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Abstract
Data-driven materials synthesis is heralded as a new paradigm to substitute for trial-and-error
experiments and labor-intensive tasks by human scientists. Herein, a Robotic Scientist platform that can
deliver unprecedented performance for rational design, controllable synthesis, and retrosynthesis of
nanocrystals is described. By taking advantage of interdisciplinary fields including artificial intelligence,
robotic automation, and big data, the Robotic Scientist platform is trained to synthesize Au nanocrystals.
Existing knowledge and machine learning models are integrated into the rational design process.
Controllable synthesis is achieved by synergistic coupling of robot-assisted synthesis on the macro-scale
and nanocrystal growth on the nano-scale. By means of the Robotic Scientist platform, over 2,300
samples are synthesized in conjunction with in-situ characterization to accomplish the complete task of
design-synthesis-retrosynthesis. The platform and methodology of Robotic Scientist pave the way for
digital synthesis of nanocrystals and facilitate the paradigm shift to data-driven materials synthesis.

Introduction
Data-driven materials synthesis is heralded as a new paradigm to transfer labor-intensive tasks and trial-
and-error experiments from human scientists to robotic chemists1 or chemical synthesis machines2. The
advanced Human-AI-Robot collaboration system is accelerating the interdisciplinary revolution of
materials synthesis towards a Robotic Scientist for automated synthesis. In this emerging field, it is
necessary to converge chemical knowledge, theoretical models, purpose-oriented database,
programmable cyber systems, as well as robotic physical systems. One of the promising missions is
digital synthesis of materials3 by acquiring knowledge progressively, unveiling data linkages efficiently,
and developing solutions constructively over time based on previous iterations.

In the past decade, tremendous efforts have been devoted to developing digital
manufacturing/synthesis of materials. In particular, layer-by-layer digital additive manufacturing of three-
dimensional materials has been developed on the macro-scale4. On the micro-scale, synthetic biology is
another benchmark for digital synthesis of biomaterials utilizing cells as the hardware and genes as the
software5. Recently, there has been rapid development in organic programming language6 and
automated platforms2,7 for organic synthesis on a small scale. At the same time, a robotic chemist has
been reported to search for photocatalysts1, thus opening up the opportunity for robot-assisted inorganic
materials investigation on the nano-scale. However, there are still many limitations hampering automated
synthesis, for example, materials search without theoretical models1, blind materials optimization without
scientific methodologies1, as well as lack of synergy between hardware and software to achieve
materials innovation2. Herein, we show how these difficulties can be tackled by the Robotic Scientist
platform that enables rational design, controllable synthesis, and retrosynthesis of nanocrystals as a
proof of concept.

Results
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Robotic Scientist platform. The platform towards a Robotic Scientist for digital synthesis nanocrystals
involves convergence of the materials databases, cyber systems, and physical systems (Fig. 1).

To accomplish rational design of nanocrystals, the software and AI algorithms are integrated into the
cyber system. In addition, process automation by means of a simulated operation system is utilized to
pre-examine and monitor the designed synthesis procedures.

In the physical system, crystal growth on the nano-scale is accomplished by automatic synthesis and
characterization is performed on the macro-scale to guide controllable synthesis. Concurrently, Robotic
Execution Excel (REE) files are designed to provide preliminary instructions for the execution of automatic
synthesis using crucial parameters. The database is expanded continuously by the design and
controllable synthesis processes. Furthermore, the relationship between the target nanocrystal
morphologies (as outputs) and key synthesis parameters in the database (as inputs) are identified to
provide constructive guidance to achieve retrosynthesis. Finally, the close loop combining rational design,
controllable synthesis, and retrosynthesis provides the unprecedented ability to manipulate the
morphologies of nanocrystals. It is expected that the Robotic Scientist can be trained for digital synthesis
of customized nanocrystals with the essential capacities similar to those provided by human scientists.

In manual synthesis, the tasks are normally time consuming and error prone and moreover, the raw
precursors expire or degrade shortly after preparation in some cases. In order to achieve automatic
synthesis in a timely fashion, the Robotic Scientist platform is set up with many desirable features as
shown in Fig. 2. The robot, robotic arms, digital pipettors, mobile camera, and microplate reader are
connected to a series of modules that are capable of performing robot-assisted high-throughput
synthesis and in-situ characterization. The photograph, schematic representation, and operation video of
the platform are presented in Fig. 2a, Fig. 2b, and SI, respectively. The Robotic Scientist platform is
expected to revolutionize traditional synthesis processes that rely on well-trained scientists and
technicians.

Rational design. Traditionally, the manual chemical and materials synthesis processes differ slightly from
person to person and sometimes introduce inadvertent errors/bias leading to diverse outcome. Moreover,
it typically takes several months and even years for a scientist to acquire the required repertoire of
synthetic knowledge. Hence, there is a substantial demand to conduct rational design on the Robotic
Scientist platform while leveraging the expertise of human scientists. Here, crystal informatics, existing
knowledge about synthesis, thermodynamic models, and kinetic models as data-driven scientific
hypotheses are integrated into the Robotic Scientist for rational design of nanocrystals (Fig. 3).

Firstly, a crystal database with over 90,000 different crystal facets from seven crystal systems is
incorporated into the Robotic Scientist based on our previous research8. The typical morphologies in the
cubic system are identified in Fig. 3a and Fig. 3b. The morphology information is then digitally converted
to the fractional surface area (FSA) and aspect ratio (AR) and the correlations are analyzed as shown in

Fig. S1, in which the FSAs of the (001) and (00 ) planes versus AR of the corresponding nanorods are
−

1
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identified revealing a gradually decreasing trend (Fig. 3a). Afterwards, by exploiting the advantages of the
artificial neural network (ANN) model to understand the complex morphology evolution process, the
relationship between the crystal equilibrium morphology (FSA and AR related) and surface energy ratio is
established using a well-trained ANN model (Fig. S2) based on the crystal informatics database.

To train the Robotic Scientist, Au nanocrystals synthesis knowledge with key parameters is extracted
from 1,300 related literatures by data mining with the aid of the Automated Literature Recommendation
System9. Fig. S3 shows the frequency distribution of the synthesis parameters reported in the literatures
and Fig. 3c indicates that L2 is the most frequently used concentrations. Hence, by taking advantage of
data mining, the Robotic Scientist is initially trained to capture synthesis parameters and the identified
parameters are then adopted by the Robotic Scientist platform to refine predictions. For example,
longitudinal surface plasmon resonance (LSPR) can be characterized in-situ by the Robotic Scientist
platform (Fig. S4 and Table S1) and some of the samples are characterized by ex-situ TEM (Fig. S5), XRD,
and HR-TEM (Fig. S6) to provide the necessary conditions for the Au nanocrystals10. Consequently, the
relationship between the customized morphological FSA and AR is established with accurate one-to-one
correspondence as shown in Fig. 3b.

To bridge robot-assisted macro-scale operational synthesis and nano-scale crystal growth, the classic
thermodynamic model (derived in Method section) and ML-predicted model are explored by taking [Ag+]
as an example (Figs. 3d and 3e). The correlation between LSPR (related to morphology) and [Ag+]
concentration is developed by investigation of the classic model. Furthermore, we have found that the
ML-predicted model achieves an extended LSPR range (600-925 nm in Fig. 3e) and accurate prediction
(R2 = 0.99 in Fig. 3e) in comparison with the classical model (666-878 nm with R2 = 0.98 in Fig. 3d).
Therefore, with the assistance of ML and thermodynamic models, the relationship among morphology,
surface energy, LSPR, and [Ag+] concentration is established by the Robotic Scientist platform.
Establishment of the thermodynamic model allows the Robotic Scientist platform to realize rational
design of desirable nanocrystals using the concentration of synthesis parameters as the input, surface
energy and LSPR as the bridge, and nanocrystal morphology as the output.

The kinetics in nanocrystals synthesis is another key model in rational design that can train the Robotic
Scientist for tailoring morphology. In this respect, a microplate reader and color-ultra-sensitive camera are
employed to monitor the UV-Vis-NIR absorption spectra and color changes during nanocrystal growth.
The dynamic-state and steady-state optical absorption spectra are displayed in Figs. S7-S10 together
with representative results in Fig. 3f-3h for different C(HCl). The dynamic UV-Vis-NIR absorption spectra
with peaks of LSPR and transverse surface plasmon resonance (TSPR) are identified in Fig. 3f. The
normalized ODLSPR change with time is shown in Fig. 3g, which indicates the pseudo-first-order kinetics
(derived in the Method section and shown in Fig. S7 and Table S2). A similar trend showing the color
change (RGB values) with time is presented in Fig. 3h and Fig. S7. These in-situ characterization results
are employed to establish the nanocrystal kinetic models. Hence, the Robotic Scientist is guided by the



Page 6/20

thermodynamic and kinetic models with ML trained models to explore controllable synthesis and
retrosynthesis.

Controllable synthesis. The complexity of materials synthesis increases exponentially with the number of
variables, thereby stifling full exploration of the materials space. The key to controllable synthesis
process is convergence of macro-scale automatic synthesis and nano-scale crystal growth to bridge the
synthesis parameters (as input) and corresponding morphologies (as output) on the Robotic Scientist
platform. In order to achieve this objective, data-intensive rational design and automated synthesis are
integrated. Meanwhile, machine learning and experimental data are utilized to construct models based on
the appropriate synthesis variables. As a result, orthogonal, single-, double-, and triple-factor experiments
can be conducted systematically in the order of iterations to construct the database for effective training
of ML models.

Firstly, orthogonal experiments are conducted by executing materials synthesis with parameters by data
mining from 1,300 papers (Fig. 3c). They are designed to address the limitations of blind optimization for
all the factors at different levels1. The design of experiments with different factors and levels (Table S3),
UV-Vis-NIR absorption results (Fig. S11), and multivariate analysis of the variance (Table S4-S5) are
presented. Based on the experimental conditions from the high-dimensional experimental space, the
initial optimized levels are decided for further single-factor study.

To analyze the potentials in 1D space, 24 levels are studied for each single factor (Table S6) and the
models of single factors are presented in Figs. 4a–4c and Fig. S12, respectively. Moreover, 96-level
experiments are carried out within the boundaries identified from the 24-level experimental results to
provide more training data for the ML models. The ML models, corresponding coefficient, and accuracy
of ML prediction are presented in Tables S7-S8 and Fig. S13. All the results can be fitted well with the ML
predicted models, which are beyond the capacity of the classical model (merely fitted with the results of
AgNO3 factor) in Fig. 3d. Primarily, there is a border range of AR tuned by CTAB, AgNO3, and HCl
(compared with Au Seeds, AA, and HAuCl4), which are identified and defined as structure-directing agents

(SDAs)11–14. The different types of the SDAs can be used as triggers on the macro-scale to control the
surface energy during nanocrystal growth on the nano-scale. For example, the factor of AgNO3 can be
adjusted by the Robotic Scientist platform to change the AR values of the nanocrystals in Fig. 4a.
Therefore, the relationship between the SDAs-based synthesis parameters (inputs) and nanocrystal
morphologies (outputs) is identified as the key to achieving controllable synthesis.

To train a sophisticated Robotic Scientist, double-factor experiments are conducted for two identified
SDAs from the single-factor experiments. In this way, the chemical space is expanded into the 2D
response surface with an 8×8 grid (64 experiments) compared to 1D curves derived from single-factor
experiments. Based on 64 preliminary experiments, 96 experimental conditions are generated by a normal
distribution mathematical array for active training of the ML model. The design of the double-factor
experiments and ML predicted models are presented in Tables S9-S13 and the results are illustrated in
Figs. S14-S16. The robust double-factor ML models are then trained with two inputs for morphological
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control. It is found that CTAB and AgNO3 play dominant roles and there are noticeable interactions (Fig.

4d), which are consistent with the observation that CTAB and Ag+ form a face-specific capping agent to
achieve cooperated morphological control15. Interestingly, the CTAB and HCl factors exhibit similar
behavior of the cooperated morphology control (Fig. 4e). However, there is only additive behavior for the
AgNO3 and HCl factors (Fig. 4f) and AgNO3 plays a leading role in the two-factor experiment. A complex
response profile is created for the three-factor experiments by adjusting three SDAs. The design of triple-
factor experiments and ML predicted models are shown in Tables S14-S16. The visualized response of
AR to the three factors is presented in Fig. 4g and Fig. S17. Therefore, the function of the SDAs’
parameters as inputs and AR features as outputs can be established for controllable synthesis of the
nanocrystals in a free 3D space.

At the same time, the color features as potential outputs can be investigated by the Robotic Scientist
platform. The results from single-factor, double-factor, and triple-factor experiments are shown in Figs.
S18-S20, respectively and the corresponding LSPR and RGB values are listed in Tables S17-S19 for ML
training. The trained ML model and comparison between experimental and ML predicted values (Table
S20 and Fig. S21), in which a satisfactory ML model with an R2 of 0.94, are obtained. As shown in
Fig. 4h, the color results as another large-sample data-set match the spectra well. In this way, the Robotic
Scientist can be trained to digitally recognize colors, thus contributing to the materials genome database
with color features.

Finally, with the aid of the Robotic Scientist platform, over 2,300 samples are synthesized together with in
situ characterization to build up the Au nanocrystals genome (various morphologies with LSPR from 600
to 1,000 nm) (Fig. 4i). It is estimated that this task would have taken a human scientist up to four months
(18 samples per day) in comparison with less than one week (384 samples on four 96-well microplates
per day) taken by the Robotic Scientist. The Robotic Scientist continues to improve by receiving training
with expanding experimental data and ML predicted data to realize the ultimate goal of an intelligent
system for digital nanocrystal synthesis and potential of retrosynthesis based on the data sources as
described in the next section.

Retrosynthesis. The Robotic Scientist is further developed with the intention of retrosynthesis based on
the learned knowledge from controllable synthesis. The Au nanocrystals genome plays a vital role in
supporting a closed-loop synthesis process. The genome with typical LSPR from 600 to 1,000 nm
displayed in Fig. 5a consists of experimental data, ML predictable data, and TEM validation results (Fig.
5b). Building such a genome within a six-variable experimental space seems like an impossible task with
the manual approach due to the experimental complexity that scales exponentially with the number of
variables1. The relationship between the identified SDAs and morphologies is illustrated as ‘Input’ and
‘Output’ in Fig. 5a, respectively. By normalizing different parameters of SDAs to form different
nanocrystal morphologies with the trigger of the surface energy on the nano-scale, precise morphological
control is accomplished. It is constructed for effective retrosynthesis (Fig. 5c) and efficient scale-up
production of Au nanocrystals (Fig. 5d and 5e) to facilitate digital synthesis of Au nanocrystals.



Page 8/20

Retrosynthesis and optimization are the Robotic Scientist’s creative endeavors. The data of the target Au
nanocrystals (such as LSPR as 808 ± 10 nm, 780 ± 10 nm, and 633 ± 10 nm), which are commonly used
in biotechnology and information technology (for example, HIV drug delivery16, surface-enhanced Raman
scattering17, wireless neuromodulation18, and sensing19,20), are extracted from the genome for further
retrosynthesis study. Using 808 ± 10 nm as an example, 99 samples are selected from previous single-,
double-, and three-factor experiments as shown in Fig. 5c and Table S21. At the same time, by focusing
on the best samples, additional samples are predicted by the ML models. Afterwards, optimization
experiments are executed by the Robotic Scientist platform. It is generally accepted that a larger OD ratio
(ODLSPR/ODTSPR) and narrower FWHM (at fixed LSPR) represent more uniform morphology. Hence, the
experiments are designed with a decision plate to optimize the target nanocrystals with higher shape
uniformity by evaluating the OD ratio and FWHM of samples from different synthesis routes (Fig. 5c and
Table S22). Finally, the best samples in the decision plate with the best quality are recommended for the
scale-up experiments.

Three scale-up experiments are conducted sequentially, i.e., high-throughput microplate assay on the
Robotic Scientist platform (in Fig. 5d), bench-scale test on a magnetic stirrer, and pilot-scale test in an
agitated vessel (in Fig. 5e). Firstly, 2 mL- (on 12-well microplate), 4 mL- (on 6-well microplate), 20 mL- and
40 mL- (on single-well plate) scale experiments are performed on the Robotic Scientist platform for 633,
780, and 808 nm samples synthesis. During the scale-up process, an interesting feature in retrosynthesis
is that LSPR gradually red-shifts compared to results in the nanocrystal genome (Fig. 5d), which provides
new insights into the scaling law. By taking advantage of kinetics study, SDAs (such as HCl) is identified
as the effective input to play the minor modification role in the scale-up process. A slight decrease of
c(HCl) adjusts the LSPR according to the established scaling law. Modification by adjusting c(HCl) is
proven to be applicable and then a pilot-scale experiment (15 L) is demonstrated in an agitated vessel
(Fig. S22). Therefore, this study reveals retrosynthesis and scale-up methodology by taking advantage of
the Au nanocrystals genome and kinetics study on the Robotic Scientist platform, which is expected to
have broad applications in the production of similar nanocrystals.

Discussion
Training scientists with the required knowledge takes considerable resources and different chemical and
materials synthesis routes may lead to diverse outcomes even for trained personnel. Moreover, most of
inorganic synthesis involves trial-and-error and laborious tasks with unavoidable unintentional
errors/bias. The Robotic Scientist platform described here demonstrates a notable advancement of
automation pertaining to the synthesis of nanocrystals and presents an essential step towards data-
driven materials synthesis. The sophisticated close loop involving rational design, controllable synthesis,
and retrosynthesis is achieved by converging of the Robotic Scientist-assisted synthesis on the macro-
scale and nanocrystal growth on the nano-scale. The existing chemical knowledge based on data mining,
thermodynamic and kinetic models, as well as ML models are combined to accelerate rational design of
the nanocrystal’s morphology with initial hypotheses. To avoid blind materials optimization, orthogonal
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experiments, and single-, double-, and triple-factor experiments are conducted systematically in iterations
and then the database is constructed for effective training of the ML models to enable controllable
synthesis of nanocrystals. In these processes, the accessible large data-set (in-situ characterized UV-Vis-
NIR absorption spectra and RGB color results) and small data-set (ex-situ TEM validation) are generated
to establish the Au nanocrystals genome and interpretation of the genome plays a vital role in supporting
the retrosynthesis process. It is demonstrated that the Robotic Scientist can be trained like a human
scientist for retrosynthesis and scale-up synthesis of the targeted Au nanocrystals. This work focuses on
establishing the closed-loop (design-synthesis-retrosynthesis) of automation in nanocrystal synthesis
using the Robotic Scientist platform. Although the complete Robotic Scientist is an ambitious objective,
the prototype is a good start towards a Robotic Scientist with the essential capabilities of scientific
hypotheses, experiments by synergizing the hardware and software components, and result
interpretation. It is believed that future efforts will close the gap with eventual automation of all aspects
of nanocrystals synthesis. Although the Robotic Scientist is only demonstrated for Au nanocrystals in
this work, the insights gained reveal the possibility of automation to accelerate data-driven materials
innovation on the nano-scale.

Methods
Operation of the Robotic Scientist platform. The operating video of the Robotic Scientist platform with
features is provided in the supplementary information. An illustration of the experimental preparation
(sample storage and consumable intelligent management, a mobile robot for microplate transport at
central line, a synthesis platform for in-situ sampling, three automatic pipettors for liquid handling, shake
module for integrating operation, and a robotic arm for commercial equipment service in right circle) and
experimental characterization (microplate reader for characterizing of UV-Vis-NIR absorption spectra and
color-ultra-sensitive mobile camera for in-situ color characterization) is presented.

Data mining of synthesis parameters. The parameters involved in Au nanocrystal synthesis are
recommended by our recently developed Automated Literature Recommendation System, a software
package that can read scientific paper with Chemical Named Entity Recognition9, expressions and
grammatical structures21, and some special rules in the nanomaterials research field. Using computers to
read and digest reported works of many research groups, we were able to found the statistically
representative synthesis parameters from 1300 relevant journal papers downloaded from publishers such
as Springer Nature, ACS Publicaiton, RSC Publishing, Wiley, Science, and Science Direct Elesvier. From the
plotted frequency distribution maps, we extracted the most frequently used parameters for designing
experiments on the Robotic Scientist platform.

Raw materials preparation by the Robotic Scientist platform. All the chemicals were used as received.
Hexadecyltrimethylammonium bromide (CTAB, ≥99%) and L-ascorbic acid (AA, 99%) were purchased
from Sigma Aldrich. Hydrogen tetrachloroaurate trihydrate (HAuCl4·3H2O, ≥99.9%), silver nitride (AgNO3,
99.8%), sodium borohydride (NaBH4, 98%) and hydrochloric acid (HCl, 37%) were purchased from
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Aladdin. The seed solution for gold nanocrystals was prepared firstly by mixing HAuCl4·3H2O (0.05 M,
0.25 mL) with CTAB (0.1 M, 10 mL) of the solution, followed by rapid injection of ice-cold 0.6 mL fresh
0.01 M NaBH4 under vigorous stirring for 2 min. The seed solution was kept at room temperature for 2 h
before use. The raw materials solutions including CTAB (0.1 M, 100 mL), HAuCl4 (0.01 M, 5 mL), HCl (1 M,
2 mL), AgNO3 (0.01 M, 1 mL) and AA (0.1 M, 1ml) were prepared manually for one batch of 96
experiments conducted on the platform. Different automatic REE procedures such as orthogonal, single-,
double-, and triple-factor experiments were designed.

ML prediction. As a supervised machine learning (ML) algorithm, the sure independence screening and
sparsifying operator (SISSO)22,23 is a compressed sensing-based approach to determine the critical
factors necessary to present and predict the interested properties (UV-Vis-NIR absorption spectra and RGB
color values). The results are characterized by the microplate reader and ultra-color-sensitive camera on
the Robotic Scientist platform. For the construction of experimental feature spaces during ML model
training, the set of implemented operators are:

The detailed ML models are presented in SI and the predicted results are shown in Fig. 4 to assist
controllable synthesis.

Thermodynamic models. To achieve rational design of the morphology, thermodynamic models are
derived by integration of Wulff construction24, Gibbs adsorption isotherm25,26, and Langmuir adsorption
model27,28 as follows. The relationship of the surface area of equilibrium morphology, surface energy,
and concentration of reagent is investigated.

1
where  is the surface area, and  is the surface energy (energy required to create a surface of the
unit area parallel to the (hkl) plane of the crystal). The surface energy of the (hkl) surface is proportional
to the distance from the crystal’s centre to the corresponding surface:

2
The equilibrium morphology of Wulff construction relies on the surface energy ratio. However, direct
measurement of the surface energy remains challenging. In this work, the FSAs are used as the input
parameters and ANN to acquire the surface energy. It should be pointed out that the absolute value of the
surface energy cannot be obtained from the equilibrium morphology and only the surface energy ratio
can be determined. By selecting a reference surface such as {h0k0l0}, equation (1) can be written as

ΔG = ∑
hkl

Ohklγhkl

Ohkl γhkl

= constant
γhkl
dhkl
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3
where  is the surface energy of {h0k0l0} facet,  is the fractional surface area, and 

,  is the total surface area. The thermodynamic relationship between the
concentration c and the surface adsorption excess  are described by Gibbs adsorption isotherm19,20:

4
where T is the temperature, R is the universal gas constant, and  is the surface tension. The surface
excess is usually evaluated based on the Langmuir adsorption model12,21:

5
where  saturated adsorption and  the Langmuir constant. Combining equation (4) and equation (5),
we have:

6
Integrating equation (6), we have

7
Since the surface energy and surface tension are numerically equal for the liquid and isotropic solid
surfaces, equation (7) can be simplified to

8
where ,  and .

Kinetics models. The kinetics models are then derived by monitoring the UV-Vis-NIR absorption spectra
and color (RGB value) changes during nanocrystal growth. The values of AR (and RGB) change with time
and follow the exponential decay function29:

ΔG = γh0k0l0
∑
hkl

Ahklγhkl/γh0k0l0

γh0k0l0
Ahkl

Ahkl = Ohkl/Ototal Ototal

Γ

Γ = − ,
c

RT

∂σ

∂c

σ

Γ = Γs ,
αc

1 + αc

Γs α

= −ΓsRT
∂σ

∂c

α

1 + αc

σ = −ΓsRT ∫ dc = −ΓsRT ln (1 + αc) + constant.
α

1 + αc

γ = e0ln (1 + ce1) + e2,

e0 = −ΓsRT e1 = α e2 = constant

AR (t) = AR∞ + (ARm − AR∞)e−(t−tm)/τ
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9
where,  is the final AR,  is the maximum AR in the growth process,  is the time
corresponding to the maximum AR, and  is the decay rate of the AR. Based on the results in Fig. 3g and
Fig. S7, a first-order reaction30 can be expressed as:

10
Where the optical concentration of [Au+] is extracted from UV-Vis-NIR spectra and expressed in the form
of OD[Au+], r is the reaction rate, and k is the reaction rate constant. The integrated rate law for the pseudo-
first-order reaction can then be obtained by:

11
where [P]0 is the initial optical concentration of [Au+].
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Figures

Figure 1

Robotic Scientist platform. Convergence of the database, cyber system, and physical system and process
flow: I. Rational design, II. Controllable synthesis, and III. Retrosynthesis for closed-loop synthesis of
nanocrystals based on the Robotic Scientist platform.
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Figure 2

Illustration of the Robotic Scientist platform. a, Photograph. b, Schematic representation. The color
frames in the photograph and schematic representation match each other. Backrest: Storage for the
sample, microplates and pipette tips; Central line: Mobile robot for microplate transport; Top: Three
automatic pipettors for liquid handling; Bottom: Mobile color-ultra-sensitive camera for in situ color
characterization; Platform: Synthesis platform for in situ sampling; Instrument: Microplate reader for in
situ UV-Vis-NIR absorption spectrophometry; Right circle: Robotic arm for instrument services.
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Figure 3

Data-driven rational design. a, Database of cubic Au nanocrystals: Left: Morphologies of Wulff
construction; Right: Correlations of fractional surface area and aspect ratio (more figs in Fig S1). b,
Database of Au nanorods: Left: Constraint conditions of the morphologies; Right: Refined correlations of
the fractional surface area and aspect ratio of specific nanorods. c, Data mining of Au nanocrystals
synthesis parameters (i, ii, iii, iv and v refer to the parameters of AgNO3, hexadecyltrimethylammonium
bromide (CTAB), HCl, HAuCl4 and L-ascorbic acid (AA), respectively. L1, L2, and L3 are low, middle, and
high levels). d, Classic thermodynamic model. e, Machine learning (ML) trained model. f, Kinetic analysis
of UV-Vis-NIR absorption spectra. g, Normalized ODLSPR results of nanocrystals growth under varied
C(HCl). h, Kinetic analysis of color changes with time. The color (red, green and blue)-time relationships
with different C(HCl) is presented by the symbols of square, circle and triangle, respectively. 
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Figure 4

Controllable synthesis, ML prediction, and database construction. a-c, Single-factor ML predicted models.
d-f, Double-factor ML predicted models. g, Triple-factor ML predicted models. h, LSPR-color model. i,
Overview of the number of experiments: O, S, D, T, K, and SU represent the orthogonal, single-, double-,
triple-factor, kinetics, and scale-up experiments, respectively. The relationship between the experimental
factors (as inputs) and AR (as outputs) is identified, and ‘01010101’ is the schematic diagram of the
controllable range.
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Figure 5

Robotic Scientist platform facilitated retrosynthesis. a, Au nanocrystals genome: Experimental data and
ML predictable range, and b, Linear relationship between LSPR and AR. (validation by TEM images in Fig.
S5) c, Retrosynthesis and optimization of the target Au nanocrystals (LSPR as 808 ± 10 nm, for example),
showing the experimental database, decision plate and the evaluation criteria for optimization. d,
Sequential scale-up of representative nanocrystals with parameters for minor modification study (LSPR,
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located within 633 ± 10 nm, 780 ± 10 nm, and 808 ± 10 nm, 1 mL on a 96-well microplate, 2 mL on a 12-
well microplate, 4 mL on a 6-well microplate, 20 and 40 mL on one plate). e, Bench-scale experiments on
a magnetic stirrer (200 and 1,000 mL), and pilot-scale experiment in an agitated vessel (15 L).
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