1. Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H (1974) A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 54(3):271-276.
2. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, Baker AL, Jackson MA, Takahashi M, Shah PB, et al (2017) Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation 135(17):e927-999. DOI: 10.1161/CIR.0000000000000484
3. Newburger JW, Takahashi M, Beiser AS, Burns JC, Bastian J, Chung KJ, Colan SD, Duffy CE, Fulton DR, Glode MP, et al (1991) A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. New Engl J Med 324:1633-1639. DOI: 10.1056/NEJM199106063242305
4. Tremoulet AH, Best BM, Song S, Wang S, Corinaldesi E, Eichenfield JR, Martin DD, Newburger JW, Burns JC (2008) Resistance to intravenous immunoglobulin in children with Kawasaki disease. J Pediatr 153:117-121. DOI: 10.1016/j.jpeds.2007.12.021
5. Muta H, Ishii M, Furui J, Nakamura Y, Matsuishi T (2006) Risk factors associated with the need for additional intravenous gamma-globulin therapy for Kawasaki disease. Acta Paediatr 95:189-193. DOI: 10.1080/08035250500327328
6. Kobayashi T, Saji T, Otani T, Nakamura T, Arakawa H, Kato T, Hara T, Hamaoka K, Ogawa S, Miura M, et al (2012) Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial. Lancet 379:1613-1620. DOI: 10.1016/S0140-6736(11)61930-2
7. Burns JC, Capparelli EV, Brown JA, Newburger JW, Glode MP (1998) Intravenous gamma-globulin treatment and retreatment in Kawasaki disease: US/Canadian Kawasaki Syndrome Study Group. Pediatr Infect Dis J 17:1144-1148. DOI: 10.1097/00006454-199812000-00009
8. Ogata S, Ogihara Y, Honda T, Kon S, Akiyama K, Ishii M (2012) Corticosteroid pulse combination therapy for refractory Kawasaki disease: A randomized trial. Pediatrics 129:e17-23. DOI: 10.1542/peds.2011-0148
9. Tremoulet AH, Jain S, Jaggi P, Jimenez-Fernandez S, Pancheri JM, Sun X, Kanegaye JT, Kovalchin JP, Printz BF, Ramilo O, Burns JC (2014) Infliximab for intensification of primary therapy for Kawasaki disease: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet 383:1731-1738. DOI: 10.1016/S0140-6736(13)62298-9
10. Burns JC, KoneÂ-Paut I, Kuijpers T, Shimizu C, Tremoulet A, Arditi M (2017) Found in Translation: International Initiatives Pursuing Interleukin-1 Blockade for Treatment of Acute Kawasaki Disease. Arthritis Rheumatol 69:268-276. DOI: 10.1002/art.39975
11. Kobayashi T, Inoue Y, Takeuchi K, Okada Y, Tamura K, Tomomasa T, Kobayashi T, Morikawa A (2006) Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation 113(22):2606-2612. DOI: 10.1161/CIRCULATIONAHA.105.592865
12. Egami K, Muta H, Ishii M, Suda K, Sugahara Y, Iemura M, Matsuishi T (2006) Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease. J Pediatr 149 (2):237-240. DOI: 10.1016/j.jpeds.2006.03.050
13. Sano T, Kurotobi S, Matsuzaki K, Yamamoto T, Maki I, Miki K, Kogaki S, Hara J (2007) Prediction of non-responsiveness to standard high-dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment. Eur J Pediatr 166(2):131-137. DOI: 10.1007/s00431-006-0223-z
14. Kuniyoshi Y, Tokutake H, Takahashi N, Kamura A , Yasuda S, Tashiro M (2020) Comparison of Machine Learning Models for Prediction of Initial Intravenous Immunoglobulin Resistance in Children With Kawasaki Disease. Front Pediatr 8:570834. DOI: 10.3389/fped.2020.570834
15. Wang T, Liu G, Lin H (2020) A machine learning approach to predict intravenous immunoglobulin resistance in Kawasaki disease patients: A study based on a Southeast China population. PLoS ONE 15(8): e0237321. DOI: 10.1371/journal.pone.0237321
16. Takeuchi M, Inuzuka R, Hayashi T, Shindo T, Hirata Y, Shimizu N, Inatomi J, Yokoyama Y, Namai Y, Oda Y, et al (2017) Novel Risk Assessment Tool for Immunoglobulin Resistance in Kawasaki Disease: Application Using a Random Forest Classifier. Pediatr Infect Dis J 36(9):821-826. DOI: 10.1097/INF.0000000000001621
17. Tseng PY, Chen YT, Wang CH, Chiu KM, Peng YS, Hsu SP, Chen KL, Yang CY, Lee OK (2020) Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Crit Care 24(1):478. DOI: 10.1186/s13054-020-03179-9
18. Goto T, Camargo CA Jr, Faridi MK, Freishtat RJ, Hasegawa K (2019) Machine Learning–Based Prediction of Clinical Outcomes for Children During Emergency Department Triage. JAMA Network Open 2(1):e186937. DOI: 10.1001/jamanetworkopen.2018.6937
19. Rajkomar A, Dean J, Kohane I (2019) Machine Learning in Medicine. N Engl J Med 380(14):1347-1358. DOI: 10.1056/NEJMra1814259
20. Ayusawa M, Sonobe T, Uemura S, Ogawa S, Nakamura Y, Kiyosawa N, Ishii M, Harada K, et al (2005) Revision of diagnostic guidelines for Kawasaki disease (the 5th revised edition). Pediatr Int 47:232-234. DOI: 10.1111/j.1442-200x.2005.02033.x
21. Koizumi K, Hoshiai M, Katsumata N, Toda T, Kise H, Hasebe Y, Kono Y, Sunaga Y, Yoshizawa M, Watanabe A, et al (2018) Infliximab regulates monocytes and regulatory T cells in Kawasaki disease. Pediatr Int 60(9):796-802. DOI: 10.1111/ped.13555
22. Koizumi K, Hoshiai M, Moriguchi T, Katsumata N, Toda T, Kise H, Hasebe Y, Kono Y, Sunaga Y, Yoshizawa M, et al (2019) Plasma Exchange Downregulates Activated Monocytes and Restores Regulatory T Cells in Kawasaki Disease. Ther Apher Dial 23(1):92-98. DOI: 10.1111/1744-9987.12754
23. Breiman L (2001) Random Forests. Machine Learning 45: 5-32.
24. Chawla NV, Bowyer KW, Hall LO (2002) SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16: 321-357. DOI: 10.1613/jair.953
25. Fernández A, Garcia S, Herrera F, Chawla NV (2018) SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research 61: 863-905. DOI: 10.1613/jair.1.11192
26. Shapley LS (1953) A Value for n-Person Games. In: Kuhn HW and Tucker AW (eds) Contributions to the Theory of Games II, Princeton University Press, Princeton 28:307-317.
27. Rodríguez-Pérez R, Bajorath J (2020) Interpretation of machine learning models using shapley values: application to compound potency and multi‑target activity predictions. Journal of Computer-Aided Molecular Design 34:1013-1026. DOI: 10.1007/s10822-020-00314-0
28. Lundberg SM, Lee S (2017) A unified approach to interpreting model predictions. https://papers.nips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
29. Scott ML, Gabriel GF, Su-In L (2018) Consistent Individualized Feature Attribution for Tree Ensembles. https://arxiv.org/abs/1802.03888
30. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplantation 48: 452-458. DOI: 10.1038/bmt.2012.244
31. Salo E, Pesonen E, Viikari (1991) Serum cholesterol levels during and after Kawasaki disease. J Pediatr 119(4): 557-61. DOI: 10.1016/s0022-3476(05)82404-7
32. Shao S, Zhou K, Liu X, Liu L, Wu M, Deng Y, Duan H, Li Y, Hua Y, Wang C (2021) Predictive value of serum lipid for intravenous immunoglobulin resistance and coronary artery lesion in Kawasaki disease. J Clin Endocrinol Metab 10: dgab230. DOI: 10.1210/clinem/dgab230
33. Zhang XY, Yang TT, Hu XF, Wen Y, Fang F, Lu HL (2018) Circulating adipokines are associated with Kawasaki disease. Pediatr Rheumatol Online J 16(1): 33. DOI: 10.1186/s12969-018-0243-z
34. Kawamura Y, Takeshita S, Kanai T, Yoshida Y, Nonoyama S (2016) The Combined Usefulness of the Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios in Predicting Intravenous Immunoglobulin Resistance with Kawasaki Disease. J Pediatr 178:281-284.e1. DOI: 10.1016/j.jpeds.2016.07.035
35. Hamada H, Suzuki H, Onouchi Y, Ebata R, Terai M, Fuse S,
Okajima Y, Kurotobi S, Hirai K, Soga T, et al (2019) Efficacy of primary treatment with immunoglobulin plus ciclosporin for prevention of coronary artery abnormalities in patients with Kawasaki disease predicted to be at increased risk of non-response to intravenous immunoglobulin (KAICA): a randomised controlled, open-label, blinded-endpoints, phase 3 trial. Lancet 393: 1128-37. DOI: 10.1016/S0140-6736(18)32003-8
36. Miyata K, Miura M, Kaneko T, Morikawa Y, Sakakibara H, Matsushima T, Misawa M, Takahashi T, Nakazawa M, Tsuchihashi T, et al (2021) Risk Factors of Coronary Artery Abnormalities and Resistance to Intravenous Immunoglobulin Plus Corticosteroid Therapy in Severe Kawasaki Disease: An Analysis of Post RAISE. Circulation: Cardiovascular Quality and Outcomes 14:e007191. DOI: 10.1161/CIRCOUTCOMES.120.007191