1 Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394-424, doi:10.3322/caac.21492 (2018).
2 Guiu, S. et al. Pathological response and survival after neoadjuvant therapy for breast cancer: a 30-year study. Breast 22, 301-308, doi:10.1016/j.breast.2012.07.012 (2013).
3 Krishnan, Y., Al Awadi, S., Sreedharan, P. S., Sujith Nair, S. & Thuruthel, S. Analysis of neoadjuvant therapies in breast cancer with respect to pathological complete response, disease-free survival and overall survival: 15 years follow-up data from Kuwait. Asia Pac J Clin Oncol 12, e30-37, doi:10.1111/ajco.12118 (2016).
4 Xin, L., Liu, Y. H., Martin, T. A. & Jiang, W. G. The Era of Multigene Panels Comes? The Clinical Utility of Oncotype DX and MammaPrint. World J Oncol 8, 34-40, doi:10.14740/wjon1019w (2017).
5 Early Breast Cancer Trialists' Collaborative, G. Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol 19, 27-39, doi:10.1016/S1470-2045(17)30777-5 (2018).
6 Ji, X. et al. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed Pharmacother 114, 108800, doi:10.1016/j.biopha.2019.108800 (2019).
7 Karagiannis, G. S. et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med 9, doi:10.1126/scitranslmed.aan0026 (2017).
8 Foulon, A., Theret, P., Rodat-Despoix, L. & Kischel, P. Beyond Chemotherapies: Recent Strategies in Breast Cancer Treatment. Cancers (Basel) 12, doi:10.3390/cancers12092634 (2020).
9 Tan, W. et al. Construction of an immune-related genes nomogram for the preoperative prediction of axillary lymph node metastasis in triple-negative breast cancer. Artif Cells Nanomed Biotechnol 48, 288-297, doi:10.1080/21691401.2019.1703731 (2020).
10 Albain, K. S., Paik, S. & van't Veer, L. Prediction of adjuvant chemotherapy benefit in endocrine responsive, early breast cancer using multigene assays. Breast 18 Suppl 3, S141-145, doi:10.1016/S0960-9776(09)70290-5 (2009).
11 Brufsky, A. M. & Dickler, M. N. Estrogen Receptor-Positive Breast Cancer: Exploiting Signaling Pathways Implicated in Endocrine Resistance. Oncologist 23, 528-539, doi:10.1634/theoncologist.2017-0423 (2018).
12 Lugo-Cintron, K. M. et al. Breast Fibroblasts and ECM Components Modulate Breast Cancer Cell Migration Through the Secretion of MMPs in a 3D Microfluidic Co-Culture Model. Cancers (Basel) 12, doi:10.3390/cancers12051173 (2020).
13 R, M. B.-C. et al. Extracellular Matrix Derived from High Metastatic Human Breast Cancer Triggers Epithelial-Mesenchymal Transition in Epithelial Breast Cancer Cells through alphavbeta3 Integrin. Int J Mol Sci 21, doi:10.3390/ijms21082995 (2020).
14 Costa, B., Amorim, I., Gartner, F. & Vale, N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 151, 105401, doi:10.1016/j.ejps.2020.105401 (2020).
15 Wanigasooriya, K. et al. Radiosensitising Cancer Using Phosphatidylinositol-3-Kinase (PI3K), Protein Kinase B (AKT) or Mammalian Target of Rapamycin (mTOR) Inhibitors. Cancers (Basel) 12, doi:10.3390/cancers12051278 (2020).
16 Mei, Y., Liao, X., Zhu, L. & Yang, H. Overexpression of RSK4 reverses doxorubicin resistance in human breast cancer cells via PI3K/AKT signalling pathway. J Biochem 167, 603-611, doi:10.1093/jb/mvaa009 (2020).
17 Hu, Y. et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis 6, e2020, doi:10.1038/cddis.2015.363 (2015).
18 Burotto, M., Chiou, V. L., Lee, J. M. & Kohn, E. C. The MAPK pathway across different malignancies: a new perspective. Cancer 120, 3446-3456, doi:10.1002/cncr.28864 (2014).
19 Yousefnia, S. et al. Mechanistic Pathways of Malignancy in Breast Cancer Stem Cells. Front Oncol 10, 452, doi:10.3389/fonc.2020.00452 (2020).
20 Leontovich, A. A. et al. Raf-1 oncogenic signaling is linked to activation of mesenchymal to epithelial transition pathway in metastatic breast cancer cells. Int J Oncol 40, 1858-1864, doi:10.3892/ijo.2012.1407 (2012).
21 De Angelis, M. L., Francescangeli, F. & Zeuner, A. Breast Cancer Stem Cells as Drivers of Tumor Chemoresistance, Dormancy and Relapse: New Challenges and Therapeutic Opportunities. Cancers (Basel) 11, doi:10.3390/cancers11101569 (2019).
22 Katsuno, Y., Lamouille, S. & Derynck, R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 25, 76-84, doi:10.1097/CCO.0b013e32835b6371 (2013).
23 Huang, S. et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-beta receptor signaling. Cell 151, 937-950, doi:10.1016/j.cell.2012.10.035 (2012).
24 Brunen, D. et al. TGF-beta: an emerging player in drug resistance. Cell Cycle 12, 2960-2968, doi:10.4161/cc.26034 (2013).
25 Bhagyaraj, E. et al. TGF-beta induced chemoresistance in liver cancer is modulated by xenobiotic nuclear receptor PXR. Cell Cycle 18, 3589-3602, doi:10.1080/15384101.2019.1693120 (2019).
26 Brown, J. A. et al. TGF-beta-Induced Quiescence Mediates Chemoresistance of Tumor-Propagating Cells in Squamous Cell Carcinoma. Cell Stem Cell 21, 650-664 e658, doi:10.1016/j.stem.2017.10.001 (2017).
27 de Kruijf, E. M. et al. The prognostic role of TGF-beta signaling pathway in breast cancer patients. Ann Oncol 24, 384-390, doi:10.1093/annonc/mds333 (2013).
28 Insua-Rodriguez, J. & Oskarsson, T. The extracellular matrix in breast cancer. Adv Drug Deliv Rev 97, 41-55, doi:10.1016/j.addr.2015.12.017 (2016).
29 Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15, 1243-1253, doi:10.15252/embr.201439246 (2014).
30 Kim, H. J., Choi, W. J. & Lee, C. H. Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition. Biomol Ther (Seoul) 23, 301-312, doi:10.4062/biomolther.2015.032 (2015).
31 Karantza, V. Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 30, 127-138, doi:10.1038/onc.2010.456 (2011).
32 Azzariti, A., Porcelli, L., Quatrale, A. E., Silvestris, N. & Paradiso, A. The coordinated role of CYP450 enzymes and P-gp in determining cancer resistance to chemotherapy. Curr Drug Metab 12, 713-721, doi:10.2174/138920011798357042 (2011).
33 Lopez-Yoldi, M., Moreno-Aliaga, M. J. & Bustos, M. Cardiotrophin-1: A multifaceted cytokine. Cytokine Growth Factor Rev 26, 523-532, doi:10.1016/j.cytogfr.2015.07.009 (2015).
34 Yang, Z. F. et al. Cardiotrophin-1 enhances regeneration of cirrhotic liver remnant after hepatectomy through promotion of angiogenesis and cell proliferation. Liver Int 28, 622-631, doi:10.1111/j.1478-3231.2008.01687.x (2008).
35 Robledo, O. et al. Regulation of interleukin 6 expression by cardiotrophin 1. Cytokine 9, 666-671, doi:10.1006/cyto.1997.0220 (1997).
36 Zeng, L. C., Han, Z. G. & Ma, W. J. Elucidation of subfamily segregation and intramolecular coevolution of the olfactomedin-like proteins by comprehensive phylogenetic analysis and gene expression pattern assessment. FEBS Lett 579, 5443-5453, doi:10.1016/j.febslet.2005.08.064 (2005).
37 Torres, S. et al. Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res 19, 6006-6019, doi:10.1158/1078-0432.CCR-13-1130 (2013).
38 Qiu, R. et al. BRMS1 coordinates with LSD1 and suppresses breast cancer cell metastasis. Am J Cancer Res 8, 2030-2045 (2018).
39 Zhao, S. et al. OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. Int J Biol Sci 8, 459-469, doi:10.7150/ijbs.3821 (2012).
40 Sun, Y. et al. MiR 3180-5p promotes proliferation in human bladder smooth muscle cell by targeting PODN under hydrodynamic pressure. Sci Rep 6, 33042, doi:10.1038/srep33042 (2016).
41 Shimizu-Hirota, R., Sasamura, H., Kuroda, M., Kobayashi, E. & Saruta, T. Functional characterization of podocan, a member of a new class in the small leucine-rich repeat protein family. FEBS Lett 563, 69-74, doi:10.1016/S0014-5793(04)00250-9 (2004).
42 Hou, Q. et al. RankProd Combined with Genetic Algorithm Optimized Artificial Neural Network Establishes a Diagnostic and Prognostic Prediction Model that Revealed C1QTNF3 as a Biomarker for Prostate Cancer. EBioMedicine 32, 234-244, doi:10.1016/j.ebiom.2018.05.010 (2018).
43 Hofmann, C. et al. C1q/TNF-related protein-3 (CTRP-3) is secreted by visceral adipose tissue and exerts antiinflammatory and antifibrotic effects in primary human colonic fibroblasts. Inflamm Bowel Dis 17, 2462-2471, doi:10.1002/ibd.21647 (2011).
44 Katz, L. H. et al. Targeting TGF-beta signaling in cancer. Expert Opin Ther Targets 17, 743-760, doi:10.1517/14728222.2013.782287 (2013).
45 Bernard, D. & Vindrieux, D. PLA2R1: expression and function in cancer. Biochim Biophys Acta 1846, 40-44, doi:10.1016/j.bbcan.2014.03.003 (2014).
46 Vindrieux, D. et al. PLA2R1 mediates tumor suppression by activating JAK2. Cancer Res 73, 6334-6345, doi:10.1158/0008-5472.CAN-13-0318 (2013).
47 Quach, N. D. et al. Role of the phospholipase A2 receptor in liposome drug delivery in prostate cancer cells. Mol Pharm 11, 3443-3451, doi:10.1021/mp500174p (2014).
48 Mitwally, N., Yousef, E., Abd Al Aziz, A. & Taha, M. Clinical Significance of Expression Changes and Promoter Methylation of PLA2R1 in Tissues of Breast Cancer Patients. Int J Mol Sci 21, doi:10.3390/ijms21155453 (2020).
49 Griveau, A., Wiel, C., Ziegler, D. V., Bergo, M. O. & Bernard, D. The JAK1/2 inhibitor ruxolitinib delays premature aging phenotypes. Aging Cell 19, e13122, doi:10.1111/acel.13122 (2020).
50 Parker, A. L., Teo, W. S., McCarroll, J. A. & Kavallaris, M. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int J Mol Sci 18, doi:10.3390/ijms18071434 (2017).
51 Downing, K. H. & Nogales, E. Crystallographic structure of tubulin: implications for dynamics and drug binding. Cell Struct Funct 24, 269-275, doi:10.1247/csf.24.269 (1999).
52 Gadadhar, S., Bodakuntla, S., Natarajan, K. & Janke, C. The tubulin code at a glance. J Cell Sci 130, 1347-1353, doi:10.1242/jcs.199471 (2017).
53 McGrogan, B. T., Gilmartin, B., Carney, D. N. & McCann, A. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 1785, 96-132, doi:10.1016/j.bbcan.2007.10.004 (2008).
54 Norimura, S. et al. Candidate biomarkers predictive of anthracycline and taxane efficacy against breast cancer. J Cancer Res Ther 14, 409-415, doi:10.4103/jcrt.JCRT_1053_16 (2018).
55 Liu, Y. J., Chang, Y. J., Kuo, Y. T. & Liang, P. H. Targeting beta-tubulin/CCT-beta complex induces apoptosis and suppresses migration and invasion of highly metastatic lung adenocarcinoma. Carcinogenesis 41, 699-710, doi:10.1093/carcin/bgz137 (2020).
56 Won, K. A., Schumacher, R. J., Farr, G. W., Horwich, A. L. & Reed, S. I. Maturation of human cyclin E requires the function of eukaryotic chaperonin CCT. Mol Cell Biol 18, 7584-7589, doi:10.1128/mcb.18.12.7584 (1998).
57 Lin, Y. F., Tsai, W. P., Liu, H. G. & Liang, P. H. Intracellular beta-tubulin/chaperonin containing TCP1-beta complex serves as a novel chemotherapeutic target against drug-resistant tumors. Cancer Res 69, 6879-6888, doi:10.1158/0008-5472.CAN-08-4700 (2009).
58 Coghlin, C. et al. Characterization and over-expression of chaperonin t-complex proteins in colorectal cancer. J Pathol 210, 351-357, doi:10.1002/path.2056 (2006).
59 Guest, S. T., Kratche, Z. R., Bollig-Fischer, A., Haddad, R. & Ethier, S. P. Two members of the TRiC chaperonin complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving oncogenes. Exp Cell Res 332, 223-235, doi:10.1016/j.yexcr.2015.02.005 (2015).
60 Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7, 11479, doi:10.1038/ncomms11479 (2016).