[1] IMO 2020 – cutting sulphur oxide emissions. International Maritime Organization. https://www.imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx
[2] LNG: an energy of the future. elengy. https://www.elengy.com/en/lng/lng-an-energy-of-the-future.html
[3] Du WS, Cao R, Yan YJ, Tian ZL, Peng Y, Chen JH (2008) Fracture behavior of 9% nickel high-strength steel at various temperatures: part I. tensile tests. Mater Sci Eng A 486:611-625. https://doi.org/10.1016/j.msea.2007.09.057
[4] Kobelco (2011) Kobelco welding today. Kobe steel, LTD 14:1-12. https://www.kobelco.co.jp/ english/welding/files/kwt2011-02.pdf
[5] John ND, John CL, Samuel DK (2009) Welding metallurgy and weldability of nickel‐base alloys. 9% Ni steels, 1st edn. John Wiley & Sons, Inc., New Jersey, pp 357
[6] Weidong M, Yan C, Min W, Xueming H (2020) Microstructure characteristics and properties of fusion boundary in 9%Ni steel joint filled with Ni-based alloy. Mater Charact 165:110390. https://doi.org/10.1016/j.matchar.2020.110390
[7] Dupont JN, Kusko CS (2007) Martensite formation in austenitic/ferritic dissimilar alloy welds. Weld J 86:51s-54s.
[8] Weidong M, Yuzhang L, Yan C, Min W (2018) Cryogenic fracture toughness of 9%Ni steel flux cored arc welds. J Mater Process Technol 252:804-812. https://doi.org/10.1016/j.jmatprotec. 2017.10.026
[9] Price AH (2013) Significant system parameters influencing HAZ properties in 9%Ni steel. Sci Technol Weld join 6:255-260. https://doi.org/10.1179/136217101101538758
[10] Yoon YK, Kim JH, Shim KT (2012) Mechanical characteristics of 9% Ni steel welded joint for LNG storage tank at cryogenic. Int J Mod Phys Conf Ser 06:355-360. https://doi.org/ 10.1142/S2010194512003431
[11] Zhijun Q, Bintao W, Hanliang Z, Zhiyang W, Alan H, Yan M, Huijun L, Ondrej M, David W (2020) Microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy. Mater Des 195:109007. https://doi.org/10.1016/j.matdes.2020.109007
[12] Cieslak MJ, Headley TJ, Romig AD (1986) The welding metallurgy of Hastelloy alloys C-4, C-22, and C-276. Metall Mater Trans A 17:2035-2047. https://doi.org/10.1007/BF02645001
[13] Camila PA, Francisco CAM, Luís FGS, Jorge CFJ, Leonardo SA, Matheus CM (2019) Performance of the Inconel 625 alloy weld overlay obtained by FCAW process. Rev Mater 24: https://doi.org/10.1590/S1517-707620190001.0627
[14] Cieslak MJ, Knorovsky GA, Headley TJ, Romig AD (1989) The solidification metallurgy of alloy 718 and other Nb-containing superalloys. Superalloys 718:59-68. https://doi.org/10.7449/1989/ SUPERALLOYS_1989
_59_68
[15] Camila PA, Soraia SS, Jorge CFJ, Luı´s FGS, Leonardo SA, Matheus CM, Jean D (2020) Microstructural characterization of Inconel 625 nickel-based alloy weld cladding obtained by electroslag welding process. J Mater Eng Perform 29:3004-3015. https://doi.org/10.1007/s11665-020-04861-3
[16] Sindo K (2002) Welding metallurgy, 2nd edn. John Wiley & Sons, Inc., New Jersey pp 155-166
[17] Fritz A, Jonathan DHP, Peter S, Michael O, Otmar K, Jozef P, Franz DF (2018) The effect of residual stresses and strain reversal on the fracture toughness of TiAl alloys. Mater Sci Eng A 709:17-29. https://doi.org/10.1016/j.msea.2017.10.010
[18] Tang J, Tieu AK, Jiang ZY (2006) Modelling of oxide scale surface roughness in hot metal forming. J Mater Process Technol 177:126-129. https://doi.org/10.1016/j.jmatprotec.2006.04.105