Online measurement of milling force play a vital role in enabling machining process monitoring and control. In practice, the milling force is difficult to be measured directly with the dynamometer. This paper develops a novel method for milling force identification called least square QR-factorization with fast stopping criterion (FSC-LSQR) method, and the queue buffer structure (QBS) is employed for the online identification of milling force using acceleration signals. The convolution integral of milling force and acceleration signals is discretized, which turns the problem of milling force identification into a linear discrete ill-posed problem. The FSC-LSQR algorithm is adopted for milling force identification because of its high efficiency and accuracy, which handles the linear discrete ill-posed problem effectively. The online identification of milling force can be realized using the acceleration signal enqueue and the milling force dequeue operations of the QBS. Finally, the effectiveness of the method is verified by experiments. The experimental results show that the FSC-LSQR algorithm running time is within \((0.05s)\) and the calculation error is less than \((10\%)\). The proposed method can make the sampling frequency of the milling force reach 10240Hz by employing QBS, which satisfy the industry requirements of milling force measurement.