Eczema
|
Brauer et al (2007)
|
Netherlands
|
Cohort
|
2571/—
|
4
|
questionnaire
|
monitoring campaign
|
long-term
|
PM2.5:16.9ug/m3
NO2:25.2ug/m3
|
PM2.5:1.00 (0.83,1.21)
NO2:1.00 (0.85,1.17)
|
|
Krämer et al (2009)
|
Germany
|
Cohort
|
2753/1741
|
0-6
|
questionnaire
|
monitoring stations
|
long-term
|
NO2:23.7ug/m3
|
NO2:1.55 (0.95,2.52)
|
|
Gehring et al. (2010)
|
Netherlands
|
Cohort
|
3184/—
|
8
|
questionnaire
|
land-use regression model
|
long-term
|
PM2.5: 16.9(µg/m3)
|
PM2.5: 1.11(0.91–1.35)
|
|
Aguilera et al (2013)
|
Spanish
|
Cohort
|
2199/460
|
1-1.5
|
questionnaire
|
Monitoring stations
|
long-term
|
—
|
NO2:1.02 (0.92, 1.12)
|
|
Schnass et.al. (2018)
|
Germany
|
Cohort
|
760/60
|
73.5
|
questionnaire
|
monitoring campaign
|
long-term
|
PM2.5,32.11ug/m3;
PM10,48.37ug/m3; NO2:37.36ug/m3;
|
PM2.5:1.45(1.06,1.98)
PM10:1.36(1.00,1.83)
NO2:1.49(1.04,2.15)
|
|
Lopez et.al
(2021)
|
Australian
|
Cohort
|
3152/115
|
53
|
questionnaire
|
monitoring sites
|
long-term
|
PM2.5:6.4ug/m3; NO2:2.72ppb
|
PM2.5:0.97(0.84,1.13)
NO2:1.01(0.88,1.15)
|
|
Anderson et al. (2010)
|
Internationa-l
|
Cross-sectional
|
—/3086 /per center
|
13-14
|
questionnaire
|
monitoring stations
|
short-term
|
PM10:34ug/m3
|
PM10:0.93(0.87,1.01)
|
Disease
|
First author/ publication year
|
Region
|
Study design
|
Sample size/Cases
|
Age (years)
|
ICD
|
Data sources of pollutants
|
Duration
|
Mean
Concentration
|
Effect size
95%CI(RR/HR/OR)
|
|
Liu et al.
(2016)
|
China
|
Cross- sectional
|
3358/—
|
4-6
|
questionnaire
|
Shanghai Environmental Monitoring Center
|
long-term
|
PM10:79.4ug/m3;
NO2:53.6ug/m3;SO2:43.2ug/m3
|
PM10: 1.64(1.33,2.04)
NO2:1.63(1.33,2.00)
SO2:1.16(0.96,1.40)
|
|
Kathuria et al. (2016)
|
U. S
|
Cross- sectional
|
91642/11895
|
0-17
|
questionnaire
|
Environ mental Protection Agency
|
short-term
|
PM2.5:6.187ug/m3; PM10:24.996ug/m3;
NO2,12.851ppm; SO2:2.953ppm; CO:1.161ppm; O3:29.457ppb
|
PM2.5:0.993(0.989,0.998)
PM10:0.847(0.739,0.971)
NO2:1.003(1.001,1.004)
SO2:1.009 (1.003,1.015)
CO: 0.992 (0.949,1.038)
O3: 0.727 (0.396,1.334)
|
|
Deng et al.
(2019)
|
China
|
Cross- sectional
|
3167/848
|
3-6
|
questionnaire
|
monitoring stations
|
short-term
|
PM2.5:72.11ug/m3; PM10:115.58ug/m3.NO2:38.39ug/m3;
|
PM2.5:1.273(0.989,1.640)
PM10:1.305(1.019,1.673)
NO2:1.371(1.086,1.729)
|
|
Min et al. (2020)
|
Korea
|
Cross- sectional
|
14614/2323
|
1-12
|
questionnaire
|
monitoring station
|
short-term
|
PM2.5:25.13µg/m3;
PM10:49.36µg/m3
NO2:35.6µg/m3
|
PM2.5:1.01(0.96,1.07)
PM10:1.06(1.01,1.12)
NO2:1.07(1.02,1.13)
|
|
Li et al.
(2016)
|
China
|
Time-series
|
—/510158
(outpatient visits)
|
—
|
ICD-10: L30.9
|
monitoring station
|
short-term
|
PM10:83µg/m3;
NO2:60µg/m3; SO2:42µg/m3
|
PM10:1.0081(1.0039,1.0122)
NO2:1.0231(1.0117,1.0345)
SO2:1.0222 (1.0127 ,1.0316)
|
Disease
|
First author/ publication year
|
Region
|
Study design
|
Sample size/Cases
|
Age (years)
|
ICD
|
Data sources of pollutants
|
Duration
|
Mean
Concentration
|
Effect size and 95%CI(RR/HR/OR)
|
|
Li et al.
(2018)
|
China
|
Time-series
|
—/2305
(outpatient visits)
|
—
|
ICD-10: L30.9
|
monitoring station
|
short-term
|
PM10,119.6µg/m3;
NO2:55.2µg/m3; SO2:25.57µg/m3;
|
PM10:1.0041(1.0004,1.0078)
NO2: 1.0344(1.0012,1.0686)
SO2: 1.0530(1.0617,1.1530)
|
|
Wang et al.
(2019)
|
China
|
Time-series
|
—/2585
(outpatient visits)
|
≥18
|
ICD-10: L30.9
|
monitoring station
|
short-term
|
PM2.5:101.2µg/m3
|
PM2.5:1.003(1.0028,1.0033)
|
|
Guo et.al
(2019)
|
China
|
Time-series
|
—/157595 (outpatient visits)
|
—
|
ICD-10: L20-L30
|
Beijing Municipal Environmental Monitoring Center
|
short-term
|
PM2.5:87.4ug/m3;
PM10:116.6ug/m3;
NO2:53.1ug/m3;
SO2:27.1ug/m3
|
PM2.5:1.0381(1.0292,1.047)
PM10:1.0318(1.0239,1.0397)
NO2:1.0543(1.0443,1.0643)
SO2:1.0557 (1.0455,1.0658)
|
|
Karagün et al. (2021)
|
Turkish
|
Time-series
|
—/27549 (outpatient visits)
|
—
|
ICD-10:L-20,
L-25, and L-30
|
monitoring station
|
short-term
|
PM10:82.8µg/m3;
SO2,7.6µg/m3
|
PM10:1.0087(1.0059,1.0115)
SO2:1.0765(1.0483,1.1054)
|
|
Zhang et al.
(2021)
|
China
|
Time-series
|
—/293340 (outpatie-nt visits)
|
—
|
ICD-10: L30.902
|
monitoring station
|
short-term
|
—
|
NO2:1.0410 (1.0380,1.0440)
|
Disease
|
First author/ publication year
|
Region
|
Study design
|
Sample size/Cases
|
Age (years)
|
ICD
|
Data sources of pollutants
|
Duration
|
Mean
Concentration
|
Effect size and 95%CI(RR/HR/OR)
|
AD
|
Wang et al. (2015)
|
Taipei
|
Cohort
|
2661/383
|
5.5
|
questionnaire
|
monitoring station
|
long-term
|
PM2.5,29.07ug/m3;
PM10:48.32ug/m3; NO2:23.03 ppb; SO2:6.46 ppb;
CO:0.63ppm
O3:27.62ppb;
|
PM2.5:1.25(0.85,1.82)
PM10:1.00(0.70,1.44)
NO2:1.33 (0.98,1.79)
SO2:1.24 (0.90,1.70)
CO:1.33 (0.98,1.80)
O3:1.03 (0.77,1.38)
|
|
Hüls et al. (2018)
|
Canada
|
Cohort
|
5132/440
|
7-8
|
questionnaire
|
land-use regression models
|
long-term
|
NO2
|
NO2:0.95(0.82,1.11)
|
|
Belugina et al (2018)
|
Minsk
|
Cohort
|
—/12-335 cases per 100,000 person-year
|
0-2
|
ICD-10:L20.80
|
National Academy of Science of Belarus
|
long-term
|
PM10:27.94%; NO2:36.17ug/m3; CO:584.4ug/m3;
O3:31.19ppb.
|
Boy:PM10:1.081(1.057,1.107)
NO2: 1.091(1.039,1.146)
CO: 1.009(1.007,1.011)
O3: 1.266(1.191,1.345)
Girl:PM10:1.070(1.039,1.101)
NO2:1.121(1.056,1.192);
CO: 1.007(1.007,1.011);
O3: 1.319(1.224,1.422)
|
|
To et.al
(2020)
|
Canada
|
Cohort
|
1286/958
|
3
|
ICD-9: 691.8 ICD-10: L20
|
monitors
|
long-term
|
PM2.5:10.88ug/m3;
NO2:26.14ug/m3; O3,:43.72ug/m3
|
PM2.5:1.01(0.93,1.09)
NO2:1.05(0.99,1.11)
O3:0.99(0.92,1.06)
|
Disease
|
First author/ publication year
|
Region
|
Study design
|
Sample size/Cases
|
Age (years)
|
ICD
|
Data sources of pollutants
|
Duration
|
Mean
Concentration
|
Effect size and 95%CI(RR/HR/OR)
|
|
Park et al. (2021)
|
Korea
|
Cohort
|
209168/3203
|
—
|
ICD-10:L20
|
Korean Department of Environmental Protection
|
long-term
|
—
|
PM2.5:1.420(1.392,1.448),
PM10:1.333(1.325,1.341)
SO2:1.200(1.187,1.212)
NO2:1.626(1.559,1.695)
CO:1.005(1.004,1.005)
|
|
Kim et al.
(2016)
|
Korea
|
Cross-sectional
|
1828/669
|
6-7
|
questionnaire
|
monitoring sites
|
long-term
|
PM10:58.8µg/m3;
NO2:29.7ppb;
SO2:5.2ppb; CO:6.5(100ppb);
O3:30.7ppb.
|
PM10:1.06(0.96,1.18)
NO2:1.00(0.99,1.01)
SO2:1.01(0.93,1.09)
CO:1.02(0.95,1.10)
O3:1.00(0.98,1.02)
|
|
Tang et al.
(2017)
|
China
|
Cross-sectional
|
6115/1023
|
≥20
|
ICD-9: 691
|
Environmental
Protection Agency monitoring stations
|
long-term
|
PM2.5:33.6µg/m3;
PM10:56.3µg/m3;
NO2:18.6ppb;
SO2:4ppb;
CO:0.5ppb;
O3:27.9ppb
|
PM2.5:1.05(1.02,1.08)
PM10:0.98(0.97,1.00)
NO2:0.98(0.93,1.02)
SO2:1.07(1.00,1.16)
CO:0.78(0.22,2.73)
O3: 1.01 (0.97,1.05)
|
|
Lee et al.
(2010)
|
Korea
|
Time-series
|
—/183+29
(daily hospitaladmission)
|
<15
|
ICD-10:L20
|
monitoring station
|
short-term
|
seoul :O3,26.09ppb
ulsan:O3,32.05ppb
|
seoul
O3:1.28(1.04,1.58)
ulsan:
O3:1.38(0.80,2.36)
|
Disease
|
First author/ publication year
|
Region
|
Study design
|
Sample size/Cases
|
Age (years)
|
ICD
|
Data sources of pollutants
|
Duration
|
Mean
Concentration
|
Effect size and 95%CI(RR/HR/OR)
|
|
Kim et al. (2017)
|
Korea
|
Time-series
|
—/117
|
2.0 ± 1.6
|
questionnaire
|
National Institute of Environmental Research
|
short-term
|
PM10:45.2ug/m3
NO2:32.4ppb;
O3:38.1ppb
|
PM10:1.032(1.015,1.049)
NO2:1.005(1.014,1.088)
O3:1.061(1.032,1.090)
|
|
Guo et al.
(2019)
|
China
|
Time-series
|
64987
(outpatie-nt visits)
|
—
|
ICD-10: L20.
|
Monitoring
stations
|
short-term
|
PM10:110.5ug/m3;
PM2.5:79.7ug/m3; NO2:50.8ug/m3;
SO2:16.9ug/m3
|
PM2.5:1.0042(1.0016,1.0067)
PM10:1.0034(1.0015,1.0054)
NO2:1.0111(1.0038,1.0184) SO2:1.0106(1.0021,1.0193)
|
|
Baek et al.
(2021)
|
Korea
|
Time-series
|
—/513870(medical care visits)
|
—
|
ICD-10:L20.8, L20.9
|
monitoring station
|
short-term
|
—
|
PM10:1.009(1.007,1.012)
NO2:0.996(0.992,1.000) SO2:1.033(1.030,1.037)
CO:1.000(0.997,1.004)
O3:1.028(1.023,1.033)
|
AR
|
Kim et al. (2011)
|
Korea
|
Cohort
|
1340/—
|
6.84
|
questionnaire
|
monitoring station
|
long-term
|
O3:37.93µg/m3
|
O3:1.042(0.792,1.372)
|
Disease
|
First author/ publication year
|
Region
|
Study design
|
Sample size/Cases
|
Age (years)
|
ICD
|
Data sources of pollutants
|
Duration
|
Mean
Concentration
|
Effect size and 95%CI(RR/HR/OR)
|
|
Fuertes et al. (2013)
|
Canada
|
Cohort
|
10027/4736
|
7 or 8
|
questionnaire
|
land-use regres sion modeling
|
long-term
|
PM2.5,NO2,O3
|
PM2.5:1.16(0.96,1.41)
NO2:1.10(0.95,1.26)
O3:0.91(0.77,1.08)
|
|
Fuertes et al. (2013)
|
Germany
|
Cohort
|
4623/460
|
10
|
questionnaire
|
land-use regression models
|
long-term
|
PM2.5:15.3µg/m3;
NO2:22.4µg/m3;
O3:42.5µg/m3
|
PM2.5:0.87(0.60,1.26)
NO2:0.96(0.85,1.09)
O3:1.02(0.90,1.16)
|
|
Wang et al. (2015)
|
Taipei
|
Cohort
|
2661/798
|
5.5
|
questionnaire
|
monitoring station
|
long-term
|
PM2.5,29.07ug/m3;
PM10:48.32ug/m3; NO2:23.03 ppb; SO2:6.46 ppb;
CO:0.63ppm
O3:27.62ppb;
|
PM2.5:1.54(1.03,2.32)
PM10:1.15(0.79,1.66)
NO2:0.95(0.74,1.20)
SO2:1.00(0.78,1.29)
CO:1.02 (0.80,1.29)
O3:1.01(0.76,1.34)
|
|
Chung et al.
(2016)
|
China
|
Cohort
|
9960/1088
|
0-6
|
ICD-9-CM:477.0, 477.1, 477.2, 477.8, 477.9
|
Environmental monitoring sites
|
long-term
|
PM10,56.8µg/m3;
SO2,4.81ppb;
CO,561ppb;
O3,27.9ppb
|
PM10:1.12(0.79,1.45)
SO2:1.05(0.67,1.33)
CO:1.14(1.02,1.86)
O3:1.27(0.76,1.70)
|
|
Burte et al.
(2018)
|
Europe
|
Cohort
|
1533/394
|
42.7
|
questionnaire
|
monitoring station
|
long-term
|
—
|
PM2.5:0.88(0.73,1.04)
PM10:0.88(0.72,1.08)
NO2:1.00(0.91,1.09)
|
|
To et al.
(2020)
|
Canada
|
Cohort
|
1286/511
|
3
|
ICD-9: 477;ICD-10: J301-J304
|
monitors
|
long-term
|
PM2.5:10.88mg/m3
NO2:26.14ppb;
O3:43.72ppb
|
PM2.5:0.94(0.85,1.04)
NO2:0.94(0.87,1.02)
O3: 1.08(0.99,1.19)
|
Disease
|
First author/ publication year
|
Region
|
Study design
|
Sample size/Cases
|
Age (years)
|
ICD
|
Data sources of pollutants
|
Duration
|
Mean
Concentration
|
Effect size and 95%CI(RR/HR/OR)
|
|
Lin et al.
(2021)
|
China
|
Cohort
|
140911/47276
|
1
|
ICD-9: 477.0,477.1, 477.2, 477.8, 477.9
|
novel satellite-based hybrid model
|
long-term
|
PM2.5:33.84µg/m3
|
PM2.5:1.30(1.23,1.36)
|
|
Kim et al.
(2021)
|
Korea
|
Cohort
|
3592/995
|
9.08
|
questionnaire
|
national monitoring sites
|
long-term
|
PM10:40.3ug/m3; NO2:22.9ppb;
SO2:5.4ppb; CO:533.1ppb;
O3:42.5ppb
|
PM10:0.979(0.962,0.997)
NO2:1.002(0.987,1.017)
SO2:1.056(1.006,1.109)
CO:1.000(0.999,1.001)
O3:1.006(0.990,1.023)
|
|
de Marco et al. (2002)
|
Italy
|
Cross-sectional
|
18873/3529
|
33.1
|
questionnaire
|
monitoring sites
|
long-term
|
NO2:31.46µg/m3
|
NO2:1.38(1.12,1.69)
|
|
Hwang et al. (2006)
|
China
|
Cross-sectional
|
32143/8202
|
6-15
|
questionnaire
|
Environmental Protection Agency air-monitoring station.
|
long-term
|
PM10:55.58ug/m3;
SO2:3.53ppb;
CO:664ppb;
O3:23.14ppb
|
PM10:1.00(0.99,1.02)
SO2:1.43(1.25,1.64)
CO:1.05(1.04,1.07)
O3:1.05(0.98,1.12)
|
|
Arnedo-Pena et al. (2009)
|
Spain
|
Cross- sectional
|
20455/—
|
6-7
|
questionnaire
|
Pollutant
detection systems of centers
|
long-term
|
NO2:40.4ug/m3; SO2:12.4ug/m3;
CO:0.8ug/m3;
|
NO2:1.84 (1.15,2.96)
SO2: 1.5 6(1.39,1.75);
CO: 1.65 (1.34,2.04)
|
Disease
|
First author/ publication year
|
Region
|
Study design
|
Sample size/Cases
|
Age (years)
|
ICD
|
Data sources of pollutants
|
Duration
|
Mean
Concentration
|
Effect size and 95%CI(RR/HR/OR)
|
|
Lu et al.
(2013)
|
China
|
Cross-sectional
|
2159/182
|
3-6
|
questionnaire
|
Environmental Protection Agency
|
long-term
|
PM10;SO2;NO2
|
PM10:1.021(1.003,1.039)
NO2:1.037(1.006,1.069)
SO2:1.026(1.005,1.048)
|
|
Wood et al. (2015)
|
London
|
Cross- sectional
|
1808/242
|
8-9
|
questionnaire
|
dispersion models
|
short-term
|
PM2.5:13.7µg/m3;
PM10:23.4µg/m3;
NO2:43.5µg/m3;
|
PM2.5:1.38(1.08,1.78)
PM10:1.16(1.04,1.28)
NO2:1.03(1.00,1.06)
|
|
Kim et al.
(2016)
|
Korea
|
Cross-sectional
|
1828/673
|
6-7
|
questionnaire
|
monitoring sites
|
long-term
|
PM10:58.8µg/m3; NO2:29.7ppb;
SO2:5.2ppb;
CO:6.5(100ppb);
O3:30.7ppb.
|
PM10:0.99 (0.89,1.10)
NO2:1.00 (0.99,1.01)
SO2:1.05 (0.97,1.14)
CO:1.10 (1.03,1.19)
O3: 0.99 (0.97,1.01)
|
|
Chen et al.
(2016)
|
China
|
Time-series
|
—/19370
|
2-15
|
experienced
physicians diagnosed
|
Shanghai
Environmental Bureau
|
short-term
|
SO2:39.63µg/m3 ;
O3:43.22µg/m3;
|
SO2:1.012(1.007,1.017)
O3:1.02(1.015-1.025)
|
|
Jo et al. (2017)
|
Korea
|
Cross-sectional
|
—/4.4(daily admission)
|
—
|
ICD-10: J30
|
monitoring stations
|
short-term
|
PM2.5:24.2µg/m3
|
PM2.5:0.969 (0.914,1.051) (child)
PM2.5:1.253 (1.153,1.362) (elderly)
|
Disease
|
First author/ publication year
|
Region
|
Study design
|
Sample size/Cases
|
Age (years)
|
ICD
|
Data sources of pollutants
|
Duration
|
Mean
Concentration
|
Effect size and 95%CI(RR/HR/OR)
|
|
Chen et al.
(2018)
|
China
|
Cross-sectional
|
30756/204
|
4.6
|
questionnaire
|
Global Burden of Disease
|
long-term
|
PM2.5:64µg/m3
|
PM2.5:1.15(1.06,1.23)
|
|
Liu et al. (2019)
|
China
|
Cross-sectional
|
56137/5395
|
10
|
questionnaire
|
monitoring stations
|
short-term
|
PM2.5:55.08µg/m3;
PM10:98.75µg/m3;
NO2:35.43µg/m3
|
PM2.5:1.28(1.09,1.51)
PM10:1.23(1.06,1.43)
NO2:1.22(1.05,1.42)
|
|
Min et al. (2020)
|
Korea
|
Cross- sectional
|
14614/5286
|
1-12
|
questionnaire
|
monitoring station
|
dispersion models
|
PM2.5:25.13µg/m3;
PM10:49.36µg/m3
NO2:35.6µg/m3
|
PM2.5:1.03 (0.94,1.01)
PM10:1.00(0.95,1.04)
NO2:0.97 (0.94,1.01)
|
|
Wang et al. (2020)
|
China
|
Cross-sectional
|
40279/2658
|
—
|
questionnaire
|
National Bureau of Statistics
|
short-term
|
PM10, NO2
|
PM10:1.06(0.96,1.17)
NO2:1.17(1.06,1.31)
|
|
Hao et al.
(2021)
|
China
|
Case-Control
|
3047/194
|
2-4
|
questionnaire
|
monitoring statio
|
long-term
|
PM10:88ug/m3; NO2:31ug/m3;
SO2: 26ug/m3; CO:970ug/m3;
O3:92ug/m3
|
PM10:1.31(1.08,1.90)
NO2:1.15(1.02,2.23)
SO2: 1.26(0.73,1.97)
CO: 1.13(0.77,2.02)
O3:0.52(0.23,1.02)
|
|
Zhou et al. (2021)
|
China
|
Cross- sectional
|
59754/3186
|
10
|
questionnaire
|
satellite-based random forest approach
|
long-term
|
O3: 89.39µg/m3
|
O3: 1.13(1.07,1.18)
|
Disease
|
First author/ publication year
|
Region
|
Study design
|
Sample size/Cases
|
Age (years)
|
ICD
|
Data sources of pollutants
|
Duration
|
Mean
Concentration
|
Effect size and 95%CI(RR/HR/OR)
|
|
Tecer et al. (2008)
|
Zonguldak
|
Time-series
|
—/424 admissions
|
0-14
|
ICD-9: 470–478
|
Anderson automatic dichotomous sampler
|
short-term
|
PM2.5:29.1µg/m3; PM10: 53.3µg/m3
|
PM2.5:1.18(1.00,1.24)
PM10: 1.09(1.03,1.16)
|
|
Zhang et al.
(2011)
|
China
|
Time-series
|
—/1506(outpatien)
|
≥20
|
questionnaire
|
Beijing Municipal Environmental Protection Monitoring Center
|
short-term
|
PM10:116.092µg/m3;NO2:52.742µg/m3
SO2:44.052µg/m3;
|
PM10:1.0073(1.0066,1.0080)
NO2:1.0512(1.0483,1.0542)
SO2:1.0010(1.0005,1.0014)
|
|
Chen et al.
(2016)
|
China
|
Time-series
|
—/124773(clinicvisits)
|
—
|
ICD-9:477
|
monitoring stations
|
short-term
|
PM10:45.79µg/m3; NO2:23.65ppb;
SO2:3.51ppb;
CO:0.62ppm;
O3:23.77ppb
|
PM10: 1.09(1.07,1.10)
NO2: 1.16(1.14,1.17)
SO2:1.05(1.04,1.07)
CO: 1.20(1.18,1.22)
O3:1.06(1.05,1.08)
|
|
Teng et al.
(2017)
|
China
|
Time-series
|
—/23344(outpatien)
|
—
|
ICD-9:477
|
Changchun Municipal Environmental Protection Monitoring Center.
|
short-term
|
PM2.5:66.5µg/m3; PM10:114.4µg/m3; NO2:43.6µg/m3; SO2:37µg/m3;
CO: 0.93µg/m3;
O3: 71.1µg/m3
|
PM2.5:1.102(1.055,1.151)
PM10:1.049(1.008,1.092)
NO2:1.111 (1.058,1.165)
SO2:1.085(0.982,1.198)
CO: 0.977(0.907,1.053)
O3: 0.993(0.941,1.048)
|
Disease
|
First author/ publication year
|
Region
|
Study design
|
Sample size/Cases
|
Age (years)
|
ICD
|
Data sources of pollutants
|
Duration
|
Mean
Concentration
|
Effect size and 95%CI(RR/HR/OR)
|
|
Hu et al. (2019)
|
China
|
Time-series
|
2410392/646975
|
<18
|
ICD-10:J30
|
Shanghai Environmental Protection Agency
|
short-term
|
NO2:49.1µg/m3;
O3:68.5 µg/m3
|
NO2:1.0243(1.0202,1.0284)
O3:1.0325(1.0284,1.0367)
|
|
Chu et al.
(2019)
|
China
|
Time-series
|
—/33063
|
—
|
medical history, clinical symptoms, and the relevant test
|
Environmental Monitoring Centre
|
short-term
|
PM2.5:57.3µg/m3;
PM10:98.9µg/m3;
|
PM2.5:1.0539(1.0273,1.0812)
PM10:1.0586(1.0300,1.0881)
|
|
Wang et al.
(2020)
|
China
|
Time-series
|
—/14965(outpatient)
|
—
|
ICD10:J30
|
China’s National Urban Air Quality Real-time Publishing Platform
|
short-term
|
PM2.5:75.7µg/m3;
PM10:132.1µg/m3;
SO2:33.2µg/m3;
NO2:48.4µg/m3;
O3:59.4µg/m3;
CO:1377µg/m3.
|
PM2.5:1.0070(1.0000,1.0141)
PM10:1.0079(1.0035,1.0123)
NO2:1.0445(1.0301,1.0608)
SO2:1.0343(1.0147,1.0539)
CO:1.0007(1.0002,1.0012)
O3:1.0097(0.9989,1.0205)
|
|
Wang et al.
(2020)
|
China
|
Time-series
|
—/229685(outpatient visits)
|
—
|
ICD-10:J30.4 01
|
monitoring station
|
short-term
|
PM2.5:99.5µg/m3
|
PM2.5:1.0047(1.0039,1.0055)
|