Deep learning has been widely used in medical image segmentation, although the accuracy is affected by the problems of small sample space, data imbalance, and cross-device differences. Aiming at such issues, a enhancement GAN network is proposed by using the domain transferring of the adversarial generation network to enhance the original medical images. Specifically, based on retaining the transferability of the original GAN network, a new optimizer is added to generate a sample space with a continuous distribution, which can be used as the target domain of the original image transferring. The optimizer back-propagates the labels of the supervised data set through the segmentation network and maps the discrete distribution of the labels to the continuous image distribution, which has a high similarity to the original image but improves the segmentation efficiency.On this basis, the optimized distribution is taken as the target domain, and the generator and discriminator of the GAN network are trained so that the generator can transfer the original image distribution to the target distribution. extensive experiments are conducted based on MRI, CT, and ultrasound data sets. The experimental results show that, the proposed method has a good generalization effect in medical image segmentation, even when the data set has limited sample space and data imbalance to a certain extent.