Andersen, J. B., Sternberg, C., Poulsen, L. K., Bjørn, S. P., Givskov, M., & Molin, S. (1998). New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. Applied and Environmental Microbiology, 64(6), 2240–2246.
Balleza, E., Kim, J. M., & Cluzel, P. (2018). Systematic characterization of maturation time of fluorescent proteins in living cells. Nature Methods, 15(1), 47–51. https://doi.org/10.1038/nmeth.4509
Bhatwa, A., Wang, W., Hassan, Y. I., Abraham, N., Li, X.-Z., & Zhou, T. (2021). Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Frontiers in Bioengineering and Biotechnology, 9, 630551. https://doi.org/10.3389/fbioe.2021.630551
Binder, D., Probst, C., Grünberger, A., Hilgers, F., Loeschcke, A., Jaeger, K.-E., Kohlheyer, D., & Drepper, T. (2016). Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation. PLoS ONE, 11(8), e0160711. https://doi.org/10.1371/journal.pone.0160711
Borkowski, O., Ceroni, F., Stan, G.-B., & Ellis, T. (2016). Overloaded and stressed: Whole-cell considerations for bacterial synthetic biology. Current Opinion in Microbiology, 33, 123–130. https://doi.org/10.1016/j.mib.2016.07.009
Browning, D. F., Godfrey, R. E., Richards, K. L., Robinson, C., & Busby, S. J. W. (2019). Exploitation of the Escherichia coli lac operon promoter for controlled recombinant protein production. Biochemical Society Transactions, 47(2), 755–763. https://doi.org/10.1042/BST20190059
Carlson, R., & Srienc, F. (2004). Fundamental Escherichia coli biochemical pathways for biomass and energy production: Creation of overall flux states. Biotechnology and Bioengineering, 86(2), 149–162. https://doi.org/10.1002/bit.20044
Donovan, R. S., Robinson, C. W., & Glick, B. R. (1996). Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. Journal of Industrial Microbiology, 16(3), 145–154. https://doi.org/10.1007/BF01569997
Eichmann, J., Oberpaul, M., Weidner, T., Gerlach, D., & Czermak, P. (2019). Selection of High Producers From Combinatorial Libraries for the Production of Recombinant Proteins in Escherichia coli and Vibrio natriegens. Frontiers in Bioengineering and Biotechnology, 7, 254. https://doi.org/10.3389/fbioe.2019.00254
Fukami-Kobayashi, K., Tateno, Y., & Nishikawa, K. (2003). Parallel evolution of ligand specificity between LacI/GalR family repressors and periplasmic sugar-binding proteins. Molecular Biology and Evolution, 20(2), 267–277. https://doi.org/10.1093/molbev/msg038
Garza de Leon, F., Sellars, L., Stracy, M., Busby, S. J. W., & Kapanidis, A. N. (2017). Tracking Low-Copy Transcription Factors in Living Bacteria: The Case of the lac Repressor. Biophysical Journal, 112(7), 1316–1327. https://doi.org/10.1016/j.bpj.2017.02.028
Goffin, P., & Dehottay, P. (2017). Complete Genome Sequence of Escherichia coli BLR(DE3), a recA-Deficient Derivative of E. coli BL21(DE3). Genome Announcements, 5(22), e00441-17. https://doi.org/10.1128/genomeA.00441-17
Jia, B., & Jeon, C. O. (n.d.). High-throughput recombinant protein expression in Escherichia coli: Current status and future perspectives. Open Biology, 6(8), 160196. https://doi.org/10.1098/rsob.160196
Jia, X., Bu, R., Zhao, T., & Wu, K. (2019). Sensitive and Specific Whole-Cell Biosensor for Arsenic Detection. Applied and Environmental Microbiology, 85(11), e00694-19. https://doi.org/10.1128/AEM.00694-19
Kang, D. G., Kim, Y. K., & Cha, H. J. (2002). Comparison of green fluorescent protein expression in two industrial Escherichia coli strains, BL21 and W3110, under co-expression of bacterial hemoglobin. Applied Microbiology and Biotechnology, 59(4–5), 523–528. https://doi.org/10.1007/s00253-002-1043-3
Kim, S., Jeong, H., Kim, E.-Y., Kim, J. F., Lee, S. Y., & Yoon, S. H. (2017). Genomic and transcriptomic landscape of Escherichia coli BL21(DE3). Nucleic Acids Research, 45(9), 5285–5293. https://doi.org/10.1093/nar/gkx228
Li, Z., & Rinas, U. (2020). Recombinant protein production associated growth inhibition results mainly from transcription and not from translation. Microbial Cell Factories, 19(1), 83. https://doi.org/10.1186/s12934-020-01343-y
Li, Z., & Rinas, U. (2021). Recombinant protein production-associated metabolic burden reflects anabolic constraints and reveals similarities to a carbon overfeeding response. Biotechnology and Bioengineering, 118(1), 94–105. https://doi.org/10.1002/bit.27553
Maeda, M., Shimada, T., & Ishihama, A. (2015). Strength and Regulation of Seven rRNA Promoters in Escherichia coli. PLOS ONE, 10(12), e0144697. https://doi.org/10.1371/journal.pone.0144697
Malakar, P., & Venkatesh, K. V. (2012). Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Applied Microbiology and Biotechnology, 93(6), 2543–2549. https://doi.org/10.1007/s00253-011-3642-3
Marisch, K., Bayer, K., Scharl, T., Mairhofer, J., Krempl, P. M., Hummel, K., Razzazi-Fazeli, E., & Striedner, G. (2013). A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level. PloS One, 8(8), e70516. https://doi.org/10.1371/journal.pone.0070516
Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5, 172. https://doi.org/10.3389/fmicb.2014.00172
Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z., & Hwa, T. (2010). Interdependence of cell growth and gene expression: Origins and consequences. Science (New York, N.Y.), 330(6007), 1099–1102. https://doi.org/10.1126/science.1192588
Studier, F. W., & Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology, 189(1), 113–130. https://doi.org/10.1016/0022-2836(86)90385-2
Ting, W.-W., Tan, S.-I., & Ng, I. (2020). Development of chromosome-based T7 RNA polymerase and orthogonal T7 promoter circuit in Escherichia coli W3110 as a cell factory. Bioresources and Bioprocessing. https://doi.org/10.1186/s40643-020-00342-6
Towbin, B. D., Korem, Y., Bren, A., Doron, S., Sorek, R., & Alon, U. (2017). Optimality and sub-optimality in a bacterial growth law. Nature Communications, 8, 14123. https://doi.org/10.1038/ncomms14123
Tseng, H.-C., Harwell, C. L., Martin, C. H., & Prather, K. L. J. (2010). Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E. coli. Microbial Cell Factories, 9, 96. https://doi.org/10.1186/1475-2859-9-96
Wang, J., Huang, C., Guo, K., Ma, L., Meng, X., Wang, N., & Huo, Y.-X. (2020). Converting Escherichia coli MG1655 into a chemical overproducer through inactivating defense system against exogenous DNA. Synthetic and Systems Biotechnology, 5(4), 333–342. https://doi.org/10.1016/j.synbio.2020.10.005
Weber, J., Li, Z., & Rinas, U. (2021). Recombinant protein production provoked accumulation of ATP, fructose-1,6-bisphosphate and pyruvate in E. coli K12 strain TG1. Microbial Cell Factories, 20(1), 169. https://doi.org/10.1186/s12934-021-01661-9