries, livestock, etc.), agriculture is the most sensitive and vulnerable to climate change (IPCC, 1990). Climate 

change is now a leading issue on the environmental and socioeconomic agenda worldwide (Crossman et al., 2013). It 

is the primary determinant of agricultural production and hydrology balance (Adams et al., 1998). There is testimony 

from the scientific community of the globe that there is climate change now and 97% of climate scientists agree that 

it is being driven primarily by human activity (IPCC 2001b, Wang et al., 2019). Climate change, however, is expected 

to make agricultural development in Africa more challenging in many places (E. Blanc., 2012). Ethiopia is one of the 

most likely vulnerable countries in Sub-Saharan Africa facing climate change extreme events (drought and floods) as 

a result of climate variability and change,  that would influence largely the agricultural sector (Gezie, M., 2019).  The 

study in five regions (Amhara, Tigray, Benishangul Gumuz, Oromia, and Southern Nation Nationality and People 

(SNNP) of Ethiopia indicated that all the regions are negatively affected by climate change at varying levels (Baylie, 

M. M., & Fogarassy, C., 2021).  

The Federal Democratic Republic of Ethiopia Ministry of Agricultural (2011) report on agriculture sector program 

plan adaptation to climate change depicted that Ethiopia agriculture would face many adverse impacts that are caused 

by the unpleasant appearance of climate variable change. Yet there are indications by which these impacts will 
continue to influence the socio-economic activities of the community at a larger scale.  Deressa et al., (2008) study 

that used biophysical and social vulnerability indices of the Ricardian approach suggests that a decline in rainfall and 

an increase in temperature are more likely tends to damage Ethiopian agriculture. The second (IPCC, 1996) report 

predicted that tropical and subtropical regions would experience higher losses in crop production, while temperate 

climates might gain in productivity with climate warming. Issues of hunger and famine in Ethiopia are associated with 

low cereal crop production like maize as a result of poor rainfall what happens nowadays in Ethiopia once again. It is 

apparent, therefore; that tropical/subtropical parts of the nation wholly rely on rainfed farming. Ethiopia's food 

production could be greatly impacted by climate changes.  



 

 

Maize is the second-largest most widely produced cereal crop next to teff in area coverage in Ethiopia and the most 

important commodity used to alleviate poverty in the country (CSA, 2015).  Solomon et al., (2021) researched the 

Impact of Climate Change on Agricultural Production in Ethiopia at the national level and found that crop production 

will be adversely affected during the coming four decades and the severity will increase overtime period. The future 

prediction of the study indicates that the production of teff, maize, and sorghum will decline by 25.4, 21.8, and 25.2 
percent, respectively by 2050. Timothy et al., (2019) researched the Climate change impacts on crop yields in Ethiopia 

and suggest that climate change will likely have only relatively small effects on average yields of maize. However, 

Kassaye et al., (2021) study on the Impact of climate change on the staple food crop yield in Ethiopia suggest that the 

yield of teff and maize will be expected to increase by 20.2 and 17.9% respectively at the end of the twenty-first 

century with increasing temperature and rainfall decline. Ironically, Abera et al., (2018) indicate that maize yields will 

decrease by up to 43 and 24% by the end of the century at Bako and Melkassa stations, respectively, while simulated 

maize yield in Hawassa will increase by 51%. In contrast to this, the study in the central rift valley of Ethiopia predicted 

that maize production will decrease on average by 20 %  under climate change by 2050 (Kassie et al.,2015). The study 

in the Gambella region also suggests that rainfed maize production will decrease under three RCPs (2.6, 4.5, and 8.5) 

in the future but only it will decrease under RCP8.5 after 2040–2069 (Degife et al., 2021). 

General circulation models (GCMs) are greatly supportive of the assessment of potential climate change impacts on 

multiple sectors on a global scale. However, a horizontal resolution of GCMs is typically between 250 and 600 km, 

which cannot meet the requirements of most local impact studies (Phuong et al., 2020). Hence, many dynamical and 

statistical downscaling methods have arisen to overcome these key disadvantages of GCMs. By creating General 

Circulation Models (GCM), climate conditions can be assessed for long-time scales. However, the output of these 
models does not have enough spatial and temporal accuracy to study the effect of climate change on agricultural and 

hydrological systems (Pervez and Henebry.,2014; Tripathi et al., 2006; Valizadeh, J.et al.,2014; Boe et al., 2007, Chen 

et al., 2011). Thus, applying suitable downscaling models can improve the results of climate change studies (Arshad, 

et al., 2019; Miao et al., 2019, Dahm et al., 2019; Adnan et al. 2019).  

Several studies have been conducted to evaluate the impacts of climate change on crop production using crop 

simulation models. In this study AquaCrop model FAO (Food and Agriculture Organization) was used (Steduto et al., 

2009) which has been widely used and tested in different climate change impact studies worldwide in general and 

Ethiopia, in particular, have a user-friendly interface and are openly accessible. It is widely used and validated for 

different crops in Ethiopia (Msowoya et al.,2016; Gebremedhin, Y., 2015; Feleke et al., 2021; Tsegay et al., 2011). 

Feleke et al., (2021) study suggest that the AquaCrop model accurately simulated maize canopy cover and yield for 

all varieties. Due to the inconsistent results concerning the impact of climate change on the crop yield obtained among 

the different studies (Abera et al., 2018; Kassaye et al., 2021; Kassie et al.,2015; Degife et al., 2021) and none of them 

applied the combination of Global Circulation Models (GCMs) and AquaCrop whereby LARS-WG is used as a 

downscaling tool, the main objective of this study is to estimate the effect of climate change in the near future 2040 

(2031-2050) and midterm 2060 (2051-2070) on maize yield production in the southern part of Ethiopia using the 

AquaCrop model in combination with Global circulation models. The study contains four sections: Section 1: is an 
introduction, section 2: Material and methods, Section 3: Results and Discussions, and Section 4: is the conclusion. 

2. Material and methods 

2.1. Study Area 

This study was conducted in the Southern part of Ethiopia in Sidama regional state at Hawassa district that covers the 

latitudinal area from 60 40’0’’N to 7020’0’’N and the longitudinal area 38020’0’’ E to 380 40’0’’ E (Fig.1). The main 

staple food crops in the zone are maize, haricot beans, kocho, and sweet potato, all produced in relatively small 

amounts. Chat is an income-generating crop in the higher-altitude areas of the zone, but it is not typical of the zone as 

a whole (USAID, 2005). There are many types of soils in Hawassa district but the soil type prevailing in the study 

area is Andosols (a black or dark brown soil formed from volcanic material, with an A horizon rich in organic 

material). The soil property of the area is characterized by the wilting point of 18.5% and field capacity of 34.8% with 

no restrictive soil layer and soil salinity stress (K.N.Disasa et al., 2019). Sidama region is technically falling into the 
borderline area between the kolla and woina dega agro-ecological zones, with altitudes in the range of 1400 – 1700 

meters above sea level. Average annual rainfall is in the range of 700- 1200mm per year and falls during two rainy 

seasons, the belg (autumn) and kremt (summer) rains. Hawassa district has an annual average rainfall of 955mm with 

a mean annual temperature of 200C. The main rainy season generally extends from June to October.  

 

 



 

 

 

Figure 1. Map of the study area 

2.2. Global Circulation Models Downscaling models 

Stochastic weather generators, as one of the most typical and popular downscaling methods, have been widely applied 

for local-scale weather simulation based on low-resolution GCM outputs at a single site (Vallam and Qin 2018; Wilby 

et al., 2002; Zhang 2005). At low cost and with less computationally demanding frameworks, it is simple to use 

weather generator models to quickly model future multiple-year weather data series at the daily time scale at a 

particular station. LARS-WG, as one of the downscaling models, is used for the simulation of climate information 

under current and future circumstances. Different studies reported the superiority of LARS WG over SDMS 

(Pourtouiserkani et al., 2014, Semenov, M.A.and Barrow, E.M 2002; Rajabi et al., 2010). Several studies in the world 

demonstrated the successful prediction of different climatic variables using LARS-WG, including the prediction of 

temperature and precipitation, and LARS WG has excellent downscaling performance in maximum and minimum 

temperature than precipitation (Sepideh Karimi et al., 2015; K.N.Disasa et al., 2019; Karimi et al., 2015; Awal et al., 

2016; Agarwal et al., 2014; Qi et al., 2016).  

Accordingly, the new parallel approach that developed by IPCC, AR5., (2014) to replace the Special Report on 

Emissions Scenarios (SRES) with Representative Concentration Pathways (RCPs) to shorten the time between the 

development of emissions scenarios and the use of the resulting climate scenarios in impact research is used in this 

study. The RCPs also provide an important reference point for new research within the integrated assessment modeling 
(IAM) community by standardizing on a common set of year-2100 conditions and exploring alternative pathways and 

policies that could produce these outcomes (Moss et al., 2010,  Van Vuuren et al., 2011). 

 In the new parallel approach radiative forcing trajectories are not associated with unique socioeconomic or emissions 
scenarios, and instead can result from different combinations of economic, technological, demographic, policy, and 

institutional futures.  Four pathways lead to radiative forcing levels of RCP 8.5, RCP 6, RCP 4.5, and RCP 2.6 W/m2 

by end of the 21st century.  Each of the RCPs covers the 1850–2100 periods, and extensions have been formulated for 

the period thereafter up to 2300 (Van Vuuren et al. 2011). A subset of 18 GCMs from the CMIP5 multi-model 

ensemble was incorporated into the LARS-WG weather generator (Semenov MA and Stratonovitch P.2015) under 

two RCPs (RCP 8.5 and RCP 4.5). For this study, only five GCMs (Table 1) from the CMIP5 are used under two 

RCPs (Ahmadi, M., et al., 2021). 

 



 

 

2.3. Description of LARS-WG 

Long Ashton Research Station Weather Generator is neither a predictive nor forecasting tool but is simply a means of 

generating time-series of synthetic weather statistically identical to the observations (Semenov, M. A. et al., 2002).  

Its latest version (LARS-WG Version 6.0, to date version) was used for this study to simulate future weather data 

(maximum and minimum temperatures, precipitations, and Solar radiation) for the near term, and mid-term in the 
study area. The model simulates weather data at a single site under current and future conditions (Racsko et al., 1991). 

It uses Minimum temperature (°C), Maximum temperature (°C), Precipitation (rainfall) (mm), and Solar radiation 

(MJ/m2/day) as input to generate synthetic data in daily time series.  In the absence of solar radiation, the model 

accommodates the use of sunshine hours. LARS-WG automatically converts the sunshine hours to solar radiation 

using an algorithm that was described by Rietveld (1978). 

Table 1. Global Circulation Models used in this study 

 

GCM Name 

 

Name of the research center 

 

Grid 

Resolution  

RCPs 

4.5 8.5  

EC-EARTH European community Earth-System 1.125°× 1.125° ü ü 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory 2.00° × 2.50° ü ü 

HadGEM2-ES UK Meteorological Office 1.25° × 1.88° ü ü 

MIROC5 Japan Agency for Marine-Earth Science & Technology 1.39° × 1.41° ü ü 

MPI-ESM-MR Max Planck Institute for Meteorology 1.85° × 1.88° ü ü 

 

The ability of LARS-WG to simulate reliable data depends on the availability of observed data. The model simulates 

future weather data based on as little as a single year of observed weather data. Semenov and Barrow (2002) 

recommend the use of daily weather data of at least between 20-30 years for better results. Weather data for long 

periods are significant in the way that they capture some of the less frequent events like droughts and floods. This 

study used daily historical observed weather data of at least 30 years from the (1981-2010) periods as baseline data. 

2.3.1. LARS-WG  Calibration and validation 

It is very likely important to calibrate LARS-WG before generating future scenarios that are common for most 

statistical downscaling models. Calibration of LARS-WG is carried out by a function on the main menu called “Site 

Analysis”. The process is done to determine the statistical characteristics and site parameters of the observed weather 

data. Once LARS-WG has been calibrated, its ability to simulate future weather data in the representative study site 
is assessed. Validation is a process that is used to determine how well a model can simulate potential future climate 

variables.  

The Q test function was used to determine the ability of LARS-WG to rationally estimate future climate variables. 
This was achieved using three statistical tests; chi-square test (X2), t-test, and K-S (Kolmogorov-Smirnov) which is 

the output Q test function to test the performance of LARS-WG. The chi-square test will be used to determine the 

existence of any significant difference between the simulated and observed frequencies in the meteorological data. A 

t-test was used to check the existence of any reliable difference between the means of the generated and observed data 

sets. Additionally; a K-S test was used to decide if a sample comes from a population with a specific distribution. The 

Kolmogorov-Smirnov (K-S) statistic ∆ is the absolute maximum differences between observed cumulative probability 

P (Xm) and the theoretical cumulative probability F(Xm). 

∆= 𝑚𝑎𝑥|𝐹(𝑥)) − 𝑃(𝑥))|----------------------------------------------------------1 

The observed cumulative probability is computed using Weibul’s formula P(Xm)= -(./01))(./0) 2  and theoretical 

cumulative probability is obtained for each ordered observation using the selected distribution. Where n is sample size 

and m is ordered sequence or rank (K.N.Disasa et al., 2019). 

Moreover, observed and simulated data time series of the monthly mean precipitation, the maximum and minimum 

temperature is checked by using the coefficient of determination (R2), Root Mean Square Error (NRMSE), Nash–

Sutcliffe efficiency (NSE) (Birara, H.et al.,2020; Amhadi, M. et al.,2021).  



 

 

The coefficient of determination (R²) is used to determine the proportion of variance in the simulated variable that can 

be explained by the observed variable. The higher the value for the goodness of fit of the model.  

𝑹𝟐 =	 ∑ (𝐬𝐢1𝐨:)𝟐𝐧𝐢<𝟏
∑ (𝐨𝐢1𝐨:)𝟐𝐧𝐢<𝟏

 ---------------------------------------------------------------------------2 

RMSE is used to measure the difference between simulated and observed values. The lower the value the higher 

accuracy of the model to predict. 

𝐍𝐑𝐌𝐒𝐄 = C∑ (𝐨𝐢1	𝐬𝟏)𝟐𝐧𝐢<𝟏
𝐧 -------------------------------------------------------------------3 

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the relative magnitude of the residual 

variance between simulated and observed data. The more the value approaches 1 the high the predictive skill of the 

model. 

𝑁𝑆𝐸 = 1 − ∑ (𝐬𝐢1𝒐𝒊)𝟐𝐧𝐢<𝟏
∑ (𝐨𝐢1𝐨:)𝟐𝐧𝐢<𝟏

		-------------------------------------------------------------------------4 

where Oi is the observed data, Si is the simulated data. 

2.4.  Introduction to AquaCrop 

AquaCrop is the FAO crop model to simulate yield response to water (Raes et al., 2009; Steduto et al., 2009). It is a 

very likely friendly tool that would be used for a wide range of users and applied for the prediction of crop yield under 

current and future climate change scenarios. AquaCrop appears to use ground canopy cover instead of leaf area index 

and mostly focuses on water hereby using water productivity values normalized for atmospheric evaporative demand 

and of carbon dioxide concentration. This helps the model to use in diverse locations and seasons under future climate 

scenarios. An empirical production function is mostly suggested to use to estimate crop yield response to water to 

overcome the difficulty of crop responses to water deficits. Among the empirical function approaches, FAO Irrigation 

& Drainage Paper 33 (Doorenbos and Kassam, 1979) represented an important source to determine the yield response 

to water of field, vegetable, and tree crops, through Equation 5: 

JKL1KMKL N = 𝐾P JQRL1QRMQRL N--------------------------------------------------------------------------5 

Where Yx and Ya are the maximum and actual yield, ETx and ETa are the maximum and actual evapotranspiration, 

and ky is the proportionality factor between relative yield loss and relative reduction in evapotranspiration. AquaCrop 

develops from Doorenbos and Kassam (1979) approach by separating the Evapotranspiration (ET) into soil 

evaporation (E) and crop transpiration (𝑇T) and the final yield (Y) into biomass (B) and harvest index (HI). The 

separation of ET prevents the confounding effect of the non-productive consumptive use of soil evaporation water (E). 
This phenomenon is very likely important when the canopy does not cover the ground completely. The separation of 

Y into B and HI allows the distinction of the basic functional relations between environment and B from those between 

environment and HI. These relations are fundamentally different and their use avoids the confounding effects of water 

stress on B and HI. The changes described led to Equation 6 at the core of the AquaCrop growth engine: 

 𝐵 = 𝑊𝑃.∑𝑇T---------------------------------------------------------------------------------------6 

Where 𝑇Tthe crop transpiration (mm) and WP is is the water productivity parameter (kg of biomass per m2 and per 

mm of cumulated water transpired over the time period in which the biomass is produced). This step from Eq.5 to 

Eq.6 has a fundamental implication for the robustness of the model due to the conservative behavior of WP (Steduto 

et al., 2007). It is worth noticing though that both equations are different expressions of a water-driven growth engine 

in terms of crop modeling design (Steduto, 2003).  
2.4.1. Components of AquaCrop 

AquaCrop contains five sections (Atmosphere, Crop, Soil, Field Management, Irrigation management) which are used 

to calculate crop growth. Moreover, it also requires five weather data (daily minimum air temperatures, daily 

maximum air temperatures, daily rainfall, ETO and mean annual carbon dioxide concentration in the bulk atmosphere). 

ETO calculator the Penman-Monteith method as described by FAO (Allen et al., 1998) is used for estimation of 

Evapotranspiration (Eq.7) 

	𝑬𝑻𝒐 =	𝟎.𝟒𝟎𝟖∆(𝑹𝒏1	𝑮)/	𝜸
𝟗𝟎𝟎

𝑻a𝟐𝟕𝟑𝑼𝟐(𝒆𝒔g𝒆𝒂)
∆/𝜸(𝟏/𝟎.𝟑𝟒𝒖𝟐) -----------------------------------------------------------------7 

 

Where               𝐸𝑇j         reference evapotranspiration (mm/ day)  



 

 

                          𝑅.           net radiation at the crop surface (MJ/m2 /day)  

                          G            soil heat flux density (MJ/ m2 /day)  

                          T             mean daily air temperature at 2 m height (0C) 

                          𝑈m           wind speed at 2 m height (m/s)  

                          𝑒o            saturation vapor pressure (kPa)  

                          𝑒p            actual vapor pressure (kPa)  

                          𝑒o − 𝑒p        saturation vapor pressure deficit (kPa)  

                          Δ             slope vapor pressure curve (kPa/ oC)  

                          γ               psychometric constant (kPa/ oC)    

AquaCrop calculations are performed always at a daily time-step. However, input is not required at a daily time-step, 

but can also be provided at 10-daily or monthly intervals. The model itself interpolates these data to daily time steps. 

The only exception is the CO2 levels which should be provided at the annual time-step and are considered to be 

constant during the year. 
2.4.2. Climate change in AquaCrop 

In this particular study climate change is conducted only by adjusting the precipitation data file and the temperature 

data file under current and future climate scenarios but the impact of enhanced CO2 levels is not considered. The 

impact of enhanced CO2 levels is calculated by AquaCrop itself. AquaCrop uses the so-called normalized water 

productivity (WP*) for the simulation of aboveground biomass. The WP is normalized for the atmospheric CO2 

concentration and the climate, taking into consideration the type of crop (e.g. C3 or C4). The C4 crops assimilate 

carbon at twice the rate of C3 crops. A C4 plant is a plant that cycle’s carbon dioxide into four-carbon sugar compounds 

to enter into the Calvin cycle. 

2.4.3. Calibration of AquaCrop  

Calibration of AquaCrop has been achieved by comparing the actual maize production (as provided by the Department 

of Agriculture of southern nations, nationality, and peoples of Ethiopia regional state, Sidama zone) with the maize 

yield simulated by the model. Input data for various crop and soil parameters used in the model are obtained from the 

South Region Agricultural Research Institute and Wondo Genet Agricultural Research Center Hawassa Maize 

Research Sub Center of Ethiopia. By comparing the actual and simulated maize yields crop parameters (CCO, canopy 

development, root deepening, flowering and yield formation, canopy expansion relative to water stress,  stomata 
closure relative to water stress, etc..), field management(soil fertility stress percentage for biomass production in 

respective to canopy, biomass, water productivity, and percentage soil surface covered) and soil characteristics 

(characteristics of soil horizon, soil surface, restrictive soil layer, and capillary rise) are adjusted through trial and 

error, until the closest match between recorded and simulated maize yield was achieved. Data (recorded maize yields, 

rainfall, minimum and maximum temperature) from Hawassa station for the year 2018 has been used to calibrate the 

mode l( Msowoya et al.,2014).  

2.4.4. Validation of AquaCrop  

 Having calibrated AquaCrop, it was significant that the model is validated to evaluate its performance in simulating 

crop yields. Model validation is important to determine if the model can replicate the data, and analyze the 

effectiveness of model calibration and compare synthetic data with those done in previous studies. Loague and Green 

(1991) indicate that there are numerous statistical indicators for evaluating the performance of AquaCrop, nonetheless, 

Willmott (1984) argues that each of the statistical indicators has its weaknesses and strengths. To effectively evaluate 
the performance of the model, the use of ensemble statistical indicators is appropriate (Willmott, 1984). In an analysis 

of the performance of AquaCrop, the following lists of statistical indicators were used (Msowoya et al., 2016): 

prediction error (Pe), coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), 

and Nash and Sutcliffe (Ns) (Nash and Sutcliffe, 1970). Ns and R2 indicate the predictive power of the model whilst 

Pe, MAE, and RMSE are used to signify the amount of error associated with the model prediction (Abedinpour et al., 

2012).  

Calibrated crop parameters, management practices, and soil types and conditions remained constant. Maize yields for 

years 2012 to 2017 were used to compare with those simulated by the model within the same time period.  

𝑹𝟐 = q ∑(𝑶𝒊1𝟎:)(𝑺𝒊1𝒔t)
u∑(𝑶𝒊1𝟎:)𝟐∑(𝑺𝒊1𝟎:)𝟐v

𝟐
----------------------------------------------------------------------8 

𝑵𝒔 = 	𝟏 −	∑ (𝟎𝒊1𝑺𝒊)𝟐𝒊<𝑵𝒊<𝟏
∑ (𝟎𝒊1𝟎:)𝟐𝒊<𝑵𝒊<𝟏

 -------------------------------------------------------------------------9 

𝑷𝒆 =	 (𝑺𝒊1	𝒐𝒊)𝑶𝒊 × 𝟏𝟎𝟎----------------------------------------------------------------------------10 



 

 

where Si and Oi are synthetic and actual (observed) production 0𝚤:  is the mean value of Oi and N is the number of 

observations. 

 𝑹𝑴𝑺𝑬 = C∑ (𝑶𝒊g𝑺𝒊)𝟐
𝑵

𝑵𝒊}𝟏  ---------------------------------------------------------------------11 

𝑴𝑨𝑬 =	 𝟏𝒏∑ |𝒔𝒊 − 𝒐𝒊|𝒏𝒊}𝟏  -----------------------------------------------------------------------12 

The model is said to perform better when values of 𝑁o and R2 approaches one and when values of Pe, MAE, and RMSE 

approaches zero (Moriasi et al., 2007). 

3. Results and Discussions  

3.1. Evaluation of LARS-WG 

Based on the Q test function result of LARS-WG the performance of the model to generate future synthetic time series 

is calibrated and validated.  Accordingly, the output statistical test function such as X2(chi-square), t-test, and K-S 

Kolmogorov-Smirnov) with its respective p-value is used (Table 2).  Furthermore, the coefficient of determination 

(R2), Root Mean Square Error (RMSE), and Nash–Sutcliffe efficiency (NSE) are calculated based on the mean 

monthly generated and simulated climate variables (Table 3).  The significance level of 5% (0.05) which is common 

in statistical tests is used.  The results indicate that p-values in all months except in December and January for the Chi-
square test in rainfall are higher than the selected significance level of 0.05. However, the p-value for maximum and 

minimum temperature is higher than 0.05 for both statistical tests. This value indicates that LARS-WG is better to 

generate future temperatures (Max. and Min.) than rainfall (K.N.Disasa et al., 2019; Amhadi, M. et al., 2021). 

Moreover, Semenov, M.A, and Barrow, E.M., (2002) suggest that a significant difference may exist between observed 

and generated data if the mean climate variables do not follow the expected trend of increasing/decreasing. Therefore 

the model is still satisfactory to simulate future climate data.  

Table 2. Q test function statistical results  

Month Precipitation Max temp. Min temp. 

K-S P-

value 

t p-

value 

X2 p-

value 

K-S p-

value 

t p-

value 

K-S p-

value 

t p-value 

J 0.24 0.46 1.84 0.07 2.25 0.02 0.05 1.00 0.11 0.91 0.01 1.00 -

0.70 

0.49 

F 0.05 1.00 0.09 0.93 1.92 0.06 0.11 1.00 1.39 0.17 0.05 1.00 -

0.41 

0.68 

M 0.10 1.00 0.34 0.73 1.17 0.64 0.05 1.00 0.36 0.72 0.05 1.00 -

0.96 

0.34 

A 0.05 1.00 -0.66 0.51 1.07 0.83 0.05 1.00 -0.31 0.76 0.05 1.00 -

0.22 

0.82 

M 0.06 1.00 0.08 0.94 1.44 0.28 0.05 1.00 1.32 0.19 0.05 1.00 -

0.71 

0.48 

J 0.04 1.00 -1.17 0.25 1.24 0.52 0.05 1.00 -0.49 0.63 0.05 1.00 -

1.31 

0.20 

J 0.11 1.00 0.01 0.99 1.56 0.22 0.05 1.00 0.26 0.80 0.05 1.00 -

1.06 

0.29 

A 0.05 1.00 0.49 0.63 1.01 0.96 0.05 1.00 -0.57 0.57 0.05 1.00 0.38 0.70 

S 0.05 1.00 0.53 0.60 1.24 0.55 0.05 1.00 0.12 0.91 0.05 1.00 -

0.10 

0.92 

O 0.08 1.00 -1.31 0.20 1.34 0.39 0.11 1.00 0.14 0.89 0.05 1.00 -

0.48 

0.64 

N 0.06 1.00 -0.70 0.49 1.04 0.90 0.05 1.00 0.74 0.47 0.05 1.00 -

0.84 

0.40 

D 0.24 0.47 1.43 0.16 2.92 0.00 0.05 1.00 -0.68 0.50 0.05 1.00 -

0.13 

0.90 

 

 

 

 

Table 3. Lars-Wg Evaluation Statistical Parameters  



 

 

 

Climate variables  

Statistical performance 

R2 RMSE NSE 

Precipitation  

0.988 

 

8.604 

 

0.952 

Max temp. 0.949 0.121 0.997 

Min temp. 0.967 0.128 0.993 

 

3.2.  Distribution of Weather Variables 

Figure 2-3 shows the monthly mean distribution and daily maxima of climate variables (Precipitation, Maximum 

and Minimum temperature) in the study area respectively. The monthly mean baseline distribution of rainfall in the 

study area indicates that there is a bimodal rainy season with a low rainy season in March and  April and a high 

rainy season in June to August that depicts the sowing season could be two times a year.  

                 

 

Figure 2. Monthly Distribution of Precipitation, Maximum and Minimum temperature of Hawassa District 
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Figure 3. Daily Maxima Distribution of Precipitation, Maximum and Minimum Temperature. 

3.3. Generation of Future Climate variables  

Once LARS WG is calibrated and validated future climate variables of Precipitation, Maximum and minimum 

temperature for two time periods (2031-2050) and (2051-2070) under two RCPs are generated. The monthly mean 

average of change of the climate variables for the respective RCPs and time periods is indicated in Figure 4. The 

seasonal climate change results indicate that the precipitation is expected to increase in September, October, and 

November (SON) under both RCPs in the two future time horizons relative to baseline. However, precipitation is 

expected to increase in 2031-2050 under both RCPs but it would tend to decrease from 2051 to 2070 for the winter 

(DJF) season called ‘bega’. For Autumn (MAM) and winter (JJA) seasons, the precipitation is estimated to decrease 
for both RCPs in the two coming time horizons (Table 4). The maximum and minimum temperature is estimated to 

increase monthly and seasonally throughout the coming two time periods under both RCPs. The percentage of monthly 

precipitation tends to change in the range of -14.84% to 20.23% in 2031-2050 and -23.18% to 20.04% in 2051-2070 

under the RCP 4.5 scenario. Similarly, it is predicted to change in the range of -14.8% to 26.98% in 2031-2050 and -

12.83% to 36.66% in 2051-2070 under the RCP 8.5 scenario. In general, the monthly precipitation is expected to 

increase by 0.52% and 0.22% under the RCP4.5 in 2031-2050 and 2051-2070 respectively (Table 5). Moreover, it is 

estimated to increase by 0.38% and 6.50% under the RCP 8.5 in the respective future time period. However, the future 

predicted precipitation indicates that there are high intermodal variabilities and the increasing trend among GCMs is 

non-consistence. 
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Table 4. Seasonal Mean average change of Tmax, Tmin, and Precipitation relative to baseline (1980-2010)  

Season Prec. change Min temp 

change 

Max temp 

change 

Prec. change Min temp 

change 

Max temp. 

change 

RCP 4.5 RCP8.5 

2031-

2050 

2051-

2070 

2031-

2050 

2051-

2070 

2031-

2050 

2051-

2070 

2031-

2050 

2051-

2070 

2031-

2050 

2051-

2070 

2031-

2050 

2051-

2070 

DJF 1.5 -0.7 1.7 2.2 1.2 1.8 -0.4 7.0 1.8 3.0 1.5 2.5 

MAM -6.4 -1.8 1.4 2.1 1.3 1.8 -7.9 -2.4 1.8 3.0 1.6 2.6 

JJA -7.9 -6.2 1.5 2.1 1.7 2.2 -6.6 -10.3 1.7 2.9 1.8 3.1 

SON  2.5 4.0 1.7 2.3 1.2 1.8 6.7 3.9 1.9 3.1 1.4 2.5 

 

On the other hand, the minimum temperature is predicted to increase in the range of 1.296 0C to 2.044 0C and 1.862 
0C to 2.604 0C in 2031-2050 and 2051-2070 respectively, under the RCP 4.5 scenario whereas it would appear to 

increase in the range of 1.492 0C to 2.192 0C and 2.648 0C to 3.432 0C in the respective coming two time period under 

RCP 8.5 scenario. At the same time maximum temperature is evaluated to increase in the range of 0.984 0C to 1.684 
0C and 1.564 0C to 2.286 0C in 2031-2050 and 2051-2070 respectively, under the RCP 4.5 scenario. Moreover, it 

would be expected to increase in the range of 1.17 0C to 1.844 0C and 2.18 0C to 3.184 0C under the RCP8.5 scenario 

the specified future two time periods (Table 5).  In general Table 6 indicate the monthly average percentage change 

of precipitation and absolute relative change of maximum and minimum temperature under the two RCPs scenario for 

future two time periods. Additionally, the mean monthly climate change variables indicate that maximum and 

minimum temperature increase throughout the year for both RCPs in the coming two time periods but there is a 
seasonal shift for precipitation that depicts it would decrease in the summer (“Kiremt”) and Autumn (“Belg”) season 

of the country whereas it would likely increase the other two seasons (Figure 4). 

Table 5. Monthly Mean average change of Tmax, Tmin, and Precipitation relative to baseline (1980-2010) 

Month Precipitation change Min temp 

change 

Max temp 

change 

Precipitation 

change 

Min temp 

change 

Max temp.change 

RCP 4.5 RCP8.5 

2031-

2050 

2051-2070 2031-

2050 

2051-

2070 

2031-

2050 

2051-

2070 

2031-

2050 

2051-

2070 

2031-

2050 

2051-

2070 

2031-

2050 

2051-

2070 

J -4.358 -6.806 1.568 1.98 1.372 1.922 -4.344 -1.308 1.78 2.93 1.626 2.568 

F 6.262 4.712 1.548 2.134 1.08 1.626 1.364 13.58 1.736 2.998 1.32 2.386 

M -1.464 -0.088 1.496 2.196 1.3 1.876 -5.93 5.294 1.774 3.09 1.608 2.672 

A  -4.294 6.504 1.34 1.916 1.34 1.858 -4.338 -0.75 1.694 2.828 1.65 2.648 

M  -13.418 -11.926 1.508 2.12 1.16 1.674 -13.44 -11.802 1.86 2.938 1.394 2.546 

J 1.368 -0.198 1.61 2.236 1.592 2.182 0.5 -2.558 1.918 3.022 1.818 3.074 

J -17.246 -12.53 1.518 2.144 1.68 2.286 -10.75 -16.116 1.76 2.902 1.834 3.184 

A -7.962 -5.736 1.296 1.886 1.684 2.28 -9.514 -12.11 1.492 2.648 1.844 3.168 

S -11.434 -6.636 1.358 1.862 1.402 2 -3.886 -10.502 1.504 2.702 1.6 2.876 

O 12.498 13.026 1.756 2.304 1.212 1.818 15.398 12.512 1.912 3.132 1.458 2.55 

N  6.346 5.584 2.044 2.604 0.984 1.564 8.464 9.738 2.192 3.432 1.17 2.18 

D 2.708 0.11 1.872 2.414 1.264 1.782 1.878 8.594 1.956 3.118 1.526 2.422 

 



 

 

The climate variables change (Precipitation, max, and min temperature) is almost consistent with K.N. Disasa et al., 

(2019) conducted in Rift valley basins using SRES emission scenarios for future three-time periods 2020, 2055, and 

2090. Nevertheless, the precipitation change is somehow less.  Indeed maximum and minimum temperature change 

is more or less consistent with the study but the future time horizons considered in this study are different from the 

aforementioned study. This study also used Representative Concentration Pathways (RCPs) instead of SRES under 
two radiative forcing levels RCP 8.5 and RCP 4.5 which are most likely similar to A1F and B1 respectively. Several 

studies (Birara, H. et al., 2020; Abera et al., 2018) affirm that climate variables (temperatures and precipitation) are 

increasing in different parts of the country but there is high uncertainty in the projection of rainfall as compared to 

temperatures. Kassie et al., (2013) study on Climate variability and change in the Central Rift Valley of Ethiopia 

suggests that rainfall will increase during November–December (outside the growing season), but will decline during 

the growing seasons (April-September) which is consistent with this study. Moreover, the study result exhibited that 

the length of the growing season is expected to be reduced by 12–35%. However, the result of this study suggests that 

it is possible to shift planting dating from the mid-autumn season to the beginning of summer(June) to attain the 

required growing season since the predicted spring (September- November) season is expected to increase. 

Figure 6. Monthly average percentage change range of precipitation and absolute change of Maximum and 

minimum temperature relative to baseline (1980-2010).  

Climate 

variables 

Rainfall 

change (%) 

Min temp 

change 

Max temp 

change 

Rainfall 

change (%) 

Min temp 

change 

Max temp 

change 

RCP RCP 4.5 RCP8.5 

Year 2031-
2050 

2051-
2070 

2031-
2050 

2051-
2070 

2031-
2050 

2051-
2070 

2031-
2050 

2051-
2070 

2031-
2050 

2051-
2070 

2031-
2050 

2051-
2070 

Range of 

change 

-

14.84 

to 

20.23 

-23.18 

to 

20.04 

1.30 

to 

2.04 

1.86 

to 

2.60 

0.98 

to 

1.68 

1.56 

to 

2.29 

-

14.80 

to 

26.98 

-

12.83 

to 

36.66 

1.49 

to 

2.19 

2.65 

to 

3.43 

1.17 

to 

1.84 

2.18 

to 

3.18 

Absolute 

change 
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Figure 4. Monthly mean observed and generated precipitation, maximum and minimum temperature 

3.4. AquaCrop Calibration 

The future climate change measuring standard of the model simulation capacity is set by inputting the 2018 weather 
data to predict future climate effect on maize production under two RCPs (RCP4.5 and RCP8.5) and two-time periods 

(2040and 2060). The model grossly overestimated maize yields when compared with recorded data in the study area 

for the year 2018. It was therefore essential that adjustment of important and sensitive parameters in the model be 

carried out (Msowoya et al., 2016). By adjusting crop, management, and soil properties in the main menu of 

AquaCrop, an output yield close in value to the recorded yield in 2018 was derived. Before calibrating the model, 

first, the potential evapotranspiration (ETo) was estimated using the FAO ETo Calculator which uses the Penman-

Monteith equation. Recorded data for maize production in the year 2018 for Hawassa district was averagely 7.5 tons 

per hectare. After varying the model parameters, the closest simulated production was 7.496 tons per hectare.  

3.5. Model Validation  

Once model calibration was complete, the model was then validated to determine its potential to simulate maize yields. 

Accordingly historically recorded maize yields for the area from 2012-2017 were used to compare with those 

simulated by AquaCrop to determine its potential to simulate future maize yields at two RCPS and two-time periods. 

Table 7 presents observed versus estimated maize yield production with their respective statistical indicators used for 

the validation of the AquaCrop model. The minimum and maximum prediction error (Pe) for maize yields for six 

growing seasons (2012-2017) range from 0.07 to 2.5% whereas RMSE and MAE are 0.11 and 0.12 respectively. The 

three statistical parameters are close to zero (Msowoya et al.,2016), which indicates the suitability of the model to 

simulate future maize yields for two time periods. Estimated values of Nash and Sutcliffe (Ns) and coefficient of 

determination (R2) of 0.906 and 0.908 respectively are both close to 1, which further increases confidence in the 
model’s potential to simulate future maize yields. The validation results indicate that the model can be used to simulate 

future maize yields within acceptable deviations from the true values 

Table 7: AquaCrop validation statistical analysis results for maize yields. 

Year Yields(ton/ha) Pe(±%) Ns R2 RMSE MAE(ton/ha) 

observed simulated 

2012 6.5 6.39 1.69  

 

0.906 

 

 

0.908 

 

 

0.11 

 

 

0.12 
2013 6.4 6.56 2.5 

2014 6.7 6.746 0.69 

2015 6.8 6.852 0.76 

2016 7.25 7.245 0.07 

2017 7.2 7.06 1.67 
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3.6. Simulating Future Maize Yields with Climate Change  

This study only considers daily precipitation and temperature change for two-time horizons (2040 and 2060) under 

two representative concentration pathways (RCPs). Climate data (rainfall, minimum and maximum temperature, 

sunshine hours, relative humidity) for the 30 years baseline period (1980-2010) were broken down into monthly 

averages in each of the 12 months. By keeping all parameters the same including the impact of enhanced CO2 and 

changing only climate parameters (daily rainfall, maximum and minimum temperature) used during model calibration 

and validation the results from the model run indicated an average baseline period maize production of 7.2 ton/ha. 

This value is considered maize production without climate change. Accordingly, the average values of future potential 

maize yields at two-time horizons under two RCPs were calculated similarly. Table 8 summarizes the simulated maize 

yields as a percentage, relative to the baseline period both RCPs and two-time periods.  

Table 8: Estimated Maize yield production (tons/hectare) at under two RCPs and two future periods. 

Period Production Change (%) Range (%) 

RCP4.5 RCP8.5 

2031-2050 (2040) 7 4.13 4.13 to 7 

2051-2070(2060) 9.32 6.36 6.36 to 9.32 

 

In general, the results suggest an increase in maize yields for both RCPs scenarios and future two time periods. 

Accordingly, the expected percentage changes in maize yields for 2031-2050(2040), and 2051-2070(2060) are 4.13% 

to 7% and 6.36% to 9.32% respectively. This result indicates that in the future two time periods maize production is 

estimated to increase with climate change, whereby all crop parameters, soil fertility, and field management were kept 

the same or improved relative to the baseline of (1980-2010). The study result is somehow consistent with Abera et 

al., (2018) that suggest maize yields would increase by 51% with climate change in Hawassa area. B.T. Kassie et 

al.,(2014) study revealed that there is scope for significantly increasing maize yield in the central rift valley and other, 

similar agro-ecological zones in Africa under future climate change. A. Y. Kassaye et al., (2021) study also exhibited 

maize yield will be expected to increase by 17.9% at the end of the twenty-first century with increasing temperature 

and rainfall decline.  

Ironically Study results in Mount Makulu of Zambia (Chisanga et al .,2020) showed that biomass and grain yield of 

maize is expected to decline by (2040-2069) relative to baseline under both RCP4.5 and RCP8.5 scenarios with 

temperature rise and rainfall decrease in the study area. Moreover, the research in Malawi’s Lilongwe on Climate 

Change Impacts on Rainfed Corn Production suggests that maize yield can decrease up to 14% in mid-century whereby 

precipitation decrease and temperature increase by 26% and 2.20 0C respectively (Msowoya et al.,2014).  Furthermore, 

Chen et al.,(2018) researched the impact of climate change and climate extremes on major crops (wheat, rice, and 

maize) growth and yield during 2106- 2115 relative to 2006–2015 in china under global warming of 1.5 0C and 2.0 

0C. The research finding showed that climate change would have major negative impacts on crop production, 



 

 

particularly for wheat in north China, rice in south China, and maize across the major cultivation areas, due to a 

decrease in crop growth duration and an increase in extreme events. Moreover, Ahmadi M.et al., (2021) study on the 

effects of climate change on maize water footprint under RCPs scenarios in Qazvin plain, Iran suggests that maize 

yield decreased in future periods. In contrast to these studies research in Ethiopia indicates that maize yield responds 

positively to change in climate variables (precipitation and temperature). However, the planting date schedule should 

be taken to account because there is a seasonal precipitation shift in the study area.  As it could be observed from the 

predicted result the autumn season precipitation is increasing, therefore it is recommended to shift the planting month 

from April which is common in Ethiopia to May.  

4. Conclusions   

Climate change is the headline of the global agenda that attracts scientific communities to deal with. It has a direct 

and indirect impact on the agricultural sector in general, particularly on crop yield. Therefore this study presents the 

effect of future climate variable changes on rainfed maize production in the southern part of Ethiopia. The study result 

shows that maize yield production responds positively to climate variables (precipitation, max. temp, and min. temp) 

change under both RCPs and two future time horizons.  Nevertheless, since there is seasonal precipitation variation 

for both RCPs and time horizons planting dates should be considered under the future climate change scenario. 

Accordingly, maize yield is predicted to increase from 4.13% to 7% and 6.36% to 9.32% for 2040 and 2060 

respectively, provided that all other parameters (crop, management, and soil properties) kept the same.  
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