

Prediction of pan-solid tumor pembrolizumab benefit by integrating tumor mutation and gene expression profiling

Nickolay Khazanov

Strata Oncology

Melissa Shreve

Strata Oncology https://orcid.org/0000-0002-5983-4216

Laura Lamb

Strata Oncology

Daniel Hovelson

Strata Oncology

Marc Matrana

Ochsner Cancer Institute

Mark Burkard

University of Wisconsin-Madison

Eddy Yang

University of Alabama at Birmingham

William Edenfield

Prisma Health Greenville Memorial Hospital

Claire Dees

Lineberger Comprehensive Cancer Center

Adedayo Onitilo

ancer Care and Research Center, Marshfield Clinic Research Institute

Michael Thompson

Aurora Cancer Care, Advocate Aurora Health https://orcid.org/0000-0001-7930-4610

Gary Buchschacher

Kaiser Permanente Southern California

Alan Miller

SCL Health-CO

Alexander Menter

Kaiser Permanente Colorado

Benjamin Parsons

Gundersen Health System

Timothy Wassenaar

Waukesha Memorial Hospital

Leon Hwang

Kaiser Permanente of the Mid-Atlantic States

J. Suga

Kaiser Permanente - Northern California

Robert Siegel

Bon Secours St. Franci

William Irvin, Jr.

Bon Secours St. Franci

Suresh Nair

Lehigh Valley Health Network

Jennifer Slim

MultiCare Regional Cancer Center

Kat Kwiatkowski

Strata Oncology

Khalis Mitchell

Strata Oncology

Tina Hu-Seliger

Strata Oncology

Stephanie Drewery

Strata Oncology

Andrew Fischer

Strata Oncology

Jennifer Hipp

Strata Oncology

Travis Reeder

Strata Oncology

Hana Vakil

Strata Oncology

Bryan Johnson

Strata Oncology

Daniel Rhodes

Strata Oncology

Scott Tomlins (■ scott.tomlins@strataoncology.com)

Strata Oncology https://orcid.org/0000-0001-8661-9821

Keywords: immune response, oncology, pembrolizumab, biomarkers, pan tumor, tumor mutation burden, gene expression signature

Posted Date: January 5th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1225960/v1

 $\textbf{License:} \textcircled{\textbf{6}} \textbf{ 1} \textbf{ This work is licensed under a Creative Commons Attribution 4.0 International License.}$

Read Full License

Prediction of pan-solid tumor pembrolizumab benefit by integrating tumor mutation burden and gene expression profiling

Nickolay Khazanov¹, Melissa J. Shreve¹, Laura E. Lamb¹, Daniel H. Hovelson¹, Marc R. Matrana², Mark E. Burkard³, Eddy Shih-Hsin Yang⁴, William Jeffery Edenfield⁵, E. Claire Dees⁶, Adedayo A. Onitilo⁷, Michael Thompson⁸, Gary L. Buchschacher⁹, Alan M. Miller¹⁰, Alexander Menter¹¹, Benjamin Parsons¹², Timothy Wassenaar¹³, Leon C. Hwang¹⁴, J. Marie Suga¹⁵, Robert Siegel¹⁶, William Irvin, Jr.¹⁶, Suresh Nair¹⁷, Jennifer N. Slim¹⁸, Kat Kwiatkowski¹, Khalis Mitchell¹, Tina Hu-Seliger¹, Stephanie Drewery¹, Andrew Fischer¹, Jennifer Hipp¹, Travis Reeder¹, Hana Vakil¹, D. Bryan Johnson¹, Daniel R. Rhodes^{1*}, Scott A. Tomlins^{1*}

¹ Strata Oncology, Ann Arbor, MI; ² Ochsner Cancer Institute, New Orleans, LA; ³ University of Wisconsin Carbone Cancer Center, Madison, WI; ⁴ O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL; ⁵ Prisma Health Greenville Memorial Hospital, Greenville, SC; ⁶ UNC Lineberger Comprehensive Cancer Center, Chapel Hill NC; ⁷ Cancer Care and Research Center, Marshfield Clinic Research Institute, Marshfield, WI; ⁸ Aurora Cancer Care, Advocate Aurora Health, Milwaukee WI; ⁹ Kaiser Permanente Southern California, Los Angeles, CA; ¹⁰ SCL Health-CO, Broomfield, CO; ¹¹ Kaiser Permanente Colorado, Lone Tree, CO; ¹² Gundersen Health System, La Crosse, WI; ¹³ UW Health Cancer Center at ProHealth Care, Waukesha, WI; ¹⁴ Kaiser Permanente of the Mid-Atlantic States, Rockville, MD; ¹⁵ Kaiser Permanente - Northern California, Oakland, CA; ¹⁶ Bon Secours St. Francis, Midlothian, VA; ¹⁷ Lehigh Valley Health Network, Allentown, PA; ¹⁸ MultiCare Regional Cancer Center - Tacoma, WA

Corresponding Author:

*Daniel R. Rhodes Ph.D. Strata Oncology 8192 Jackson Road, Suite A Ann Arbor, MI 48103 USA Phone: 734-527-0992

email: daniel.rhodes@strataoncology.com

*Scott A. Tomlins, M.D., Ph.D. Strata Oncology 8192 Jackson Road, Suite A Ann Arbor, MI 48103 USA Phone: 734-527-0992

email: scott.tomlins@strataoncology.com

Manuscript word count: 6,816

Running Title: Immune Response Score predicts pembrolizumab benefit

Keywords: immune response, oncology, pembrolizumab, biomarkers, pan tumor, tumor mutation burden, gene expression signature

Abstract

Pembrolizumab is approved in many advanced solid tumor types, however predictive biomarkers and the proportion of pembrolizumab-benefiting patients vary. Biomarkers beyond PD-L1 immunohistochemistry, microsatellite instability (MSI) status, and tumor mutation burden (TMB) may improve benefit prediction. Here, leveraging treatment data (time to next treatment [TTNT]) and comprehensive genomic and quantitative transcriptomic profiling on routine tumor tissue from 708 patients (24 tumor types) collected in an ongoing observational trial (NCT03061305), we report a multivariate, integrative predictor of pan-solid tumor pembrolizumab benefit. The Immune Response Score (IRS) model, which includes TMB and quantitative *PD-1*, *PD-L2*, *ADAM12* and *CD4* RNA expression, was confirmed as predictive through comparison of pembrolizumab TTNT with previous chemotherapy TTNT in a subset of 166 patients treated with both. Applying IRS to the entire NCT03061305 cohort (n=25,770 patients), 13.2-30.7% of patients (2.2-9.6% of patients outside of pembrolizumab approved tumor types [including TMB-High and MSI-High]) are predicted to benefit substantially from pembrolizumab. Hence, if prospectively validated, the IRS model may improve pembrolizumab benefit prediction across approved tumor types including patients outside of currently approved indications.

INTRODUCTION

1

2 Checkpoint inhibitors (CPIs) have transformed cancer care with anti-PD-1 and anti-PD-L1 monoclonal 3 antibodies approved for use in multiple tumor types and pan tumor indications (microsatellite instability 4 high/mismatch repair deficient [MSI-H/dMMR] and tumor mutation burden [TMB] ≥ 10 mutations/megabase [Muts/Mb])¹⁻³. Improved biomarkers capable of predicting CPI benefit have the 5 6 potential to expand CPIs to additional patient populations outside of currently approved indications, and 7 to focus their application more effectively on likely responsive patients when alternative therapies exist. 8 PD-L1 immunohistochemistry (IHC) is required for treatment in many tumor types and serves as a companion diagnostic biomarker; although, antibodies, staining platforms, PD-L1 expressing cells 9 included in scoring algorithms, and cutoffs vary across tumor types⁴⁻¹⁴. In addition, high TMB predicts 10 11 CPI response across multiple tumor types, although TMB determination approaches vary across studies and tests, and only a fraction of TMB high (TMB-H) patients benefit 15-24. For example, in the 12 13 KEYNOTE-158 study of 9 tumor types leading to pan-solid tumor approval of second-line 14 pembrolizumab in patients with TMB \geq 10 Muts/Mb by the FoundationOne companion diagnostic (CDx) device, objective responses were observed in 37%, 13%, and 6% of patients with TMB ≥13 Muts/Mb, 15 >10 and <13 Muts/Mb, and <10 Muts/Mb, respectively ^{25,26}. 16 17 Numerous translational studies have demonstrated that PD-L1 expression, TMB (with clonal TMB 18 showing increased predictive ability vs. TMB methods including all somatic mutations), and other 19 immune related gene expression markers focusing on the tumor microenvironment (TME) are independent predictors of response 15,27-39; however, a single, integrative, clinically applicable and 20 21 validated test for treatment selection across solid tumors is lacking. Herein, leveraging pembrolizumab 22 real-world data (RWD) for treatment and comprehensive genomic and quantitative transcriptomic 23 profiling (CGqTP) data from the Strata Trial (NCT03061305)—an observational clinical trial evaluating the impact of molecular profiling on patients with advanced solid tumors — we report the development of 24 25 an integrated clinical Immune Response Score (IRS) that predicts pembrolizumab response across solid

- tumors from small, real-world, formalin-fixed paraffin-embedded (FFPE) tumor tissue specimens.
- 27 Although prospective clinical validation is required, these results demonstrate that integrated CGqTP may
- be able to increase the clinical benefit of the CPI pembrolizumab in patients with advanced solid tumors.

METHODS

Cohort

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

The Strata Clinical Molecular Database (SCMD) contains deidentified subject, molecular profiling, treatment, and survival data captured from the Strata Trial (NCT03061305), a 500,000-patient observational study for patients with advanced solid tumors. The Strata Trial has been reviewed and approved by Advarra Institutional Review Board (IRB; IRB Pro00019183) prior to study start. At enrolling health care systems, all adult patients with unresectable or metastatic solid tumors and available FFPE tumor tissue were eligible. Although the protocol allowed enrollment of patients with rare earlystage tumors, some analyses herein were restricted to patients with advanced (clinical stage III or IV) disease as indicated at the time of enrollment, or unstaged tumor types. Prior antineoplastic therapy, including start and stop dates, were collected for trial participants at the time of study entry. Antineoplastic therapy data and survival status were prospectively collected for 3 years from the time of enrollment and/or informed consent. Post-hoc power analysis was not performed to determine the sample size. A case series analysis was performed herein focusing on the development of an integrative CGqTP based pembrolizumab predictor, an exploratory aim of the trial. Patients in the SCMD tested by a version of StrataNGS assessing TMB (see Biomarker Data below) with parallel gene expression testing data from 25 January 2017 to 04 May 2021 were potentially eligible for analysis using a data cutoff of 19 May 2021. To generate an integrative CGqTP based pembrolizumab predictor, patients in the SCMD with valid StrataNGS derived TMB and gene expression data (including meeting the minimum 20% tumor content requirement) and had greater than 1 month on pembrolizumab were identified as eligible. Real-world time to next treatment (TTNT) was defined as the time in months from the initiation of a therapy to the date of commencement of the next line of therapy (or date of death). Patients without an event (i.e., new therapy start or death) were censored at their last date of medical history record update. Patients treated with either pembrolizumab monotherapy or combination pembrolizumab plus chemotherapy were included.

Samples collected after the start date of pembrolizumab were excluded. Source data verification in the Strata Trial was performed for high-risk data fields such as demographics and treatment history per an approved Trial Monitoring Plan. Data completeness, consistency, and quality assurance checks were performed across the Strata electronic data capture (EDC) system per an approved Data Management Plan. Additional details on the Strata Trial experience and Strata molecular profiling have been described⁴⁰⁻⁴².

Biomarker Data

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Multiplex PCR-based comprehensive genomic profiling (PCR-CGP), including TMB assessment, was performed on FFPE solid tumor tissue using StrataNGS (Strata Oncology, Ann Arbor, MI). The current version of StrataNGS is a 437 gene laboratory-developed test (LDT) for FFPE tumor tissue samples performed on co-isolated DNA and RNA, which has been validated on over 1,900 FFPE tumor samples, and is covered for Medicare beneficiaries⁴¹. While earlier StrataNGS versions were also used during the study period, all had similar performance for the TMB assessment (and MSI) used herein⁴². In parallel, immune gene expression was determined by analytically and clinically validated multiplex PCR-based quantitative transcriptomic profiling via an investigational test performed on the same co-isolated RNA as described⁴⁰; different versions of this quantitative transcriptomic profiling test have been run in parallel with StrataNGS (assessing 26, 46 and currently 103 expression targets), however only quantification of RNA from the 46 target version was used herein. One or more exon-spanning PCR amplicons were selected for each target gene and multiple housekeeping genes were included, with 3 pan-cancer stable housekeeping genes used for clinical testing. Multiplex RNAseq was performed using Ampliseq after reverse transcription followed by Ion Torrent-based next-generation sequencing. Expression target transcripts were measured in normalized reads per million, whereby raw expression target read counts were normalized by a factor that results in the median housekeeping gene expression value matching the same gene's standard reads per million in a reference FFPE normal cell line sample (GM24149) run in

parallel with all clinically tested samples. 40 Formal analytical validation of the multiplex PCR-based 79 80 quantitative transcriptomic panel and the integrated StrataIO model will be described separately. **Data Analysis** 81 82 TTNT across groups and treatments were visualized using the Kaplan Meier method with the log-rank 83 test used to test TTNT curve differences. Correlation between TTNT and overall survival (OS) was 84 calculated using Spearman's p among patients with both a documented death event and at least two lines 85 of therapy. Throughout this study, TMB-H was defined as ≥10 Muts/Mb by StrataNGS, given the 86 previous validation of TMB by StrataNGS and high concordance with TMB estimates from 87 FoundationOne tissue testing⁴¹. All analyses were performed in python. 88 Strata Clinical Molecular Database (SCMD) Validity Analysis 89 Analyses to assess the clinical validity of the SCMD included an analysis of TTNT in first line, stage III 90 and IV non-small cell lung cancer (NSCLC) adenocarcinoma stratified by the presence and absence of 91 standard- of-care (SOC), actionable alterations in EGFR (excluding the recent SOC actionable exon 20 92 insertions), ALK, and ROS1, as well as general TTNT in non-pembrolizumab treated patients receiving at 93 least two lines of antineoplastic therapy stratified by therapy class. (e.g., chemotherapy + chemotherapy, 94 hormonal therapy + chemotherapy, small molecule inhibitors + chemotherapy). For analysis of NSCLC 95 adenocarcinoma SOC alterations, the presence of both the genomic alteration and treatment history with 96 one of the FDA-approved targeted therapy for the alteration was considered as SOC treatment. 97 Real-World Progression Free Survival (rwPFS) as Measured by Time To Next Treatment (TTNT) 98 99 Real-world progression free survival was measured by time to next treatment (TTNT) for patients within

the SCMD database. Patient treatment history was standardized as described below, to ensure TTNT

calculations were performed appropriately for each treatment type. Medications were classified into

antineoplastic or non-antineoplastic treatments, and chemotherapy medications were defined as a subset

100

101

102

of the antineoplastic treatments. Non-antineoplastic treatments were excluded from TTNT calculations; patient treatment records with invalid or non-informative dates were also excluded (e.g., no start date or start date in the future). Consecutive single-dose treatments were combined into a course of treatment with a single start and end date. Since chemotherapy medications are frequently administered together, any chemotherapy treatment(s) with a temporal overlap of 80% or more were merged into a single treatment record. Lines of therapy were defined when a different therapy was started at, or after, the end of another therapy (with the former therapy not being administered at any time after the latter). For example, multiple starts and stops of the same therapy with a different therapy in between did not delineate different lines of treatment.

To determine TTNT, an effective end date was defined for each course of treatment as either a) date of

record if treatment is ongoing, b) date of death if patient died while on treatment, or c) the latest available end date. Furthermore, a likely progression event for the end of treatment was identified if either a) the patient died during treatment or b) the patient started another antineoplastic treatment at the end of the current treatment. TTNT was calculated as the difference, in months, between the start date and effective end date of the treatment. Only records with 1 month or more anti-neoplastic TTNT were retained.

For analysis of pembrolizumab monotherapy vs combination therapy, a pembrolizumab course of treatment was classified as combination therapy if there was 10% or more temporal overlap between the pembrolizumab treatment and chemotherapy treatment(s).

Immune Response Score (IRS) Model Development

The association of TMB and 21 candidate immune and proliferation gene expression biomarkers with pembrolizumab TTNT was determined using standard Cox proportional hazards regression. TMB measurements were log₂-transformed and gene expression measurements were log₂-transformed and median-centered per laboratory workflow (two PCR cycling conditions were used with the 46 gene expression test) prior to analysis. For gene expression biomarkers with two independent expression

amplicons on the 46 gene RNA test version (*PD-1* and *PD-L1*), results were averaged prior to inclusion in the analysis (e.g. *PD-1* composite). For multivariate model building, backward stepwise regression was used, first including all variables in the model, then selectively removing the least significant variables so long as the overall model significance improved. This approach was performed several times on a subsampling and showed that most significant models [as measured by Akaike information criterion (AIC)] contained no more than half-dozen factors. We therefore performed a brute-force search of all combinations of expression targets to find the most significant factors. To minimize the risk of overfitting, a final 5-factor model was selected. Individual patient IRS were derived from the Cox model as:

IRS = 4.03 * exp(0.29 * TMB + 0.15 * PD-1 + 0.14 * PD-L2 - 0.14 * CD4 - 0.07 * ADAM12)

where an IRS of 10 is equal to the median hazard rate observed in the dataset, values greater than 10 represent decreased hazard (i.e., more benefit from pembrolizumab) and values less than 10 represent increased hazard (i.e., less benefit from pembrolizumab). We assigned patients to one of three IRS groups to compare patient outcomes (i.e., Low (L) < 8.5, $8.5 \le$ Intermediate (I) < 11.9, and High (H) \ge 11.9) through dividing the dataset into 8 equal IRS bins and combining bins based on overlapping TTNT curves. Cox proportional hazards models were utilized to examine the interaction between pembrolizumab vs. prior chemotherapy TTNT within the same patient and IRS as a continuous variable. The likelihood ratio test for interaction compared the reduced model, which excluded the IRS by treatment interaction, with the competing full model, which included the IRS by treatment interaction.

RESULTS

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

Clinical Molecular Data

The Strata Trial (NCT03061305) is an observational clinical trial evaluating the impact of tumor molecular profiling for patients with advanced solid tumors. De-identified demographic, clinical and molecular data from patients in the Strata Trial is maintained in the Strata Clinical Molecular Database (SCMD). With a data-cutoff of 19 May 2021, the SCMD contains clinical and molecular data from 39,252 unique patients with stage III or IV solid tumors (from 28 tumor types) enrolled from 25 United States health care systems who had routine FFPE tumor tissue molecularly profiled by the StrataNGS CGP test^{41,42} with 7,978 patients (from 28 tumor types) having treatment data from at least one antineoplastic agent. For all SCMD patients, antineoplastic treatment start and stop dates (for all prior therapies and up to 3 years after Strata trial enrollment) were obtained from automated electronic health record queries or manual entry; data was updated regularly by submitting institutions, and date of death was obtained similarly. Real-world TTNT was determined directly from treatment start and stop dates for each line of therapy. Among the 7,978 patients, the median follow-up from start of first treatment and Strata trial enrollment was 11 months [interquartile range (IQR) 4-24 months] and 5 months (IQR 1-11 months), respectively. The median number of total therapies and lines of therapy per patient was 2 (both IQR 1-3), with a median of 1 total therapy and 1 line of therapy (both IQR 1-2) after Strata trial enrollment. As expected, in patients who had at least two lines of therapy, median TTNT was shorter with each subsequent line of therapy (Figure S1). Given the substantial proportion of patients in the SCMD with NSCLC and extensive previous characterization of molecular subtypes and associated therapies, we leveraged the NSCLC cohort to assess the validity of using the SCMD to support this study. Of the 7,978 total patients, 1,173 (14.7%) had NSCLC, with a median age at enrollment of 65 years (IQR 60-73), 51.8% were women, 56.4% were

white, and 8.0% had NSCLC squamous cell carcinoma, similar to data reported for patients in the initial report from the Flatiron/Foundation Medicine clinical molecular database ¹⁷. At enrollment, of the 1,173 NSCLC patients in the SCMD, 24.8% and 75.2% had stage III and IV cancer, respectively. Of note, in 139 patients with NSCLC adenocarcinoma harboring standard of care (SOC) alterations in *EGFR*, *ALK* or *ROS1*, 84% received at least one matched targeted therapy, while only 68 of 935 (7.2%) patients without SOC *EGFR*, *ALK* or *ROS1* alterations received one or more of these targeted therapies. These treatment results contrast with the initial report of the Flatiron/Foundation Medicine clinical molecular database, where only 480 of 737 (65%) patients with NCCN-driver alterations in *EGFR* and *ALK* rearrangements received targeted therapy after advanced NSCLC diagnosis, while 26% of EGFR inhibitor treatment was in patients without an *EGFR* alteration¹⁷. In part this may be due to the contemporary nature of our series, as for example, 57 of 81 (70%) patients with *EGFR* SOC alterations in the SCMD treated with EGFR TKI received osimertinib (or an osimertinib containing combination regimen) as their first line of EGFR TKI therapy, and 26 of 28 (93%) patients with *ALK* SOC alterations treated with ALK TKIs received alectinib or brigatinib as their first line of ALK TKI therapy. Additional details and NSCLC analyses supporting the validity of TTNT and the SCMD are shown in **Figure S2**.

Biomarkers of Pembrolizumab Benefit Analysis

We have previously demonstrated that molecular alteration frequency in the first ~30,000 patients enrolled in the Strata Trial⁴² was similar to that observed in the Memorial Sloan Kettering single institution pan-cancer profiling effort, MSK-IMPACT⁴³, supporting the generalizability of the SCMD. Herein, to assess general associations and develop an integrative CGqTP tumor-agnostic tumor pembrolizumab predictive biomarker, we first limited results to the 5,233 patients in the SCMD who met the following criteria: TMB measurements from StrataNGS testing (including meeting the overall 20% tumor content requirement), immune gene expression quantification from an investigative multiplex PCR based transcriptomic profiling test, and treatment for at least one month with at least one antineoplastic agent. Of these 5,223 patients, 708 (13.5%) were treated with pembrolizumab. As shown in **Figure 1a**,

this cohort was comprised of patients with 24 tumor types, with NSCLC accounting for 293 (41.4%). Real-world TTNT was inferred for each patient as the time from starting pembrolizumab to the time of stopping pembrolizumab and starting a new therapy or death. To establish the appropriateness of TTNT for studying pembrolizumab treatment outcomes, TTNT was compared to overall survival (OS). As shown in Figure S3a, the overall correlation (Spearman ρ = 0.61) was impacted by two outliers, one of which was a patient with metastatic melanoma who was briefly treated with pembrolizumab, then ipilimumab + nivolumab, prior to an extended course with imatinib (the patient harbored two VUS in KIT; FigureS3a blue box), while the other was a patient with metastatic NSCLC harboring an EML4-ALK fusion by StrataNGS testing who was briefly treated with pembrolizumab and chemotherapy before prolonged treatment with crizotinib and lorlatinib (FigureS3a red box); excluding these two patients, TTNT and OS were more strongly correlated (Spearman $\rho = 0.75$). Lastly, to confirm the validity of ≥ 10 Muts/Mb from StrataNGS testing to define TMB-H, we demonstrated that TMB-H patients (n = 208) had significantly longer pembrolizumab TTNT vs. TMB-L patients (n = 500; median TTNT >24 months vs. 10.3, log rank *p*<0.0001; **Figure S3b**). To identify potential biomarkers of pembrolizumab benefit, we first considered 21 candidate immune and proliferation gene expression biomarkers assessed across clinical RNA tests run in parallel with the StrataNGS CGP test (which generates TMB). Importantly, target gene expression (in normalized reads per million [nRPM]), were highly correlated from independent amplicons targeting different exons of PD-L1 (n=25,769 samples, concordance correlation coefficient =0.83) and PD-1 (n=25,769 samples, concordance correlation coefficient =0.78). Likewise, expression profiles of these 21genes across 27 directly comparable tumor types were highly correlated between 8,424 TCGA tumors and 18,062 Strata RNA component profiled tumors (median Spearman $\rho = 0.871$ for all candidate genes; **Table S1**). We therefore assessed the association of pembrolizumab TTNT with StrataNGS derived TMB and the 21 candidate immune gene expression biomarkers. As shown in **Table 1**, significant (p<0.01) univariate predictors included TMB (HR = 0.77; p<0.0001), composite PD-L1 expression (HR = 0.90; p=0.0007),

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

223 TNFRSF9 expression (HR = 0.92; p=0.007). 224 To develop an integrative pembrolizumab benefit predictor, we performed a multi-part process. First, we 225 performed backwards stepwise regression to fit a multivariate Cox proportional hazards model, iterating 226 100 times on randomly selected two-thirds of the dataset. TMB, PD-1 and PD-L2 were the three most 227 frequently included variables across the 100 models. Hence, we then used a brute-force approach, locking 228 in these three variables and using backwards stepwise regression adding in 1, 2 or 3 of the remaining 229 candidate variables, iterating 100 times on randomly selected 2/3rds of the dataset, and evaluating the 230 Akaike's Information Criteria (AIC) and Bayesian Information Criterion (BIC) of the trained model on 231 the held-out 1/3 of the dataset. As additional components increased the BIC with minimal decrease in 232 AIC, we chose a five variable multivariate model including TMB, PD-1, PD-L2, CD4, and ADAM12. We 233 therefore entered all five variables into model selection 100 times on randomly selected two-thirds of the 234 dataset and determined the model coefficients, confirming that that model coefficients developed in the 235 full 708 patient cohort were stable, and these coefficients were used in the final integrative model (Figure 236 S4a). Multivariate analysis on only the final five variable set confirmed that all five biomarkers were 237 independent predictors of pembrolizumab treatment outcome (Table 1). Notably, PD-L1 was not included 238 in the final model and forced addition to the five variable model had essentially no impact on performance, even when trained on the full 708 patient cohort (Figure S4b). As shown in Figure S4c, 239 240 TMB was minimally correlated with all final model gene expression biomarkers (Spearman $\rho = -0.106$ 241 [CD4] to -0.0.015 [PD-1]), while correlation of individual gene expression biomarkers ranged from $\rho =$ 242 $0.217 (ADAM12 \text{ vs. } PD-1) \text{ to } \rho = 0.675 (PD-L2 \text{ vs. } CD4).$

composite PD-1 expression (HR = 0.90; p=0.0011), PD-L2 expression (HR = 0.91; p=0.005) and

Integrative Immune Response Score (IRS) Development

222

243

244

245

246

To evaluate the potential of the multivariate model to predict pembrolizumab treatment outcome in patients, we derived individual Immunotherapy Response Scores (IRS) from the final five variable model, assigned the 708 patients to one of three IRS groups based on potential clinical utility (see Methods; IRS-

High [-H; n=266], IRS-Intermediate [-I; n=176] and IRS-Low [-L; n=266]; IRS-H associated with greatest benefit of pembrolizumab), and compared group outcomes. Kaplan Meier analysis of pembrolizumab TTNT showed that treatment outcome varied widely across groups, with median TTNT ranging from > 24 months in IRS-H, to 17.5 months in IRS-I, to 7 months in IRS-L (log-rank test p<0.0001 IRS-H vs. -L; Figure 1b). To compare to OS, Kaplan Meier analysis was also performed with respect to time-to-death, censoring patients with respect to latest date of follow-up, producing similarly significant difference in outcome for IRS-H vs. -L (n=707, log-rank test p<0.0001; Figure S5a). To establish the IRS model as predictive and not prognostic, we evaluated a chemotherapy comparator cohort, consisting of the most recent previous chemotherapy line from the 166 of 708 (23%) pembrolizumab patients with documented chemotherapy treatment prior to monotherapy pembrolizumab. While chemotherapy median TTNT was similar across all three IRS groups at 7.0-8.2 months (Figure 1c), pembrolizumab had significantly longer TTNT than chemotherapy in IRS-H (median TTNT >24 months vs. 7.1 months; log-rank p value <0.001) and IRS-I (median TTNT 13.5 months vs. 8.2 months, log-rank p value 0.02), but no significant difference was observed for pembrolizumab vs. chemotherapy TTNT in IRS-L (median TTNT 5.8 vs. 7.1 months; log-rank p value = 0.65). The test for interaction between pembrolizumab vs. previous chemotherapy treatment and continuous IRS was significant (likelihood ratio test for interaction p<0.005), confirming the predictive nature of the IRS biomarker. Through a similar analysis using continuous TMB (instead of the IRS model), TMB alone was also confirmed as a predictive biomarker of pembrolizumab TTNT (likelihood ratio test for interaction p<0.005). However, IRS (expression component + TMB) had significantly greater predictive ability than TMB alone (likelihood ratio test between models, p=0.04). As in the overall cohort, TTNT and OS comparisons were similar between IRS-H vs. -L patients in this predictive analysis (in addition to a cohort of 201 patients considering pembrolizumab monotherapy or combination therapy vs. previous

chemotherapy), although IRS-I did not appear to be a separate group in these comparisons (Figure S5b-

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

d). Taken together, these results demonstrate the predictive nature of the IRS model for pembrolizumab benefit prediction vs. an internal chemotherapy comparator and highlight the benefit of combining CGP biomarkers (TMB) with parallel quantitative gene expression of the tumor and TME to improve performance.

Robustness of IRS model to potential confounding factors

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

We next evaluated potential factors that could confound the utility of IRS [i.e., tumor type, therapy type (monotherapy vs combination therapy) and TMB status]. First, we compared pembrolizumab TTNT in the 293 patients with NSCLC (41.4%) to 415 patients with other tumor types (48.6%) across IRS groups and found no significant differences (median TTNT >24 vs. >24, log-rank p= 0.13 for IRS-H; median TTNT > 24 vs. 13.5, log-rank p=0.19 for IRS-I; median TTNT 7.2 vs. 6.1, log-rank p=0.10 for IRS-L; Figure 2a). Then we compared pembrolizumab TTNT in the 481 patients treated with pembrolizumab monotherapy (67.9%) to 227 patients treated with pembrolizumab plus chemotherapy (combination therapy) (32.1%), and found no significant difference in any IRS risk group (median TTNT >24 vs. >24, log-rank p= 0.87 for IRS-H; median TTNT > 17.5 vs. 15.6, log-rank p=0.77 for IRS-I; median TTNT 6.4 vs. 7.2, log-rank p=0.20 for IRS-L; Figure 2b). Lastly, given the pan-tumor approval of pembrolizumab in TMB-H patients, if the IRS risk groups were exactly overlapping with TMB status, the IRS would have no clinical utility. Therefore, we examined the predictive effect of IRS groups among the 208 (29.4%) TMB-H patients and 500 (70.6%) TMB-L patients. While 167 (80%), 28 (13%) and 13 (6%) of the 208 TMB-H patients were IRS-H, -I, and -L, respectively, the TMB-H/IRS-H group still had significantly longer pembrolizumab TTNT compared to TMB-H/IRS-L (median TTNT >24 months vs. 10.4 months; log rank p-value = 0.001, Figure 3c), demonstrating the added predictive value of immune gene expression, even among TMB-H patients. Among the 500 TMB-L patients, 99 (20%), 148 (30%) and 253 (50%) were IRS-H, -I, and -L, respectively. IRS robustly stratified pembrolizumab TTNT, with median pembrolizumab TTNT of 20.8 months, and 7 months in IRS-H, and -L groups, respectively (log rank pvalue = <0.001, Figure 3c), demonstrating that TMB alone is insufficient for maximizing the prediction

of pembrolizumab benefit. Together, these results demonstrate that the IRS biomarker is robust to tumor type, pembrolizumab monotherapy vs. combination chemotherapy treatment, and TMB status.

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

297

298

Stability of IRS across temporal sample collection variability prior to CPI treatment

Tissue based TMB has recently been shown to be stable for nearly all patients with advanced cancer through whole genome sequencing of sequential tissue samples. 44 however less is known about the stability of an integrative CGqTP model predicting pembrolizumab benefit. Hence, we first confirmed that in the 426 total patients treated with both chemotherapy (regardless of whether chemotherapy was pre- or post- pembrolizumab treatment) and pembrolizumab, the timing of sample collection (prechemotherapy and pembrolizumab vs. post-chemotherapy but prior to pembrolizumab) did not significantly impact median pembrolizumab TTNT across IRS groups (Figure S6a). Next, we directly assessed IRS stability across patients in the SCMD with sequentially tested tissue samples. As analyses presented thus far were limited to the most recently tested sample per patient (if testing had been performed more than once) and to patients who started pembrolizumab after the collection date of the included sample, we therefore identified 69 total patients in the SCMD who 1) had valid IRS scores from two specimens with different collection dates, 2) were confirmed to be of clonal origin as part of routine StrataNGS clinical testing, and 3) did not have CPI therapy starting between the collection dates of the samples. As shown in Figure S6b, the integrative IRS model scores were highly correlated (Pearson r=0.75, respectively) in paired specimens, and only two (3%) patients (n=2) moved from the IRS-H to -L (or vice versa), supporting the stability of the IRS across temporal sampling in the absence of checkpoint inhibitor therapy. Lastly, we assessed the performance of IRS in 84 patients who otherwise would have been included in the 708 total patient discovery cohort described above, but had their sample collected after starting pembrolizumab. Hypothesizing that CGP testing in this clinical scenario would usually be performed as the patient was progressing on pembrolizumab, we predicted that IRS would be minimally predictive of pembrolizumab TTNT. In these 84 patients, continuous IRS was not predictive of

pembrolizumab TTNT (p=0.61), with median pembrolizumab TTNT of 15.9 vs. 15.6 months in IRS-H vs. -L, log rank p=0.92, **Figure S6c**). Together, these results support the stability and validity of IRS in sequential tumor tissue samples collected prior to CPI treatment.

Pan Solid Tumor Distribution of IRS groups

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

Although future studies are required to prospectively validate IRS performance for routine clinical use, we sought to leverage IRS distributions across tumor types (and pan-cancer biomarkers) in the entire SCMD to understand the potential impact of IRS both within and outside of currently approved pembrolizumab indications. Thus, we determined IRS for the 25,770 patients in the SCMD (NCT03061305) with valid TMB and gene expression data, with 13.2%, 17.5%, and 69.3% of all patients classified as IRS-H, -I, and -L, respectively (Figure 3a). Pembrolizumab approved tumor types (without consideration of PD-L1 IHC status) had a substantially higher proportion (22.1% vs. 7.1%) of IRS-H patients than non-pembrolizumab approved tumor types, as well as a higher proportion (23.6% vs. 13.4%) of IRS-I group patients (Figure 3b). Tumor types with the highest proportion of IRS-H group patients include several known to be highly responsive to CPIs, including melanoma, non-melanoma skin cancer, NSCLC, lung small cell carcinoma (Lung – Other), and bladder (urothelial) tumors (Figure 3c). We next examined the pan-solid tumor distribution of IRS groups by TMB status, given the pan-tumor approval of pembrolizumab in TMB-H tumors. Whereas 91% of TMB-H patients were also IRS-H or -I, 22.0% of all patients in the SCMD were IRS-H or -I and TMB-L (vs. 8.7% IRS-H or -I and TMB-H), demonstrating that while TMB-H identifies most IRS-I/-H patients, IRS identifies a larger set of TMB-L patients predicted to benefit from pembrolizumab (Figure 3d). Finally, to estimate the overall proportion of patients with solid tumors who might benefit from pembrolizumab outside of currently approved tumor types and biomarkers, we stratified the SCMD population by all pembrolizumab approved indications (pembrolizumab approved tumor types, TMB-H, or MSI-H as approved). As shown in Figure 3e, if prospectively validated, an additional 2.2-9.6% of patients (2.2% IRS-H and 7.4% IRS-I) with solid

tumors outside of currently approved indications are predicted to have substantial benefit from pembrolizumab.

Discussion

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

Leveraging a robust clinical molecular database from the StrataTrial (NCT03061305), we developed a highly significant, integrative, multivariate Immune Response Score (IRS) model that combined TMB and quantitative immune gene expression to predict real-world pembrolizumab treatment outcomes in 708 patients from 28 solid tumor types. IRS model inputs were generated from simultaneously performed, clinically validated, multiplex PCR based DNA and RNA NGS (StrataNGS CGP and a separate RNA panel for quantitative gene expression)⁴⁰⁻⁴². These assays were performed on co-isolated DNA and RNA and share the same key sample input requirements defined from over 30,000 consecutively received FFPE tumor samples for CGP testing: >20% tumor content and 2mm² tumor surface area (from 10 x 5um FFPE sections)^{41,42}. Of note, only 38.3% of samples in the development cohort included herein, and 38.8% of the 25,770 total patients in the SCMD used to assess IRS distribution, met the minimum tumor surface area requirements (≥25mm²) of FoundationOne CDx⁴5, the FDA approved companion diagnostic device to identify TMB-H tumors. The IRS model predicts an individual patient's likelihood of benefit with pembrolizumab therapy. Patients were grouped into three categories (IRS-H, IRS-I, and IRS-L) based on pembrolizumab TTNT as a measure for potential clinical utility, with IRS-H patients having median pembrolizumab TTNT > 24 months, while IRS-L patients had median pembrolizumab TTNT of 7 months. Critically, in the subset of 166 patients treated with pembrolizumab monotherapy who had prior chemotherapy treatment, we confirmed the predictive nature of the IRS model, as IRS-H patients had significantly longer TTNT on pembrolizumab vs. their immediately preceding chemotherapy treatment (median TTNT >24 months vs. 7.1 months), whereas IRS-L patients did not (median TTNT 5.8 vs. 7.1), with a significant test for interaction between continuous IRS and pembrolizumab vs. chemotherapy. Notably, the association of

IRS with pembrolizumab TTNT was stable when stratified by NSCLC vs. other tumor types, pembrolizumab monotherapy vs. combination therapy, TMB-H vs. TMB-L tumors, and pre- vs. postchemotherapy sample collection, suggesting that the model captures universal biological features of pembrolizumab benefit. When applied to all 25,770 patients in the SCMD where IRS could be generated, IRS-H was more frequent in tumor types known to derive benefit from CPI, but occurred in subsets of nearly every tumor type. Outside of approved pembrolizumab tumor type indications, including TMB-H and MSI-H pan cancer, 2.2% patients in the SCMD were IRS-High, representing a conservative estimate as many approved indications have PD-L1 IHC requirements. Hence, if subsequently validated in our ongoing studies, the improved predictive clinical utility of the integrative IRS model would be demonstrated to more accurately identify patients across tumor types with a high probability of response to pembrolizumab over single biomarker approaches. Intriguingly, an additional 7.4% of patients were IRS-I outside of tumor types with FDA-approved pembrolizumab indications (also excluding MSI-H and TMB-H). Although these patients had significantly longer monotherapy pembrolizumab TTNT vs. their previous chemotherapy (13.5 vs. 8.2 months) and the proportion of IRS-I patients in selected tumor types is consistent versus observed response rates (ORR) in early phase pembrolizumab (e.g., 13% of SCMD patients with pancreatic cancer are IRS-I versus an ORR of 10% in non-biomarker selected patients treated with pembrolizumab monotherapy in the KEYNOTE-028 trial³⁶), tumor specific trials may be needed to demonstrate a clear benefit of pembrolizumab in this subset of patients. As the IRS was developed from a single integrative clinical platform using co-isolated DNA and RNA to generate TMB and highly quantitative gene expression assessment of the tumor and TME from over 700 patients across 24 tumor types, the IRS model holds several potentially interesting biological insights. First, TMB, PD-1 expression, and PD-L2 expression were each independent predictors of pembrolizumab benefit, indicating a multiplicative predictive effect across these biomarkers representing increased antigenicity (TMB), the direct target of pembrolizumab (PD-1), and one of the two PD-1 interacting

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

ligands (PD-L2). Notably, although PD-L1 expression was predictive of pembrolizumab TTNT on univariate analysis, it was not an independent significant predictor identified through our multi-step multivariate model developed process. In an exploratory analysis, when PD-L1 RNA was added into the IRS model and trained on the entire cohort, essentially no change in performance was observed, consistent with its predictive ability being captured by the other model components. While PD-L1 evaluation by IHC is the current FDA-approved biomarker to predict pembrolizumab (or other CPI) benefit either individually or in models⁴⁵⁻⁴⁷, expression varies by antibody clone and nearly all studies show at least some responsive PD-L1-IHC low/negative patients, suggesting that other PD-1 ligands beyond PD-L1, such as PD-L2, may be relevant for predicting clinical response^{30,48-51}. Consistent with this observation, in head and neck squamous cell carcinoma, PD-L2 expression by IHC predicted pembrolizumab response and progression free survival independent of PD-L1 IHC status⁴⁶. CD4 and ADAM12 were both negative predictors of pembrolizumab TTNT in numerous model training iterations and were significant in the final five variable IRS model. Although both effector CD8+ and CD4+ T cells have been shown to express PD-1⁴⁷, CD8A (which encodes CD8 and was included in our 21 candidate genes), was more predictive of CPI benefit in a recent metanalysis of whole transcriptome data than either PD-L1 expression or the T cell inflamed gene expression signature¹⁵, and hence the inclusion of CD4 as a negative predictive factor in the final IRS model likely reflects at least in part the ratio of effector (CD8+) to helper/regulatory CD4+ T cells in the TME. Although less is known about the direct role of ADAM12 in CPI response, it is highly expressed by cancer associated fibroblasts CAFs—as shown through single cell sequencing studies and bulk tumor profiling as a driver of feed forward TGF-β signaling, has been shown to act as a T cell co-stimulatory molecule expressed on some regulatory T cells, and has been identified in a signature of negative response to ICI in melanoma⁵²⁻⁵⁷. Of note, in colorectal cancer, where single cell sequencing demonstrated high ADAM12 expression in CAFs⁵⁸, as well as urothelial carcinoma, TGF-β signaling from CAFs has been shown to drive T cell exclusion, a hallmark of low response to ICI⁵⁹⁻⁶³. Taken together, these results support

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

additional investigation into a potential mechanistic role for ADAM12 in ICI resistance, as well as demonstrate the complementary nature of the integrative biomarkers in the IRS model, which integrates measurement of tumor neo-antigenicity (TMB), with quantification of key tumor and TME biomarkers. Current FDA-approved CPI biomarkers include PD-L1 IHC, TMB and MSI-H (although the latter indication was initially approved without a companion diagnostic biomarker), however these biomarkers have several practical challenges for clinical use including variations in assay parameters, platforms, and predictive thresholds^{4,64-67}. For example, although there are multiple tissue TMB assays commercially available (LDTs, FDA cleared devices, and a single FDA approved device), TMB testing typically has a large tissue requirement, which is frequently not feasible in patients with advanced cancers, and such approaches do not allow for parallel assessment of gene expression biomarkers. Thus, there is a need for optimized CPI biomarkers with improved predictive utility that can be developed into a scalable clinical test that is applicable to nearly all cancer patients, including those with limited tumor tissue available. As described herein, IRS addresses these needs by 1) co-isolating DNA and RNA to measure multiple classes of biomarkers from the same tissue sample; 2) optimizing pembrolizumab treatment benefit prediction via explainable model development using highly quantitative gene expression data in a large pan-tumor cohort with real world treatment data; and 3) utilizing a clinically validated and scalable platform developed for real world FFPE samples with minimal tumor size (2 mm² tumor surface area)^{41,42}. In comparison, only 38.8% of the 25,770 patients in the SCMD used to assess IRS distribution met the minimum tumor surface area requirements (≥25 mm²) for FoundationOne CDx, the FDA approved companion diagnostic device to identify TMB-H tumors⁴⁵, suggesting that the majority of real-world patients with advanced solid tumors have insufficient tumor samples to determine TMB. Our analysis has several potential limitations. First, the real-world dataset was biased toward tumor types for which pembrolizumab is FDA-approved or treatment was selected based on other biomarker results, and thus, as expected, was enriched for patients benefiting from pembrolizumab. Indeed, the proportion of patients in the IRS-High group was much higher in the pembrolizumab treatment cohort (38%) than the

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

broader tumor profiling dataset (13.2%). Second, the TTNT endpoint likely includes some patients who stopped treatment due to treatment toxicity or switching therapy to a more appropriate regimen based on molecular results (as described above) and not disease progression, although this likely represents a minority of events. Additionally, only advanced patients were eligible for the Strata Trial, but adjuvant therapy cannot be directly excluded using our treatment data collection approach, with this limitation being relevant for our pembrolizumab vs. prior chemotherapy analysis; however, this would tend to bias against pembrolizumab TTNT being longer than adjuvant chemotherapy in patients with significant delay between adjuvant chemotherapy and development of metastatic disease (and pembrolizumab treatment). Additionally, although it is unclear if our model is applicable to other PD-1 monoclonal antibodies, PD-L1 monoclonal antibodies, and/or combined PD-1/PD-L1 and CTLA4 antibody therapy, we focused on pembrolizumab herein given the large amount of treatment data in our cohort across tumor types. Likewise, future studies will also investigate whether inclusion of single gene-based DNA biomarkers identified as potentially predictive in one or more tumor types (e.g. STK11, PBRM1, ARID1A, CDNK2A⁶⁸-⁷⁵ or additional immune related genes assessed on the current expanded quantitative expression panel run in parallel with StrataNGS testing can improve the performance of the IRS model. Limited PD-L1 IHC data was available for subjects in the SCMD, and hence we are not able to directly compare performance of IRS and PD-L1 IHC for predicting pembrolizumab benefit; additionally, this limitation also biases against the overall proportion of patients outside of currently approved indications predicted to benefit from pembrolizumab by IRS, as herein we considered all patients in approved tumor types to be in an approved indication, although in many tumor types only a minority of patients are approved for pembrolizumab treatment based on PD-L1 IHC cutoffs. Notably, we chose to use standard multivariate regression with a minimum number of variables versus other approaches that have included a larger number of immune related genes^{27,34,39} or used more advanced machine learning approaches⁷⁶ to leverage the highly quantitative nature of CGqTP and minimize the risk of overfitting, as our model was trained and characterized on the same dataset. Importantly, while we were able to use an internal chemotherapy control cohort to determine the predictive nature of the biomarker, additional, pre-specified validation of

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

the IRS model in an independent cohort will be required to establish the clinical utility of IRS groups for predicting pembrolizumab benefit.

In summary, after demonstrating the face validity a clinical molecular database containing treatment data and molecular profiling from a large observational trial of patients with advanced cancer, we report the development of a biologically rational, integrative CGqTP based model of pembrolizumab benefit that is robust to tumor type, TMB status, pembrolizumab monotherapy vs. combination therapy treatment, and pre-pembrolizumab sample collection timing. Importantly, the IRS biomarker was developed from a single clinically validated NGS platform capable of simultaneously performing comprehensive genomic profiling (required for TMB but also for therapy options outside of CPI) and in parallel precise quantification of tumor- and TME-relevant gene expression, providing a clear diagnostic pathway for potential clinical application. IRS has potential application for both refining the use of pembrolizumab in tumor types for which immunotherapy is indicated and therapeutic choice is present (as well as monotherapy pembrolizumab vs. combination therapy as in NSCLC), as well as for guiding pembrolizumab treatment decisions for patients outside of indicated tumor types. Most notably, IRS-High patients treated with pembrolizumab had not reached median TTNT after 24 months (compared to a median TTNT of 7.1 months on their prior line of chemotherapy), suggesting that this population may benefit similarly to the TMB-H population identified in KEYNOTE-158 (29% overall response rate; 66% of responders having a duration of response \geq 24 months). Herein, across the entire SCMD, 2.2% of patients were IRS-H/TMB-L/not-MSI-H and outside of approved pembrolizumab approved tumor types, and an additional 7.4% were IRS-I. Hence, if further validated in additional cohorts, the IRS model has the potential to markedly expand the benefit of pembrolizumab across solid tumors, addressing one of the most important challenges in precision oncology.

493

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

495	ACKNOWLEDGEMENTS				
496 497 498 499 500 501 502 503	The authors thank Drs. Malek Safa (Kettering Cancer Center, Kettering, OH), Arvinda Padmanabhan (Baptist Health, Louisville, KY), Vallathucherry Harish (Hayworth Cancer Center at High Point Medical Center, High Point, NC), Abdul Hai Mansoor (Kaiser Permanente Northwest, Portland, Oregon), Dan Anderson (Metro-Minnesota Community Oncology Research Consortium, St. Louis Park, MN), William Schulz (UW-SwedishAmerican, Rockford, IL), Anneliese Gonzalez (UT Health – Memorial Hermann Cancer Institute, Houston, TX) as principal investigators and for their sites contribution to the study. We wish to dedicate this manuscript to our departed colleague, Dr. Michael Guarino (Christiana).				
504	AUTHOR CONTRIBUTIONS				
505	Conception and design: Kat Kwiatkowski, D. Bryan Johnson, Daniel R. Rhodes, Scott A. Tomlins,				
506	Administrative support: Laura E. Lamb, Melissa J. Shreve				
507 508 509 510	Provision of study materials or patients: Marc R. Matrana, Mark E. Burkard, Eddy Shih-Hsin Yang, William Jeffery Edenfield, E. Claire Dees, Adedayo A. Onitilo, Michael Thompson, Gary L. Buchschacher, Alan M. Miller, Alexander Menter, Benjamin Parsons, Timothy Wassenaar, Leon C. Hwang, J. Marie Suga, Robert Siegel, William Irvin, Jr., Suresh Nair, Jennifer N. Slim				
511 512 513 514 515	Collection and assembly of data: Marc R. Matrana, Mark E. Burkard, Eddy Shih-Hsin Yang, William Jeffery Edenfield, E. Claire Dees, Adedayo A. Onitilo, Michael Thompson, Gary L. Buchschacher, Alan M. Miller, Alexander Menter, Benjamin Parsons, Timothy Wassenaar, Leon C. Hwang, J. Marie Suga, Robert Siegel, William Irvin, Jr., Suresh Nair, Jennifer N. Slim, Kat Kwiatkowski, Khalis Mitchell, Stephanie Drewery, Andrew Fischer, Jennifer Hipp, Travis Reeder, Hana Vakil				
516 517	Data analysis and interpretation: Nickolay Khazanov, Daniel H. Hovelson, Tina Hu-Seliger, D. Bryan Johnson, Daniel R. Rhodes, Scott A. Tomlins				
518	Manuscript writing: All authors				
519	Final approval of manuscript: All authors				
520	Accountable for all aspects of the work: All authors				
521	DATA AVAILABILITY				
522 523 524 525 526 527 528	Relevant data supportive of the figures, tables, and results of the paper are found in the Supplemental Materials. In the interest of protecting patient privacy and in accordance with applicable data sharing agreements and/or patient informed consent forms, the authors are restricted from making raw patient-level data publicly available. However, interested parties may contact the authors at BD@strataoncology.com to request access for research purposes, and such requests will be handled on a case-by-case basis.				

529

CODE AVAILABILITY

The IRS model algorithm is provided in the Methods.

COMPETING INTERESTS

- Khazanov, Shreve, Lamb, Hovelson, Kwiatkowski, Mitchell, Hu-Seliger, Stephanie Drewery, Fischer,
- Hipp, Reeder, Vakil, Johnson, Rhodes and Tomlins are/were equity holders and/or employees of Strata
- 534 Oncology.

535

- Drs. Tomlins, Rhodes, Khazanov, and Johnson are named as co-inventors on a pending patent to Strata
- Oncology related to the IRS model described herein.
- 538 Dr. Tomlins and Rhodes are equity holders in Javelin Oncology
- Dr. Tomlins previously served as a consultant to Strata Oncology and has consulted for
- 540 Astellas/Medivation and Janssen. He has received research (to University of Michigan) funding from
- Astellas and has received travel support from the Prostate Cancer Foundation.
- Dr. Burkard reports receiving research funding from Abbvie, Genentech, Puma Biotechnology, Arcus
- Biosciences, Apollomics, and Loxo Oncology.
- Dr. Matrana reports receiving fees for serving on the speaker's bureau from Pfizer, Janssen, Astellas,
- AstraZeneca Eisai Pharmaceuticals, Bristol-Myers Squibb, Genentech, SirTex, Merck and as a consultant
- from AstraZeneca.
- Dr. Yang reports receiving fees for serving on the advisory board from AstraZeneca, Bayer, Clovis
- Oncology, and for receiving research support from Eli Lilly and Puma Biotechnology.
- Dr. Parsons reports receiving fees for serving on the speaker's bureau and advisory board from Amgen
- and Celgene, and for research funding from the Wisconsin Idea Grant, Gundersen Medical Foundation.
- Dr. Thompson reports receiving consulting fees from Syapse Precision Medicine Council, Elsevier
- ClinicalPath, Adaptive, UpToDate, GlaxoSmithKline, Takeda, Celgene, Doximity, and institutional
- research funding from Abbvie, Bristol-Myers Squibb, CRAB CTC, Denovo, Hoosier Research Network,
- Eli Lilly, LynxBio, Takeda, and TG Therapeutics.
- Drs. Dees, Burkard, Matrana, and Yang received fees for serving on the Strata Oncology Clinical
- 556 Advisory Board.
- 557 Dr. Thompson reports receiving fees for Ad Boards with Sanofi
- The remaining authors have no disclosures.

560 REFERENCES

- 561 1 Sharma, P. *et al.* The Next Decade of Immune Checkpoint Therapy. *Cancer Discov* **11**, 838-857, doi:10.1158/2159-8290.CD-20-1680 (2021).
- Chamoto, K., Hatae, R. & Honjo, T. Current issues and perspectives in PD-1 blockade cancer immunotherapy. *Int J Clin Oncol* **25**, 790-800, doi:10.1007/s10147-019-01588-7 (2020).
- Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. *Science* **359**, 1350-1355, doi:10.1126/science.aar4060 (2018).
- 567 4 Doroshow, D. B. *et al.* PD-L1 as a biomarker of response to immune-checkpoint inhibitors. *Nat Rev Clin Oncol* **18**, 345-362, doi:10.1038/s41571-021-00473-5 (2021).
- 569 5 Gavrielatou, N., Shafi, S., Gaule, P. & Rimm, D. L. PD-L1 Expression Scoring: Non-570 Interchangeable, Non-Interpretable, Neither, or Both. *J Natl Cancer Inst*, 571 doi:10.1093/jnci/djab109 (2021).
- Rimm, D. L. *et al.* A Prospective, Multi-institutional, Pathologist-Based Assessment of 4
 Immunohistochemistry Assays for PD-L1 Expression in Non-Small Cell Lung Cancer. *JAMA Oncol* 3, 1051-1058, doi:10.1001/jamaoncol.2017.0013 (2017).
- 575 Salgado, R. *et al.* How current assay approval policies are leading to unintended imprecision medicine. *Lancet Oncol* **21**, 1399-1401, doi:10.1016/S1470-2045(20)30592-1 (2020).
- Herbst, R. S. *et al.* Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. *N Engl J Med* **383**, 1328-1339, doi:10.1056/NEJMoa1917346 (2020).
- 579 9 Abdul Karim, L., Wang, P., Chahine, J. & Kallakury, B. Harmonization of PD-L1
 580 Immunohistochemistry Assays for Lung Cancer: A Working Progress. *J Thorac Oncol* 12, e45,
 581 doi:10.1016/j.jtho.2016.12.022 (2017).
- 582 10 Dolled-Filhart, M. *et al.* Development of a Prototype Immunohistochemistry Assay to Measure 583 Programmed Death Ligand-1 Expression in Tumor Tissue. *Arch Pathol Lab Med* **140**, 1259-584 1266, doi:10.5858/arpa.2015-0544-OA (2016).
- Dolled-Filhart, M. *et al.* Development of a Companion Diagnostic for Pembrolizumab in Non-Small Cell Lung Cancer Using Immunohistochemistry for Programmed Death Ligand-1. *Arch* Pathol Lab Med **140**, 1243-1249, doi:10.5858/arpa.2015-0542-OA (2016).
- Hirsch, F. R. *et al.* PD-L1 Immunohistochemistry Assays for Lung Cancer: Results from Phase 1 of the Blueprint PD-L1 IHC Assay Comparison Project. *J Thorac Oncol* **12**, 208-222, doi:10.1016/j.jtho.2016.11.2228 (2017).
- Velcheti, V. *et al.* Real-world PD-L1 testing and distribution of PD-L1 tumor expression by immunohistochemistry assay type among patients with metastatic non-small cell lung cancer in the United States. *PLoS One* **13**, e0206370, doi:10.1371/journal.pone.0206370 (2018).
- Grant, M. J., Herbst, R. S. & Goldberg, S. B. Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC. *Nat Rev Clin Oncol* **18**, 625-644, doi:10.1038/s41571-021-00520-1 (2021).
- Litchfield, K. *et al.* Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. *Cell* **184**, 596-614 e514, doi:10.1016/j.cell.2021.01.002 (2021).
- 600 Rizvi, H. *et al.* Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and
 600 Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung
 601 Cancer Profiled With Targeted Next-Generation Sequencing. *J Clin Oncol* 36, 633-641,
 602 doi:10.1200/JCO.2017.75.3384 (2018).
- 603 17 Singal, G. *et al.* Association of Patient Characteristics and Tumor Genomics With Clinical
 604 Outcomes Among Patients With Non-Small Cell Lung Cancer Using a Clinicogenomic Database.
 605 *JAMA* 321, 1391-1399, doi:10.1001/jama.2019.3241 (2019).
- Rizvi, N. A. *et al.* Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. *Science* **348**, 124-128, doi:10.1126/science.aaa1348 (2015).

- McGranahan, N. *et al.* Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. *Science* **351**, 1463-1469, doi:10.1126/science.aaf1490 (2016).
- Van Allen, E. M. *et al.* Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. *Science* **350**, 207-211, doi:10.1126/science.aad0095 (2015).
- Samstein, R. M. *et al.* Tumor mutational load predicts survival after immunotherapy across multiple cancer types. *Nat Genet* **51**, 202-206, doi:10.1038/s41588-018-0312-8 (2019).
- Vega, D. M. *et al.* Aligning tumor mutational burden (TMB) quantification across diagnostic platforms: phase II of the Friends of Cancer Research TMB Harmonization Project. *Ann Oncol*, doi:10.1016/j.annonc.2021.09.016 (2021).
- Steuer, C. E. & Ramalingam, S. S. Tumor Mutation Burden: Leading Immunotherapy to the Era of Precision Medicine? *J Clin Oncol* **36**, 631-632, doi:10.1200/JCO.2017.76.8770 (2018).
- Anagnostou, V. *et al.* Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer. *Nat Cancer* 1, 99-111, doi:10.1038/s43018-019-0008-8 (2020).
- 623 25 Marcus, L. *et al.* FDA Approval Summary: Pembrolizumab for the Treatment of Tumor 624 Mutational Burden-High Solid Tumors. *Clin Cancer Res* **27**, 4685-4689, doi:10.1158/1078-625 0432.CCR-21-0327 (2021).
- Marabelle, A. *et al.* Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. *Lancet Oncol* **21**, 1353-1365, doi:10.1016/S1470-2045(20)30445-9 (2020).
- 630 27 Cristescu, R. *et al.* Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. *Science* **362**, doi:10.1126/science.aar3593 (2018).
- Lee, J. S. & Ruppin, E. Multiomics Prediction of Response Rates to Therapies to Inhibit
 Programmed Cell Death 1 and Programmed Cell Death 1 Ligand 1. *JAMA Oncol* 5, 1614-1618,
 doi:10.1001/jamaoncol.2019.2311 (2019).
- Rolfo, C. *et al.* Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer. *J Thorac Oncol* **16**, 1647-1662, doi:10.1016/j.jtho.2021.06.017 (2021).
- Herbst, R. S. *et al.* Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. *Nature* **515**, 563-567, doi:10.1038/nature14011 (2014).
- Taube, J. M. *et al.* Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. *Sci Transl Med* **4**, 127ra137, doi:10.1126/scitranslmed.3003689 (2012).
- 643 32 Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. *Nature* 541, 321-330, doi:10.1038/nature21349 (2017).
- Sanmamed, M. F. & Chen, L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. *Cell* **175**, 313-326, doi:10.1016/j.cell.2018.09.035 (2018).
- 647 34 Ayers, M. *et al.* IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. *J Clin Invest* **127**, 2930-2940, doi:10.1172/JCI91190 (2017).
- Fountzilas, E., Kurzrock, R., Hiep Vo, H. & Tsimberidou, A. M. Wedding of Molecular
 Alterations and Immune Checkpoint Blockade: Genomics as a Matchmaker. *J Natl Cancer Inst*,
 doi:10.1093/jnci/djab067 (2021).
- 652 36 Ott, P. A. *et al.* T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1
 653 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated With
 654 Pembrolizumab Across 20 Cancers: KEYNOTE-028. *J Clin Oncol* **37**, 318-327,
 655 doi:10.1200/JCO.2018.78.2276 (2019).
- Lu, S. *et al.* Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade: A Systematic Review and Meta-analysis. *JAMA Oncol* **5**, 1195-1204, doi:10.1001/jamaoncol.2019.1549 (2019).

- Zhang, Z. *et al.* RNF2 ablation reprograms the tumor-immune microenvironment and stimulates durable NK and CD4+ T-cell-dependent antitumor immunity. *Nature Cancer* **2**, 1018-1038, doi:10.1038/s43018-021-00263-z (2021).
- 662 39 Cristescu, R. *et al.* Transcriptomic Determinants of Response to Pembrolizumab Monotherapy 663 Across Solid Tumor Types. *Clin Cancer Res*, doi:10.1158/1078-0432.CCR-21-3329 (2021).
- Harms, K. L. *et al.* Virus-positive Merkel Cell Carcinoma Is an Independent Prognostic Group with Distinct Predictive Biomarkers. *Clin Cancer Res* **27**, 2494-2504, doi:10.1158/1078-0432.CCR-20-0864 (2021).
- Tomlins, S. A. *et al.* Development and Validation of StrataNGS, a Multiplex PCR, Semiconductor Sequencing-Based Comprehensive Genomic Profiling Test. *J Mol Diagn* **23**, 1515-1533, doi:10.1016/j.jmoldx.2021.08.005 (2021).
- Tomlins, S. A. *et al.* Real-World Performance of a Comprehensive Genomic Profiling Test Optimized for Small Tumor Samples. *JCO Precis Oncol* **5**, doi:10.1200/PO.20.00472 (2021).
- Zehir, A. *et al.* Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. *Nat Med* **23**, 703-713, doi:10.1038/nm.4333 (2017).
- van de Haar, J. *et al.* Limited evolution of the actionable metastatic cancer genome under therapeutic pressure. *Nat Med* **27**, 1553-1563, doi:10.1038/s41591-021-01448-w (2021).
- 676 45 Medicine, F. (2021).
- 46 Yearley, J. H. *et al.* PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer. *Clin Cancer Res* **23**, 3158-3167, doi:10.1158/1078-0432.CCR-16-1761 (2017).
- 679 47 Giraldo, N. A. *et al.* Multidimensional, quantitative assessment of PD-1/PD-L1 expression in patients with Merkel cell carcinoma and association with response to pembrolizumab. *J Immunother Cancer* **6**, 99, doi:10.1186/s40425-018-0404-0 (2018).
- 682 48 Garon, E. B. *et al.* Pembrolizumab for the treatment of non-small-cell lung cancer. *N Engl J Med* 372, 2018-2028, doi:10.1056/NEJMoa1501824 (2015).
- 684 49 Robert, C. *et al.* Pembrolizumab versus Ipilimumab in Advanced Melanoma. *N Engl J Med* **372**, 685 2521-2532, doi:10.1056/NEJMoa1503093 (2015).
- Tumeh, P. C. *et al.* PD-1 blockade induces responses by inhibiting adaptive immune resistance. *Nature* **515**, 568-571, doi:10.1038/nature13954 (2014).
- Mahoney, K. M. & Atkins, M. B. Prognostic and predictive markers for the new immunotherapies. *Oncology (Williston Park)* **28 Suppl 3**, 39-48 (2014).
- Yu, C. *et al.* A five-gene signature is a prognostic biomarker in pan-cancer and related with immunologically associated extracellular matrix. *Cancer Med* **10**, 4629-4643, doi:10.1002/cam4.3986 (2021).
- Liu, Y. *et al.* ADAM12 is a costimulatory molecule that determines Th1 cell fate and mediates tissue inflammation. *Cell Mol Immunol* **18**, 1904-1919, doi:10.1038/s41423-020-0486-8 (2021).
- 695 54 Cheon, D. J. *et al.* ADAM12 is a prognostic factor associated with an aggressive molecular subtype of high-grade serous ovarian carcinoma. *Carcinogenesis* **36**, 739-747, doi:10.1093/carcin/bgv059 (2015).
- 698 55 Cui, C. *et al.* Ratio of the interferon-gamma signature to the immunosuppression signature 699 predicts anti-PD-1 therapy response in melanoma. *NPJ Genom Med* **6**, 7, doi:10.1038/s41525-700 021-00169-w (2021).
- 701 56 Ruff, M. *et al.* The Disintegrin and Metalloprotease ADAM12 Is Associated with TGF-beta-702 Induced Epithelial to Mesenchymal Transition. *PLoS One* **10**, e0139179, 703 doi:10.1371/journal.pone.0139179 (2015).
- 704 57 Atfi, A. *et al.* The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor. *J Cell Biol* **178**, 201-208, doi:10.1083/jcb.200612046 (2007).
- 707 58 Pelka, K. *et al.* Spatially organized multicellular immune hubs in human colorectal cancer. *Cell* **184**, 4734-4752 e4720, doi:10.1016/j.cell.2021.08.003 (2021).

- Mariathasan, S. *et al.* TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. *Nature* **554**, 544-548, doi:10.1038/nature25501 (2018).
- Tauriello, D. V. F. *et al.* TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. *Nature* **554**, 538-543, doi:10.1038/nature25492 (2018).
- Jiang, P. *et al.* Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. *Nat Med* **24**, 1550-1558, doi:10.1038/s41591-018-0136-1 (2018).
- 715 62 Bonaventura, P. *et al.* Cold Tumors: A Therapeutic Challenge for Immunotherapy. *Front Immunol* **10**, 168, doi:10.3389/fimmu.2019.00168 (2019).
- Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. *Nat Immunol* **14**, 1014-1022, doi:10.1038/ni.2703 (2013).
- 719 64 Cottrell, T. R. & Taube, J. M. PD-L1 and Emerging Biomarkers in Immune Checkpoint Blockade Therapy. *Cancer J* **24**, 41-46, doi:10.1097/PPO.0000000000000301 (2018).
- Kerr, K. M. The PD-L1 Immunohistochemistry Biomarker: Two Steps Forward, One Step Back?
 J Thorac Oncol 13, 291-294, doi:10.1016/j.jtho.2018.01.020 (2018).
- Sholl, L. M. *et al.* The Promises and Challenges of Tumor Mutation Burden as an
 Immunotherapy Biomarker: A Perspective from the International Association for the Study of
 Lung Cancer Pathology Committee. *J Thorac Oncol* 15, 1409-1424,
 doi:10.1016/j.jtho.2020.05.019 (2020).
- 727 67 Addeo, A., Friedlaender, A., Banna, G. L. & Weiss, G. J. TMB or not TMB as a biomarker: That is the question. *Crit Rev Oncol Hematol* **163**, 103374, doi:10.1016/j.critrevonc.2021.103374 (2021).
- Han, G. *et al.* 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. *Nat Commun* 12, 5606, doi:10.1038/s41467-021-25894-9 (2021).
- Sholl, L. M. Biomarkers of response to checkpoint inhibitors beyond PD-L1 in lung cancer. *Mod Pathol*, doi:10.1038/s41379-021-00932-5 (2021).
- 734 70 Di Federico, A., De Giglio, A., Parisi, C. & Gelsomino, F. STK11/LKB1 and KEAP1 mutations 735 in non-small cell lung cancer: Prognostic rather than predictive? *Eur J Cancer* **157**, 108-113, 736 doi:10.1016/j.eica.2021.08.011 (2021).
- 737 71 Skoulidis, F. *et al.* STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. *Cancer Discov* **8**, 822-835, doi:10.1158/2159-8290.CD-18-0099 (2018).
- 739 72 Shen, J. *et al.* ARID1A deficiency promotes mutability and potentiates therapeutic antitumor 740 immunity unleashed by immune checkpoint blockade. *Nat Med* **24**, 556-562, doi:10.1038/s41591-741 018-0012-z (2018).
- 742 73 Miao, D. *et al.* Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. *Science* **359**, 801-806, doi:10.1126/science.aan5951 (2018).
- 744 74 Braun, D. A. *et al.* Clinical Validation of PBRM1 Alterations as a Marker of Immune Checkpoint Inhibitor Response in Renal Cell Carcinoma. *JAMA Oncol* **5**, 1631-1633, doi:10.1001/jamaoncol.2019.3158 (2019).
- 747 75 Liu, X. D. *et al.* PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. *Nat Commun* **11**, 2135, doi:10.1038/s41467-020-15959-6 (2020).
- 750 76 Banchereau, R. *et al.* Molecular determinants of response to PD-L1 blockade across tumor types. 751 *Nat Commun* **12**, 3969, doi:10.1038/s41467-021-24112-w (2021).

752

FIGURE LEGENDS

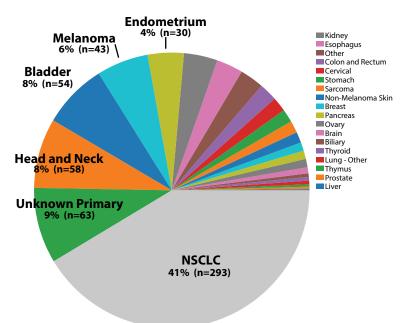
Figure 1. An integrative Immune Response Score (IRS) model predicts real-world pembrolizumab treatment outcome across solid tumors. a) The tumor type distribution of 708 patients in the StrataTrial (NCT03061305) clinical molecular database used to develop the IRS model, an integrative algorithm predicting pembrolizumab benefit. Included patients were treated with pembrolizumab and had available tumor mutation burden (from comprehensive genomic profiling) and in-parallel quantitative gene expression data of immune relevant biomarkers from clinical testing of routine tumor tissue. b) Real-world pembrolizumab progression-free survival, stratified by IRS group. After IRS model development, patients were binned into three groups based on predicted pembrolizumab benefit: IRS-Low (grey line), IRS-Intermediate (inter., light blue line), and IRS-High (dark blue line). Real world progression free survival was determined using time to next therapy (TTNT; see Methods). c) Confirmation of the predictive nature of the IRS model. Real-world progression-free survival on monotherapy pembrolizumab (Pembro; purple) vs. immediately preceding chemotherapy (Chemo; line green) stratified by IRS group was compared for the applicable subset of 166 patients. The interaction test for continuous IRS and pembrolizumab vs. chemotherapy treatment was significant (likelihood ratio test for interaction p<0.005).

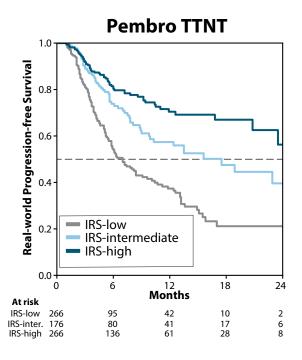
Figure 1

a b

Immune Response Score Cohort

(N=708)





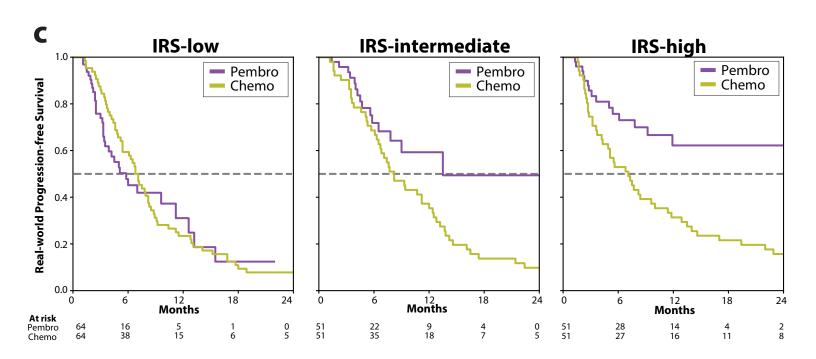


Figure 2. Robustness of the IRS model to potential confounding factors. a) Real-world progression-free survival on pembrolizumab in patients with non-small cell lung cancer (NSCLC, blue) versus other tumor types (Other, lime green), stratified by IRS group. b) Real-world progression-free survival on pembrolizumab in patients treated with pembrolizumab monotherapy (mono, blue) versus pembrolizumab + chemotherapy combination (combo, lime green), stratified by IRS group. c) Real-world progression-free survival on pembrolizumab in TMB-low and TMB-high patients, stratified by IRS groups (IRS-low [grey], IRS-intermediate [light blue], or IRS-high [dark blue line]). TMB, tumor mutation burden.

Figure 2

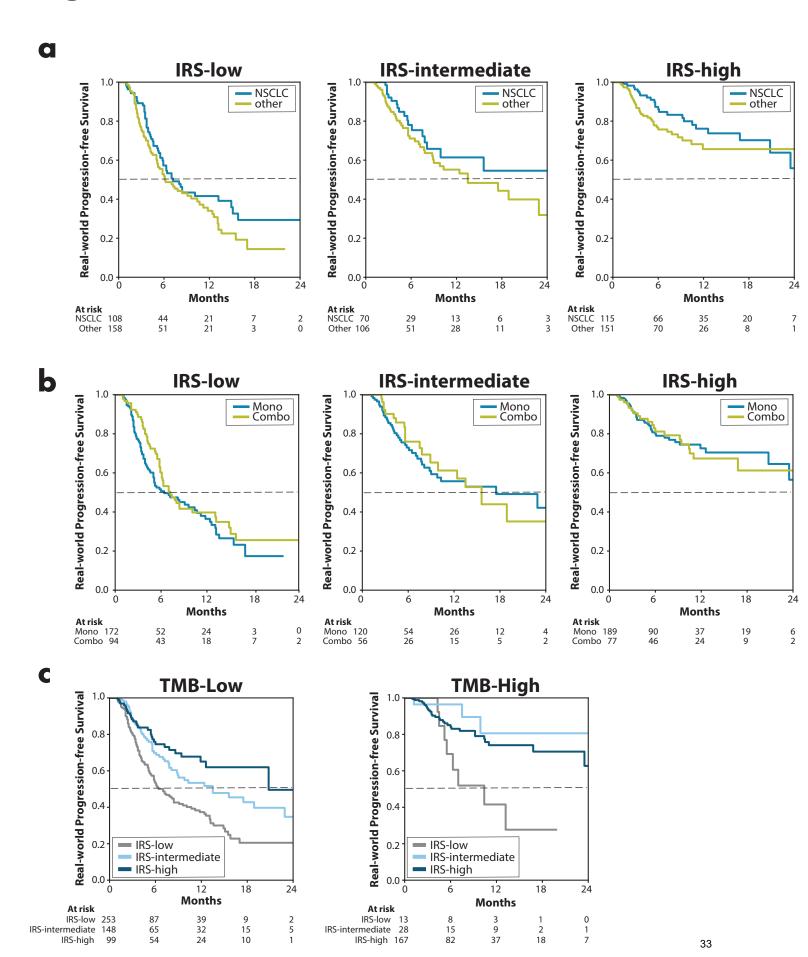
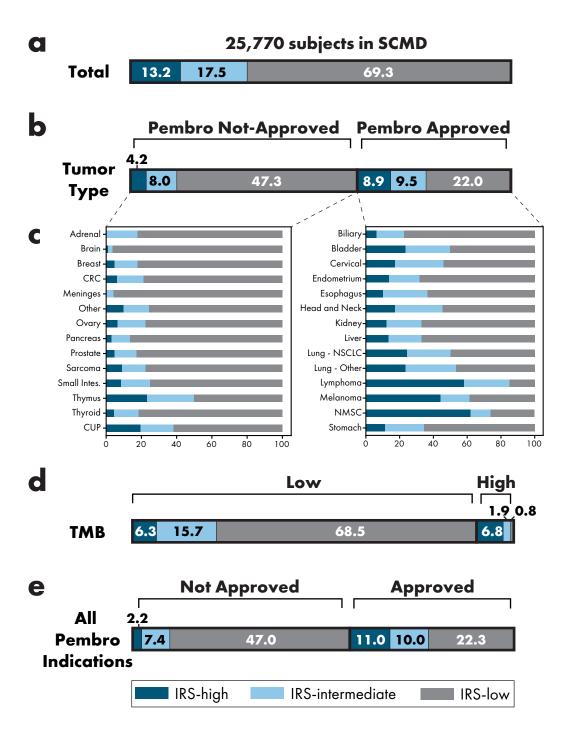


Figure 3. Distribution of IRS scores across the Strata Clinical Molecular Database (SCMD) to assess potential clinical utility. a) IRS groups were determined for all 25,770 patients in the SCMD with valid TMB and gene expression data. The distribution by IRS group (IRS-low [grey], IRS-intermediate [light blue], and IRS-high [dark blue]) is shown. b) IRS distribution by pembrolizumab approved vs. not not-approved tumor types. c) Stratification of b) by tumor type. d) IRS distribution by TMB-high vs.

TMB-low. e) IRS distribution by any pembrolizumab approved indication (approved tumor type, MSI-H or TMB-H as approved) vs. not approved indication. Pembro, Pembrolizumab, TMB, Tumor Mutation Burden; CRC, colorectal cancer; CUP, cancer of unknown primary; Lung- Other, lung small cell carcinoma; NSCLC, non-small cell lung cancer; NMSC, nonmelanoma skin cancer; Small Intes., small intestine. Numbers in subpanels may not add to the totals in a) due to rounding.

Figure 3



TABLES

Table 1. Univariate and multivariate associations of comprehensive genomic and quantitative transcriptomic profiling derived candidate biomarkers and real world pembrolizumab progression free survival in 708 patients

Biomarker	Univariate		Multivariate (IR	S model)
	HR (95% CI)	р	HR	р
TMB	0.77 (0.70 - 28.02)	3.7E-09	0.75 (0.69 - 0.82)	5.8E-10
CD274 (PD-L1) Composite	0.90 (0.85 - 10.47)	7.1E-04		
PDCD1 (PD-1) Composite	0.89 (0.84 - 9.83)	1.1E-03	0.86(0.79-0.94)	5.0E-04
PDCD1LG2 (PD-L2)	0.91 (0.85 - 7.77)	4.6E-03	0.87 (0.79 - 0.95)	1.3E-03
TNFRSF9	0.92(0.87 - 7.07)	7.4E-03		
IDO1	0.95(0.92 - 5.42)	0.023		
UBE2C*	0.91 (0.83 - 5.09)	0.029		
TIGIT	0.95 (0.90 - 3.51)	0.088		
LAG3	0.94 (0.88 - 3.19)	0.109		
CD8A	0.95(0.90 - 3.17)	0.111		
IFNG	0.98(0.95-2.51)	0.176		
TCF7	0.95(0.87 - 2.35)	0.196		
CTLA4	0.97(0.92 - 2.10)	0.233		
GZMA	0.97 (0.91 - 1.57)	0.337		
TOP2A*	0.96(0.87 - 1.49)	0.356		
VTCN1	0.99(0.96-1.28)	0.413		
FOXP3	0.98 (0.92 - 1.19)	0.439		
ADAM12	1.02(0.95-0.69)	0.620	1.08 (1.01 – 1.15)	0.03
CD4	1.02(0.93-0.63)	0.646	1.15 (1.01 – 1.31)	0.04
AXL	0.98 (0.90 - 0.52)	0.699		
HAVCR2	1.00(0.93-0.11)	0.929		
TNFRSF4	1.00(0.93-0.08)	0.946		

For each biomarker, the hazard ratio (with 95% confidence interval bounds) and log-likelihood p-value are shown. TMB (log₂) was from StrataNGS CGP testing; the remaining biomarkers were target gene expression from in-parallel quantitative transcriptomic profiling by Multiplex PCR-based RNA sequencing. The multivariate analysis was performed using the final five component Immune Response Score (IRS) model. Candidate proliferation markers are indicated by *. For *PD-L1* and *PD-1*, two independent target amplicons were assessed for each gene; normalized target gene expression was averaged from the independent amplicons (per gene) to yield a composite result.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

• IRSSuppfinal.pdf