Atanasova L, Jaklitsch WM, Komoń-Zelazowska M, et al (2010) Clonal Species Trichoderma parareesei sp. nov. Likely Resembles the Ancestor of the Cellulase Producer Hypocrea jecorina / T. reesei. Appl Environ Microbiol 76:7259–7267. https://doi.org/10.1128/AEM.01184-10
Bissett J (1984) A revision of the genus Trichoderma . I. Section Longibrachiatum sect. nov. Can J Bot 62:924–931. https://doi.org/10.1139/b84-131
Bissett J (1991a) A revision of the genus Trichoderma . II. Infrageneric classification. Can J Bot 69:2357–2372. https://doi.org/10.1139/b91-297
Bissett J (1991b) A revision of the genus Trichoderma . III. Section Pachybasium. Can J Bot 69:2373–2417. https://doi.org/10.1139/b91-298
Bissett J (1991c) A revision of the genus Trichoderma . IV. Additional notes on section Longibrachiatum. Can J Bot 69:2418–2420. https://doi.org/10.1139/b91-299
Bissett J, Gams W, Jaklitsch W, Samuels GJ (2015) Accepted Trichoderma names in the year 2015. IMA Fungus 6:263–295. https://doi.org/10.5598/imafungus.2015.06.02.02
Bustamante DE, Calderon MS, Leiva S, et al (2021) Three new species of Trichoderma in the Harzianum and Longibrachiatum lineages from Peruvian cacao crop soils based on an integrative approach. Mycologia 113:1–17. https://doi.org/10.1080/00275514.2021.1917243
Cai F, Druzhinina IS (2021) In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Divers 107:1–69. https://doi.org/10.1007/s13225-020-00464-4
Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556. https://doi.org/10.1080/00275514.1999.12061051
Chaverri P, Branco-Rocha F, Jaklitsch W, et al (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107:558–590. https://doi.org/10.3852/14-147
Chaverri P, Castlebury LA, Overton BE, Samuels GJ (2003) Hypocrea / Trichoderma : species with conidiophore elongations and green conidia. Mycologia 95:1100–1140. https://doi.org/10.1080/15572536.2004.11833023
Chaverri P, Gazis RO, Samuels GJ (2011) Trichoderma amazonicum , a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103:139–151. https://doi.org/10.3852/10-078
Chaverri P, Samuels GJ (2013) Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution (N Y) 67:2823–2837. https://doi.org/10.1111/evo.12169
Chaverri P, Samuels GJ (2003) Hypocrea/Trichoderma (ascomycota, hypocreales, hypocreaceae): species with green ascospores
Chen K, Zhuang W-Y (2016) Trichoderma shennongjianum and Trichoderma tibetense, two new soil-inhabiting species in the Strictipile clade. Mycoscience 57:311–319. https://doi.org/10.1016/j.myc.2016.04.005
Chen K, Zhuang W-Y (2017a) Discovery from a large-scaled survey of Trichoderma in soil of China. Sci Rep 7:9090. https://doi.org/10.1038/s41598-017-07807-3
Chen K, Zhuang W-Y (2017b) Three New Soil-inhabiting Species of Trichoderma in the Stromaticum Clade with Test of Their Antagonism to Pathogens. Curr Microbiol 74:1049–1060. https://doi.org/10.1007/s00284-017-1282-2
Chernomor O, von Haeseler A, Minh BQ (2016) Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices. Syst Biol 65:997–1008. https://doi.org/10.1093/sysbio/syw037
Colwell RK (2000) A barrier runs through it ... or maybe just a river. Proc Natl Acad Sci 97:13470–13472. https://doi.org/10.1073/pnas.250497697
da Silva Abel EL, Delgado RC, Vilanova RS, et al (2021) Environmental dynamics of the Juruá watershed in the Amazon. Environ Dev Sustain 23:6769–6785. https://doi.org/10.1007/s10668-020-00890-z
Daccò C, Nicola L, Temporiti MEE, et al (2020) Trichoderma: Evaluation of Its Degrading Abilities for the Bioremediation of Hydrocarbon Complex Mixtures. Appl Sci 10:3152. https://doi.org/10.3390/app10093152
Degenkolb T, Dieckmann R, Nielsen KF, et al (2008) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 7:177–219. https://doi.org/10.1007/s11557-008-0563-3
Del-Rio G, Mutchler MJ, Costa B, et al (2021) Birds of the Juruá River: extensive várzea forest as a barrier to terra firme birds. J Ornithol 162:565–577. https://doi.org/10.1007/s10336-020-01850-0
Díaz-Gutiérrez C, Arroyave C, Llugany M, et al (2021) Trichoderma asperellum as a preventive and curative agent to control Fusarium wilt in Stevia rebaudiana. Biol Control 155:104537. https://doi.org/10.1016/j.biocontrol.2021.104537
Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue
Druzhinina I, Kubicek CP (2005) Species concepts and biodiversity in Trichoderma and Hypocrea : from aggregate species to species clusters? J Zhejiang Univ Sci 6B:100–112. https://doi.org/10.1631/jzus.2005.B0100
Druzhinina IS, Komoń-Zelazowska M, Ismaiel A, et al (2012) Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genet Biol 49:358–368. https://doi.org/10.1016/j.fgb.2012.02.004
Druzhinina IS, Kopchinskiy AG, Komoń M, et al (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828. https://doi.org/10.1016/j.fgb.2005.06.007
Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47:55–64. https://doi.org/10.1007/S10267-006-0279-7
Erazo JG, Palacios SA, Pastor N, et al (2021) Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386. Biol Control 164:104774. https://doi.org/10.1016/j.biocontrol.2021.104774
Ghazanfar M, Raza M, Raza W, et al (2018) Trichoderma as potential biocontrol agent, its exploitation in agriculture: a review. esciencepress.net 109
Ghosh SK, Bera T, Chakrabarty AM (2020) Microbial siderophore – A boon to agricultural sciences. Biol Control 144:104214. https://doi.org/10.1016/j.biocontrol.2020.104214
Hanada RE, de Jorge Souza T, Pomella AWV, et al (2008) Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 112:1335–1343. https://doi.org/10.1016/j.mycres.2008.06.022
Hanada RE, Pomella AWV, Soberanis W, et al (2009) Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biol Control 50:143–149. https://doi.org/10.1016/j.biocontrol.2009.04.005
Holmes KA, Schroers H-J, Thomas SE, et al (2004) Taxonomy and biocontrol potential of a new species of Trichoderma from the Amazon basin of South America. Mycol Prog 3:199–210. https://doi.org/10.1007/s11557-006-0090-z
Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1–91. https://doi.org/10.3114/sim.2009.63.01
Jaklitsch WM (2011) European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers 48:1–250. https://doi.org/10.1007/s13225-011-0088-y
Jaklitsch WM, Gruber S, Voglmayr H (2008a) Hypocrea seppoi, a new stipitate species from Finland. Karstenia 48:1–11. https://doi.org/10.29203/ka.2008.423
Jaklitsch WM, Lechat C, Voglmayr H (2014) The rise and fall of Sarawakus (Hypocreaceae, Ascomycota). Mycologia 106:133–144. https://doi.org/10.3852/13-117
Jaklitsch WM, Põldmaa K, Samuels GJ (2008b) Reconsideration of Protocrea (Hypocreales, Hypocreaceae). Mycologia 100:962–984. https://doi.org/10.3852/08-101
Jaklitsch WM, Samuels GJ, Ismaiel A, Voglmayr H (2013) Disentangling the Trichoderma viridescens complex. Persoonia 31:112–146. https://doi.org/10.3767/003158513X672234
Jaklitsch WM, Voglmayr H (2015) Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud Mycol 80:1–87. https://doi.org/10.1016/j.simyco.2014.11.001
Jaklitsch WM, Voglmayr H (2013) New combinations in Trichoderma (<I>Hypocreaceae , Hypocreales</I>). Mycotaxon 126:143–156. https://doi.org/10.5248/126.143
Junk W, Bayley P, Of RS-C special publication, 1989 U (1989) The flood pulse concept in river-floodplain systems. cs.ru.nl 106:110–127
Junk WJ, Piedade MTF, Parolin P, et al (2010) Ecophysiology, Biodiversity and Sustainable Management of Central Amazonian Floodplain Forests: A Synthesis. In: Junk WJ, Piedade MTF, Wittmann F, et al. (eds). Springer Netherlands, Dordrecht, pp 511–540
Kalsoom R, Ahmed S, Nadeem M, et al (2019) Biosynthesis and extraction of cellulase produced by Trichoderma on agro-wastes. Int J Environ Sci Technol 16:921–928. https://doi.org/10.1007/s13762-018-1717-8
Kim CS, Shirouzu T, Nakagiri A, et al (2012) Trichoderma mienum sp. nov., isolated from mushroom farms in Japan. Antonie Van Leeuwenhoek 102:629–641. https://doi.org/10.1007/s10482-012-9758-3
Kindermann J, El-Ayouti Y, Samuels GJ, Kubicek CP (1998) Phylogeny of the GenusTrichodermaBased on Sequence Analysis of the Internal Transcribed Spacer Region 1 of the rDNA Cluster. Fungal Genet Biol 24:298–309. https://doi.org/10.1006/fgbi.1998.1049
Kopchinskiy A, Komoń M, Kubicek CP, Druzhinina IS (2005) Tricho Blast: A Multilocus Database for Trichoderma and Hypocrea Identifications. Mycol Res 109:658–660. https://doi.org/10.1017/S0953756205233397
Kredics L, Naeimi S, Hatvani L, et al (2021) ‘The Good, the Bad and the Ugly’ in the shades of green: the genus Trichoderma in the spotlight. Indian Phytopathol 74:403–411. https://doi.org/10.1007/S42360-021-00352-0
Kullnig-Gradinger CM, Szakacs G, Kubicek CP (2002) Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res 106:757–767. https://doi.org/10.1017/S0953756202006172
Kunamneni A, Plou FJ, Alcalde M, Ballesteros A (2014) Trichoderma Enzymes for Food Industries. In: Biotechnology and Biology of Trichoderma. Elsevier, pp 339–344
Li J, Wu Y, Chen K, et al (2018) Trichoderma cyanodichotomus sp. nov., a new soil-inhabiting species with a potential for biological control. Can J Microbiol 64:1020–1029. https://doi.org/10.1139/CJM-2018-0224
Li L, Zeng X, Chen J, et al (2021) Genome Sequence of the Fungus Trichoderma asperellum SM-12F1 Revealing Candidate Functions of Growth Promotion, Biocontrol, and Bioremediation. PhytoFrontiersTM 1:239–243. https://doi.org/10.1094/PHYTOFR-12-20-0052-A
Li M-F, Li G-H, Zhang K-Q (2019) Non-Volatile Metabolites from Trichoderma spp. Metabolites 9:58. https://doi.org/10.3390/metabo9030058
Liu YJ, Whelen S, Hall BD (1999) Phylogenetic Relationships Among Ascomycetes: Evidence from an RNA Polymerse II Subunit. Mol Biol Evol 16:1799–1808
López-Quintero CA, Atanasova L, Franco-Molano AE, et al (2013) DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species. Antonie Van Leeuwenhoek 104:657–674. https://doi.org/10.1007/s10482-013-9975-4
May TW, Redhead SA, Bensch K, et al (2019) Chapter F of the International Code of Nomenclature for algae, fungi, and plants as approved by the 11th International Mycological Congress, San Juan, Puerto Rico, July 2018. IMA Fungus 10:21. https://doi.org/10.1186/s43008-019-0019-1
Miller MA, Pfeiffer W, Schwartz T (2011) The CIPRES science gateway. In: Proceedings of the 2011 TeraGrid Conference on Extreme Digital Discovery. ACM Press, New York, New York, USA, p 1
Montoya QV, Meirelles LA, Chaverri P, Rodrigues A (2016) Unraveling Trichoderma species in the attine ant environment: description of three new taxa. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 109:633–651. https://doi.org/10.1007/s10482-016-0666-9
Moutassem D, Belabid L, Protection YB-J of C, 2020 undefined Efficiency of secondary metabolites produced by Trichoderma spp. in the biological control of Fusarium wilt in chickpea. jcp.modares.ac.ir 2020:217–231
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300
Nováková A, Kubátová A, Valinová Š, et al (2015) Trichoderma fassatiae, a new species from the section Pachybasium isolated from soil in the Czech Republic. czechmycology.org 67:227–231
Nuankaew K, Sotome K, Lumyong S, Boonlue S (2018) Trichoderma polyalthiae sp. nov., an endophytic fungus from Polyalthia debilis. Phytotaxa 371:273. https://doi.org/10.11646/phytotaxa.371.5.1
Nylander JAA (2004) MrModeltest v2. Progr Distrib by author
O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci 95:2044–2049. https://doi.org/10.1073/pnas.95.5.2044
Overton BE, Stewart EL, Geiser DM (2006) Taxonomy and phylogenetic relationships of nine species of Hypocrea with anamorphs assignable to Trichoderma section Hypocreanum. Stud Mycol 56:39–65. https://doi.org/10.3114/sim.2006.56.02
Paes MX, Campos-Silva JV, de Oliveira JAP (2021) Integrating circular economy in urban Amazon. npj Urban Sustain 1:29. https://doi.org/10.1038/s42949-021-00031-z
Rambaut A (2009) FigTree. Tree figure drawing tool. ci.nii.ac.jp
Rifai M (1969) A revision of the genus Trichoderma. ci.nii.ac.jp 116:1–56
Rifai M, Webster J (1966) Culture studies on Hypocrea and Trichoderma. Trans Br Mycol Soc 49:289-IN11. https://doi.org/10.1016/S0007-1536(66)80063-3
Ritter CD, Dunthorn M, Anslan S, et al (2020) Advancing biodiversity assessments with environmental DNA: Long‐read technologies help reveal the drivers of Amazonian fungal diversity. Ecol Evol 10:7509–7524. https://doi.org/10.1002/ece3.6477
Robbertse B, Strope PK, Chaverri P, et al (2017) Improving taxonomic accuracy for fungi in public sequence databases: applying ‘one name one species’ in well-defined genera with Trichoderma/Hypocrea as a test case. Database 2017:. https://doi.org/10.1093/database/bax072
Samuels GJ (2006) Trichoderma : Systematics, the Sexual State, and Ecology. Phytopathology® 96:195–206. https://doi.org/10.1094/PHYTO-96-0195
Samuels GJ, Dodd SL, Gams W, et al (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170. https://doi.org/10.1080/15572536.2003.11833257
Samuels GJ, Dodd SL, Lu B-S, et al (2006a) The Trichoderma koningii aggregate species. Stud Mycol 56:67–133. https://doi.org/10.3114/sim.2006.56.03
Samuels GJ, Ismaiel A (2011) Hypocrea peltata : a mycological Dr Jekyll and Mr Hyde? Mycologia 103:616–630. https://doi.org/10.3852/10-227
Samuels GJ, Ismaiel A, Bon M-C, et al (2010) Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 102:944–966. https://doi.org/10.3852/09-243
Samuels GJ, Ismaiel A, de Souza J, Chaverri P (2012) Trichoderma stromaticum and its overseas relatives. Mycol Prog 11:215–254. https://doi.org/10.1007/s11557-011-0743-4
Samuels GJ, Pardo-Schultheiss R, Hebbar KP, et al (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol Res 104:760–764. https://doi.org/10.1017/S0953756299001938
Samuels GJ, Suarez C, Solis K, et al (2006b) Trichoderma theobromicola and T. paucisporum: two new species isolated from cacao in South America. Mycol Res 110:381–392. https://doi.org/10.1016/j.mycres.2006.01.009
Sandoval-Denis M, Sutton DA, Cano-Lira JF, et al (2014) Phylogeny of the Clinically Relevant Species of the Emerging Fungus Trichoderma and Their Antifungal Susceptibilities. J Clin Microbiol 52:2112–2125. https://doi.org/10.1128/JCM.00429-14
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089
Shen S, Xia X, Zhong Y, et al (2019) Implanting Niobium Carbide into Trichoderma Spore Carbon: a New Advanced Host for Sulfur Cathodes. Adv Mater 31:1900009. https://doi.org/10.1002/adma.201900009
Siddiquee S (2017) Practical Handbook of the Biology and Molecular Diversity of Trichoderma Species from Tropical Regions. Springer International Publishing, Cham
Turland N, Wiersema J, Barrie F, Greuter W (2018) International Code of Nomenclature for algae, fungi, and plants. Koeltz Botanical Books
Venil CK, Velmurugan P, Dufossé L, et al (2020) Fungal Pigments: Potential Coloring Compounds for Wide Ranging Applications in Textile Dyeing. J Fungi 6:68. https://doi.org/10.3390/jof6020068
Zhou Y, Wang Y, Chen K, et al (2020) Near-Complete Genomes of Two Trichoderma Species: A Resource for Biological Control of Plant Pathogens. Mol Plant-Microbe Interact 33:1036–1039. https://doi.org/10.1094/MPMI-03-20-0076-A
Zhu ZX, Zhuang WY (2015a) Trichoderma (Hypocrea) species with green ascospores from China. Persoonia 34:113–129. https://doi.org/10.3767/003158515X686732
Zhu ZX, Zhuang WY (2015b) Three new species of Trichoderma with hyaline ascospores from China. Mycologia 107:328–345. https://doi.org/10.3852/14-141