[1] P. Amit, K. Ajay, H. Zhong (2018) Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. Int. Microbiol. 21:97–106
[2] N. Abdu, A. Abdullahi, A. Abdulkadir (2017) Heavy metals and soil microbes. Environ. Chem. Lett. 15:65–84
[3] R. Kothalam, P. Perumal, R. Ayyanu (2019) Magnetic core-shell fibrous silica functionalized with pyrene derivative for highly sensitive and selective detection of Hg (II) ion. J. DISPER. SCI. TECHNOL. 40:1368-1377
[4] B.Q. Hao, X.F. Bu, J.W. Wu, Y.R. Ding, L.X Zhang, B. Zhao, Y. Tian (2020) Determination of Hg2+ in water based on acriflavine functionalized AgNPs by SERS. MICROCHEM. J. 155:104736
[5] J. Wang, B.L. Deng, H. Chen, X.R. Wang, J.Z. Zheng (2009) Removal of Aqueous Hg(II) by Polyaniline: Sorption Characteristics and Mechanisms. Environ. Sci. Technol. 43:5223–5228
[6] A. Rajeshwari, D. Karthiga, C. Natarajan, M. Amitava (2016) Anti-aggregation-based spectrometric detection of Hg(II) at physiological pH using gold nanorods. Mat. Sci. Eng. C-Mater 67:711–716
[7] G. GianPaolo, A.M. Caterina, P. La (2008) Molecular mechanisms triggered by mercury. Toxicology 244:1–12
[8] O. Juma, R. F. Christopher, C. Christopher (2021) Concentration-dependent health effects of air pollution in controlled human exposures. Environ. Int. 150:106424
[9] L.Y. Yu, L.Y. Zhang, G.J. Ren, S. Li, B.Y. Zhu, F. Chai, F.Y. Qu, C.G. Wang, Z.M. Su (2018) Multicolorful fluorescent-nanoprobe composed of Au nanocluster and carbon dots for colorimetric and fluorescent sensing Hg2+ and Cr6+. Sensor. Actuat. B-Chem. 262:678–686
[10] X.K. Li, Y.L. Zhang, Y.L. Chang, B. Xue, X.G. Kong, W. Chen (2017) Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles. Biosens. Bioelectron. 92:328–334
[11] Y.Y. Qi, F.R. Xiu, G.D. Yu, L.L. Huang, B.X. Li (2017) Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: A new signal amplification mechanism. Biosens. Bioelectron. 87:439–446
[12] R.A. Konstantin, B.A. Mikhail, M.V. Alexander, T.A. Zaual, B.Y. Mikhail, S.A. Karina (2018) A novel photochemical vapor generator for ICP–MS determination of As, Bi, Hg, Sb, Se and Te. Talanta 187:370–378
[13] B.H. Daisa, S.O. Alexander, P.C. Camila, O.Q. Eliézer, R.S. Anderson, V.A. Mariana (2021) Determination of Hg in xanthan gum by CV AAS after acid decomposition using reflux system. Food Hydrocolloid. 118:106802
[14] X.L. Chai, X.J. Chang, Z. Hu, Q. He, Z.F. Tu, Z.H. Li (2010) Solid phase extraction of trace Hg(II) on silica gel modified with 2–(2–oxoethyl)hydrazine carbothioamide and determination by ICP–AES. Talanta 82:1791–1796
[15] B.J. Martin, H.J. Steve, W.J. Paul (1994) Determination of trace metals in sea-water and the on-line removal of matrix interferences by flow injection with inductively coupled plasma mass spectrometric detection. J. Anal. At. Spectrom. 9:935–938
[16] Q.X. Zhou, M. Lei, Y.L. Liu, Y.L. Wu, Y.Y. Yuan (2017) Simultaneous determination of cadmium, lead and mercury ions at trace level by magnetic solid phase extraction with Fe@Ag@Dimercaptobenzene coupled to high performance liquid chromatography. Talanta 175:194–199
[17] L. Luo, Z.Y. Zhang, Y.H. Chen, L.X. Zhang, X.F. Bu, H.Q. Zhang, Y. Tian (2017) Simple and rapid surface-enhanced Raman Spectroscopy assay for safranine T and its application in highly sensitive determination of mercury (Ⅱ). Int. J. Environ. An. Ch. 97:1178–1191
[18] J. Sehan, K.Y. Woo, H.H. Sung, S. Jiye, K. Yonghwan, L. Miran, P.S. Ki (2019) Fluorescence, turn–on detection of melamine based on its dual functions as fluorescence enhancer of DNA–AgNCs and Hg(II)–scavenger. Artif. Cell. Nanomed. B 47:621–625
[19] Y.L. Cui, Y.Q. Hao, Y.T. Zhang, B.X. Liu, X. Zhu, P. Qu, D.L. Li, M.T. Xu (2016) A water–soluble and retrievable ruthenium–based probe for colorimetric recognition of Hg(II) and Cys. Spectrochim. Acta. A. 165:150–154
[20] S. Li, L.G. Xu, W. Ma, H. Kuang, L.B. Wang, C.L. Xu (2015) Triple Raman Label–Encoded Gold Nanoparticle Trimers for Simultaneous Heavy Metal Ion Detection. Small 11:1613–6810
[21] Q. Hao, M.Z. Li, J.W. Wang, X.C. Fan, J. Jiang, X.X. Wang, M.S. Zhu, T. Qiu, L.B. Ma, P.K. Chu, S.G. Oliver (2020) Flexible Surface–Enhanced Raman Scattering Chip: A Universal Platform for Real-Time Interfacial Molecular Analysis with Femtomolar Sensitivity. ACS Appl. Mater. Inter. 12:54174–54180
[22] D. Gokhan, U. Hakan, Y. Mehmet, C. Merve , A.A. Husniye , B. Fatih (2018) Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms. J. Mater. Chem. C 6:5314–5335
[23] N.Y. Hao, M. Chen, H. Yang, R.L. Li, Q. Liu, Y.Q. Zhu, L.M. Wang, M. Peng, J. Xiang, X.Q. Chen (2020) “Pomegranate-Like” Plasmonic Nanoreactors with Accessible High–Density Hotspots for in Situ SERS Monitoring of Catalytic Reactions. Anal. Chem. 92:4115–4122
[24] Y. Wang, C. Zhou, W. Wang, D.D. Xu, F.Y. Zeng, C. Zhan, J.H. Gu, M.Y. Li, W.W. Zhao, J.H. Zhang, J.H. Guo, H.H. Feng, X. Ma (2018) Photocatalytically Powered Matchlike Nanomotor for Light–Guided Active SERS Sensing. Angew Chem. Int Edit. 40:13110–13113
[25] K. Surabhi, C. Thomas, Y. Kuang (2022) Silver enriched silver phosphate microcubes as an efficient recyclable SERS substrate for the detection of heavy metal ions. J. Colloid. Interf. Sci. 605:173–181
[26] Y. Gao, L.F. Li, X. Zhang, X.N. Wang, W. Ji, J.Z. Zhao, O. Yukihiro (2019) CTAB–triggered Ag aggregates for reproducible SERS analysis of urinary polycyclic aromatic hydrocarbon metabolites. Chem. Commun. 55:2146–2149
[27] Y. Tehseen, P .Hongbin, D.W. Sun (2019) Fabrication of silver-coated gold nanoparticles to simultaneously detect multi–class insecticide residues in peach with SERS technique. Talanta 196:537–545
[28] C. Jeongan, L. Jiwon, J.H. Jae (2020) Fully integrated optofluidic SERS platform for real–time and continuous characterization of airborne microorganisms. Biosens. Bioelectron. 169:112611
[29] L. Qi, M.S. Xiao, F. Wang, L.H. Wang, W. Ji, T.T. Man, A. Ali, K. Naziruddin, P. Govindasami, R. Mostafizur, A. Abdulaziz, X.M. Qu, H. Pei, C. Wang, L. Li (2017) Poly–cytosine–mediated nanotags for SERS detection of Hg2+. Nanoscale 9:14184–14191
[30] J.B. Cui, M.Y. An, L.Y. Wang (2013) Nanocomposite–based rapid, visual, and selective luminescence turn-on assay for Hg2+ sensing in aqueous media. Talanta 115:512–517
[31] M.A. Kiwan, M.F. Hassan, W. Hamdan (1989) Studies on Tetramethyldithizone Isomers and Their Reactions with Metal Ions. B. Chem. Soc. Jpn. 62:325–329.
[32] X. Gu, C.P. Jon (2015) Surface-Enhanced Raman Spectroscopy-Based Approach for Ultrasensitive and Selective Detection of Hydrazine. Anal. Chem. 87:6460–6464
[33] S. Sujittra, W. Nootcharin, K. Mayuso, S. Siriprapa, T. Narissara (2021) Raman enhanced scattering and DFT studies on the adsorption behaviour of dithizone on silver nanoparticle. Inorg. Chem. Commun. 126:108480
[34] H. Donghoon, L.Y. Sung, K.J. Beom, L.L. Piao, C.D. Taek (2010) Mercury(ii) detection by SERS based on a single gold microshell. Chem. Commun. 46:5587–5589
[35] H. Donghoon, K.R. Yang, O.W. Jeong, K.H. Tae, M.K. Rakesh, K.S. Jong, K. Hasuck (2009) A regenerative electrochemical sensor based on oligonucleotide for the selective determination of mercury(Ⅱ). Analyst 134:1857–1862
[36] C. Ridhima, D. Abhishek, D.K. Anil, K. Sudhir, M. Nandita (2021) 2-thiazoline-2-thiol functionalized gold nanoparticles for detection of heavy metals, Hg(II) and Pb(II) and probing their competitive surface reactivity: A colorimetric, surface enhanced Raman scattering (SERS) and x-ray photoelectron spectroscopic (XPS) study. Colloid. Surface. A. 615:126279
[37] T. Li, S.J. Dong, E.K. Wang (2009) Label–Free Colorimetric Detection of Aqueous Mercury Ion (Hg2+) Using Hg2+–Modulated G–Quadruplex–Based DNAzymes. Anal. Chem. 81:2144–2149
[38] W.Y. Xie, W.T. Huang, H.Q. Luo, N.B. Li (2012) CTAB–capped Mn–doped ZnS quantum dots and label–free aptamer for room-temperature phosphorescence detection of mercury ions. Analyst 137:4651–4653
[39] L. Luo, T. Song, H.Q. Wang, Q.H. Yuan, S.H. Zhou (2018) A highly selective fluorescence sensing platform for nanomolar Hg(II) detection based on cytosine derived quantum dot. Spectrochim. Acta. A. 193:95-101
[40] X.J. Zhan, T. Xi, P. Zhou (2013) Indirect Competitive Immunoassay for Mercury Ion Determination Using Polyclonal Antibody Against the Hg–GSH Complex. Environ. Forensics 14:103–108