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Abstract 

Pembrolizumab is approved in many advanced solid tumor types, however predictive biomarkers and the 

proportion of pembrolizumab-benefiting patients vary. Biomarkers beyond PD-L1 

immunohistochemistry, microsatellite instability (MSI) status, and tumor mutation burden (TMB) may 

improve benefit prediction. Here, leveraging treatment data (time to next treatment [TTNT]) and 

comprehensive genomic and quantitative transcriptomic profiling on routine tumor tissue from 708 

patients (24 tumor types) collected in an ongoing observational trial (NCT03061305), we report a 

multivariate, integrative predictor of pan-solid tumor pembrolizumab benefit. The Immune Response 

Score (IRS) model, which includes TMB and quantitative PD-1, PD-L2, ADAM12 and CD4 RNA 

expression, was confirmed as predictive through comparison of pembrolizumab TTNT with previous 

chemotherapy TTNT in a subset of 166 patients treated with both. Applying IRS to the entire 

NCT03061305 cohort (n=25,770 patients), 13.2-30.7% of patients (2.2-9.6% of patients outside of 

pembrolizumab approved tumor types [including TMB-High and MSI-High]) are predicted to benefit 

substantially from pembrolizumab. Hence, if prospectively validated, the IRS model may improve 

pembrolizumab benefit prediction across approved tumor types including patients outside of currently 

approved indications.  
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INTRODUCTION 1 

Checkpoint inhibitors (CPIs) have transformed cancer care with anti-PD-1 and anti-PD-L1 monoclonal 2 

antibodies approved for use in multiple tumor types and pan tumor indications (microsatellite instability 3 

high/mismatch repair deficient [MSI-H/dMMR] and tumor mutation burden [TMB] ≥ 10 4 

mutations/megabase [Muts/Mb])1-3. Improved biomarkers capable of predicting CPI benefit have the 5 

potential to expand CPIs to additional patient populations outside of currently approved indications, and 6 

to focus their application more effectively on likely responsive patients when alternative therapies exist. 7 

PD-L1 immunohistochemistry (IHC) is required for treatment in many tumor types and serves as a 8 

companion diagnostic biomarker; although, antibodies, staining platforms, PD-L1 expressing cells 9 

included in scoring algorithms, and cutoffs vary across tumor types4-14. In addition, high TMB predicts 10 

CPI response across multiple tumor types, although TMB determination approaches vary across studies 11 

and tests, and only a fraction of TMB high (TMB-H) patients benefit15-24. For example, in the 12 

KEYNOTE-158 study of 9 tumor types leading to pan-solid tumor approval of second-line 13 

pembrolizumab in patients with TMB ≥ 10 Muts/Mb by the FoundationOne companion diagnostic (CDx) 14 

device, objective responses were observed in 37%, 13%, and 6% of patients with TMB ≥13 Muts/Mb, 15 

≥10 and <13 Muts/Mb, and <10 Muts/Mb, respectively25,26.  16 

Numerous translational studies have demonstrated that PD-L1 expression, TMB (with clonal TMB 17 

showing increased predictive ability vs. TMB methods including all somatic mutations), and other 18 

immune related gene expression markers focusing on the tumor microenvironment (TME) are 19 

independent predictors of response 15,27-39; however, a single, integrative, clinically applicable and 20 

validated test for treatment selection across solid tumors is lacking. Herein, leveraging pembrolizumab 21 

real-world data (RWD) for treatment and comprehensive genomic and quantitative transcriptomic 22 

profiling (CGqTP) data from the Strata Trial (NCT03061305)—an observational clinical trial evaluating 23 

the impact of molecular profiling on patients with advanced solid tumors — we report the development of 24 

an integrated clinical Immune Response Score (IRS) that predicts pembrolizumab response across solid 25 
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tumors from small, real-world, formalin-fixed paraffin-embedded (FFPE) tumor tissue specimens. 26 

Although prospective clinical validation is required, these results demonstrate that integrated CGqTP may 27 

be able to increase the clinical benefit of the CPI pembrolizumab in patients with advanced solid tumors.  28 

  29 

4



METHODS 30 

Cohort 31 

The Strata Clinical Molecular Database (SCMD) contains deidentified subject, molecular profiling, 32 

treatment, and survival data captured from the Strata Trial (NCT03061305), a 500,000-patient 33 

observational study for patients with advanced solid tumors. The Strata Trial has been reviewed and 34 

approved by Advarra Institutional Review Board (IRB; IRB Pro00019183) prior to study start. At 35 

enrolling health care systems, all adult patients with unresectable or metastatic solid tumors and available 36 

FFPE tumor tissue were eligible. Although the protocol allowed enrollment of patients with rare early-37 

stage tumors, some analyses herein were restricted to patients with advanced (clinical stage III or IV) 38 

disease as indicated at the time of enrollment, or unstaged tumor types. Prior antineoplastic therapy, 39 

including start and stop dates, were collected for trial participants at the time of study entry. 40 

Antineoplastic therapy data and survival status were prospectively collected for 3 years from the time of 41 

enrollment and/or informed consent. Post-hoc power analysis was not performed to determine the sample 42 

size. A case series analysis was performed herein focusing on the development of an integrative CGqTP 43 

based pembrolizumab predictor, an exploratory aim of the trial. Patients in the SCMD tested by a version 44 

of StrataNGS assessing TMB (see Biomarker Data below) with parallel gene expression testing data 45 

from 25 January 2017 to 04 May 2021 were potentially eligible for analysis using a data cutoff of 19 May 46 

2021.  47 

To generate an integrative CGqTP based pembrolizumab predictor, patients in the SCMD with valid 48 

StrataNGS derived TMB and gene expression data (including meeting the minimum 20% tumor content 49 

requirement) and had greater than 1 month on pembrolizumab were identified as eligible. Real-world time 50 

to next treatment (TTNT) was defined as the time in months from the initiation of a therapy to the date of 51 

commencement of the next line of therapy (or date of death). Patients without an event (i.e., new therapy 52 

start or death) were censored at their last date of medical history record update. Patients treated with 53 

either pembrolizumab monotherapy or combination pembrolizumab plus chemotherapy were included. 54 
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Samples collected after the start date of pembrolizumab were excluded. Source data verification in the 55 

Strata Trial was performed for high-risk data fields such as demographics and treatment history per an 56 

approved Trial Monitoring Plan. Data completeness, consistency, and quality assurance checks were 57 

performed across the Strata electronic data capture (EDC) system per an approved Data Management 58 

Plan.  Additional details on the Strata Trial experience and Strata molecular profiling have been 59 

described40-42.  60 

Biomarker Data 61 

Multiplex PCR-based comprehensive genomic profiling (PCR-CGP), including TMB assessment, was 62 

performed on FFPE solid tumor tissue using StrataNGS (Strata Oncology, Ann Arbor, MI). The current 63 

version of StrataNGS is a 437 gene laboratory-developed test (LDT) for FFPE tumor tissue samples 64 

performed on co-isolated DNA and RNA, which has been validated on over 1,900 FFPE tumor samples, 65 

and is covered for Medicare beneficiaries41. While earlier StrataNGS versions were also used during the 66 

study period, all had similar performance for the TMB assessment (and MSI) used herein42. In parallel, 67 

immune gene expression was determined by analytically and clinically validated multiplex PCR-based 68 

quantitative transcriptomic profiling via an investigational test performed on the same co-isolated RNA as 69 

described40; different versions of this quantitative transcriptomic profiling test have been run in parallel 70 

with StrataNGS (assessing 26, 46 and currently 103 expression targets), however only quantification of 71 

RNA from the 46 target version was used herein. One or more exon-spanning PCR amplicons were 72 

selected for each target gene and multiple housekeeping genes were included, with 3 pan-cancer stable 73 

housekeeping genes used for clinical testing. Multiplex RNAseq was performed using Ampliseq after 74 

reverse transcription followed by Ion Torrent-based next-generation sequencing. Expression target 75 

transcripts were measured in normalized reads per million, whereby raw expression target read counts 76 

were normalized by a factor that results in the median housekeeping gene expression value matching the 77 

same gene's standard reads per million in a reference FFPE normal cell line sample (GM24149) run in 78 
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parallel with all clinically tested samples.40 Formal analytical validation of the multiplex PCR-based 79 

quantitative transcriptomic panel and the integrated StrataIO model will be described separately.  80 

Data Analysis 81 

TTNT across groups and treatments were visualized using the Kaplan Meier method with the log-rank 82 

test used to test TTNT curve differences. Correlation between TTNT and overall survival (OS) was 83 

calculated using Spearman’s p among patients with both a documented death event and at least two lines 84 

of therapy. Throughout this study, TMB-H was defined as ≥10 Muts/Mb by StrataNGS, given the 85 

previous validation of TMB by StrataNGS and high concordance with TMB estimates from 86 

FoundationOne tissue testing41. All analyses were performed in python. 87 

Strata Clinical Molecular Database (SCMD) Validity Analysis 88 

Analyses to assess the clinical validity of the SCMD included an analysis of TTNT in first line, stage III 89 

and IV non-small cell lung cancer (NSCLC) adenocarcinoma stratified by the presence and absence of 90 

standard- of-care (SOC), actionable alterations in EGFR (excluding the recent SOC actionable exon 20 91 

insertions), ALK, and ROS1, as well as general TTNT in non-pembrolizumab treated patients receiving at 92 

least two lines of antineoplastic therapy stratified by therapy class. (e.g., chemotherapy + chemotherapy, 93 

hormonal therapy + chemotherapy, small molecule inhibitors + chemotherapy). For analysis of NSCLC 94 

adenocarcinoma SOC alterations, the presence of both the genomic alteration and treatment history with 95 

one of the FDA-approved targeted therapy for the alteration was considered as SOC treatment.  96 

Real-World Progression Free Survival (rwPFS) as Measured by Time To Next Treatment 97 

(TTNT) 98 

Real-world progression free survival was measured by time to next treatment (TTNT) for patients within 99 

the SCMD database. Patient treatment history was standardized as described below, to ensure TTNT 100 

calculations were performed appropriately for each treatment type. Medications were classified into 101 

antineoplastic or non-antineoplastic treatments, and chemotherapy medications were defined as a subset 102 
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of the antineoplastic treatments. Non-antineoplastic treatments were excluded from TTNT calculations; 103 

patient treatment records with invalid or non-informative dates were also excluded (e.g., no start date or 104 

start date in the future). Consecutive single-dose treatments were combined into a course of treatment 105 

with a single start and end date. Since chemotherapy medications are frequently administered together, 106 

any chemotherapy treatment(s) with a temporal overlap of 80% or more were merged into a single 107 

treatment record. Lines of therapy were defined when a different therapy was started at, or after, the end 108 

of another therapy (with the former therapy not being administered at any time after the latter). For 109 

example, multiple starts and stops of the same therapy with a different therapy in between did not 110 

delineate different lines of treatment. 111 

To determine TTNT, an effective end date was defined for each course of treatment as either a) date of 112 

record if treatment is ongoing, b) date of death if patient died while on treatment, or c) the latest available 113 

end date. Furthermore, a likely progression event for the end of treatment was identified if either a) the 114 

patient died during treatment or b) the patient started another antineoplastic treatment at the end of the 115 

current treatment. TTNT was calculated as the difference, in months, between the start date and effective 116 

end date of the treatment. Only records with 1 month or more anti-neoplastic TTNT were retained.  117 

For analysis of pembrolizumab monotherapy vs combination therapy, a pembrolizumab course of 118 

treatment was classified as combination therapy if there was 10% or more temporal overlap between the 119 

pembrolizumab treatment and chemotherapy treatment(s). 120 

Immune Response Score (IRS) Model Development 121 

The association of TMB and 21 candidate immune and proliferation gene expression biomarkers with 122 

pembrolizumab TTNT was determined using standard Cox proportional hazards regression. TMB 123 

measurements were log2-transformed and gene expression measurements were log2-transformed and 124 

median-centered per laboratory workflow (two PCR cycling conditions were used with the 46 gene 125 

expression test) prior to analysis. For gene expression biomarkers with two independent expression 126 
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amplicons on the 46 gene RNA test version (PD-1 and PD-L1), results were averaged prior to inclusion in 127 

the analysis (e.g. PD-1 composite). For multivariate model building, backward stepwise regression was 128 

used, first including all variables in the model, then selectively removing the least significant variables so 129 

long as the overall model significance improved. This approach was performed several times on a sub-130 

sampling and showed that most significant models [as measured by Akaike information criterion (AIC)] 131 

contained no more than half-dozen factors. We therefore performed a brute-force search of all 132 

combinations of expression targets to find the most significant factors. To minimize the risk of 133 

overfitting, a final 5-factor model was selected. Individual patient IRS were derived from the Cox model 134 

as: 135 

IRS = 4.03 * exp(0.29 * TMB + 0.15 * PD-1 + 0.14 * PD-L2 – 0.14 * CD4 – 0.07 * ADAM12) 136 

where an IRS of 10 is equal to the median hazard rate observed in the dataset, values greater than 10 137 

represent decreased hazard (i.e., more benefit from pembrolizumab) and values less than 10 represent 138 

increased hazard (i.e., less benefit from pembrolizumab). We assigned patients to one of three IRS groups 139 

to compare patient outcomes (i.e., Low (L) < 8.5, 8.5 ≤ Intermediate (I) < 11.9, and High (H)  ≥ 11.9) 140 

through dividing the dataset into 8 equal IRS bins and combining bins based on overlapping TTNT 141 

curves. Cox proportional hazards models were utilized to examine the interaction between 142 

pembrolizumab vs. prior chemotherapy TTNT within the same patient and IRS as a continuous variable. 143 

The likelihood ratio test for interaction compared the reduced model, which excluded the IRS by 144 

treatment interaction, with the competing full model, which included the IRS by treatment interaction.  145 

  146 

  147 
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RESULTS 148 

Clinical Molecular Data 149 

The Strata Trial (NCT03061305) is an observational clinical trial evaluating the impact of tumor 150 

molecular profiling for patients with advanced solid tumors. De-identified demographic, clinical and 151 

molecular data from patients in the Strata Trial is maintained in the Strata Clinical Molecular Database 152 

(SCMD). With a data-cutoff of 19 May 2021, the SCMD contains clinical and molecular data from 153 

39,252 unique patients with stage III or IV solid tumors (from 28 tumor types) enrolled from 25 United 154 

States health care systems who had routine FFPE tumor tissue molecularly profiled by the StrataNGS 155 

CGP test41,42 with 7,978 patients (from 28 tumor types) having treatment data from at least one 156 

antineoplastic agent. 157 

For all SCMD patients, antineoplastic treatment start and stop dates (for all prior therapies and up to 3 158 

years after Strata trial enrollment) were obtained from automated electronic health record queries or 159 

manual entry; data was updated regularly by submitting institutions, and date of death was obtained 160 

similarly. Real-world TTNT was determined directly from treatment start and stop dates for each line of 161 

therapy. Among the 7,978 patients, the median follow-up from start of first treatment and Strata trial 162 

enrollment was 11 months [interquartile range (IQR) 4-24 months] and 5 months (IQR 1-11 months), 163 

respectively. The median number of total therapies and lines of therapy per patient was 2 (both IQR 1-3), 164 

with a median of 1 total therapy and 1 line of therapy (both IQR 1-2) after Strata trial enrollment. As 165 

expected, in patients who had at least two lines of therapy, median TTNT was shorter with each 166 

subsequent line of therapy (Figure S1).  167 

Given the substantial proportion of patients in the SCMD with NSCLC and extensive previous 168 

characterization of molecular subtypes and associated therapies, we leveraged the NSCLC cohort to 169 

assess the validity of using the SCMD to support this study. Of the 7,978 total patients, 1,173 (14.7%) had 170 

NSCLC, with a median age at enrollment of 65 years (IQR 60-73), 51.8% were women, 56.4% were 171 
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white, and 8.0% had NSCLC squamous cell carcinoma, similar to data reported for patients in the initial 172 

report from the Flatiron/Foundation Medicine clinical molecular database 17. At enrollment, of the 1,173 173 

NSCLC patients in the SCMD, 24.8% and 75.2% had stage III and IV cancer, respectively. Of note, in 174 

139 patients with NSCLC adenocarcinoma harboring standard of care (SOC) alterations in EGFR, ALK or 175 

ROS1, 84% received at least one matched targeted therapy, while only 68 of 935 (7.2%) patients without 176 

SOC EGFR, ALK or ROS1 alterations received one or more of these targeted therapies. These treatment 177 

results contrast with the initial report of the Flatiron/Foundation Medicine clinical molecular database, 178 

where only 480 of 737 (65%) patients with NCCN-driver alterations in EGFR and ALK rearrangements 179 

received targeted therapy after advanced NSCLC diagnosis, while 26% of EGFR inhibitor treatment was 180 

in patients without an EGFR alteration17. In part this may be due to the contemporary nature of our series, 181 

as for example, 57 of 81 (70%) patients with EGFR SOC alterations in the SCMD treated with EGFR 182 

TKI received osimertinib (or an osimertinib containing combination regimen) as their first line of EGFR 183 

TKI therapy, and 26 of 28 (93%) patients with ALK SOC alterations treated with ALK TKIs received 184 

alectinib or brigatinib as their first line of ALK TKI therapy. Additional details and NSCLC analyses 185 

supporting the validity of TTNT and the SCMD are shown in Figure S2.  186 

Biomarkers of Pembrolizumab Benefit Analysis 187 

We have previously demonstrated that molecular alteration frequency in the first ~30,000 patients 188 

enrolled in the Strata Trial42 was similar to that observed in the Memorial Sloan Kettering single 189 

institution pan-cancer profiling effort, MSK-IMPACT43, supporting the generalizability of the SCMD. 190 

Herein, to assess general associations and develop an integrative CGqTP tumor-agnostic tumor 191 

pembrolizumab predictive biomarker, we first limited results to the 5,233 patients in the SCMD who met 192 

the following criteria: TMB measurements from StrataNGS testing (including meeting the overall 20% 193 

tumor content requirement), immune gene expression quantification from an investigative multiplex PCR 194 

based transcriptomic profiling test, and treatment for at least one month with at least one antineoplastic 195 

agent. Of these 5,223 patients, 708 (13.5%) were treated with pembrolizumab. As shown in Figure 1a, 196 
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this cohort was comprised of patients with 24 tumor types, with NSCLC accounting for 293 (41.4%). 197 

Real-world TTNT was inferred for each patient as the time from starting pembrolizumab to the time of 198 

stopping pembrolizumab and starting a new therapy or death. To establish the appropriateness of TTNT 199 

for studying pembrolizumab treatment outcomes, TTNT was compared to overall survival (OS). As 200 

shown in Figure S3a, the overall correlation (Spearman ρ= 0.61) was impacted by two outliers, one of 201 

which was a patient with metastatic melanoma who was briefly treated with pembrolizumab, then 202 

ipilimumab + nivolumab, prior to an extended course with imatinib (the patient harbored two VUS in 203 

KIT; FigureS3a blue box), while the other was a patient with metastatic NSCLC harboring an EML4-204 

ALK fusion by StrataNGS testing who was briefly treated with pembrolizumab and chemotherapy before 205 

prolonged treatment with crizotinib and lorlatinib (FigureS3a red box); excluding these two patients, 206 

TTNT and OS were more strongly correlated (Spearman ρ = 0.75). Lastly, to confirm the validity of ≥10 207 

Muts/Mb from StrataNGS testing to define TMB-H, we demonstrated that TMB-H patients (n = 208) had 208 

significantly longer pembrolizumab TTNT vs. TMB-L patients (n = 500; median TTNT >24 months vs. 209 

10.3, log rank p<0.0001; Figure S3b). 210 

To identify potential biomarkers of pembrolizumab benefit, we first considered 21 candidate immune and 211 

proliferation gene expression biomarkers assessed across clinical RNA tests run in parallel with the 212 

StrataNGS CGP test (which generates TMB). Importantly, target gene expression (in normalized reads 213 

per million [nRPM]), were highly correlated from independent amplicons targeting different exons of PD-214 

L1 (n=25,769 samples, concordance correlation coefficient =0.83) and PD-1 (n=25,769 samples, 215 

concordance correlation coefficient =0.78). Likewise, expression profiles of these 21genes across 27 216 

directly comparable tumor types were highly correlated between 8,424 TCGA tumors and 18,062 Strata 217 

RNA component profiled tumors (median Spearman ρ =0.871 for all candidate genes; Table S1). We 218 

therefore assessed the association of pembrolizumab TTNT with StrataNGS derived TMB and the 21 219 

candidate immune gene expression biomarkers. As shown in Table 1, significant (p<0.01) univariate 220 

predictors included TMB (HR = 0.77; p<0.0001), composite PD-L1 expression (HR = 0.90; p=0.0007), 221 
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composite PD-1 expression (HR = 0.90; p=0.0011), PD-L2 expression (HR = 0.91; p=0.005) and 222 

TNFRSF9 expression (HR = 0.92; p=0.007).  223 

To develop an integrative pembrolizumab benefit predictor, we performed a multi-part process. First, we 224 

performed backwards stepwise regression to fit a multivariate Cox proportional hazards model, iterating 225 

100 times on randomly selected two-thirds of the dataset. TMB, PD-1 and PD-L2 were the three most 226 

frequently included variables across the 100 models. Hence, we then used a brute-force approach, locking 227 

in these three variables and using backwards stepwise regression adding in 1, 2 or 3 of the remaining 228 

candidate variables, iterating 100 times on randomly selected 2/3rds of the dataset, and evaluating the 229 

Akaike’s Information Criteria (AIC) and Bayesian Information Criterion (BIC) of the trained model on 230 

the held-out 1/3 of the dataset. As additional components increased the BIC with minimal decrease in 231 

AIC, we chose a five variable multivariate model including TMB, PD-1, PD-L2, CD4, and ADAM12. We 232 

therefore entered all five variables into model selection 100 times on randomly selected two-thirds of the 233 

dataset and determined the model coefficients, confirming that that model coefficients developed in the 234 

full 708 patient cohort were stable, and these coefficients were used in the final integrative model (Figure 235 

S4a). Multivariate analysis on only the final five variable set confirmed that all five biomarkers were 236 

independent predictors of pembrolizumab treatment outcome (Table 1). Notably, PD-L1 was not included 237 

in the final model and forced addition to the five variable model had essentially no impact on 238 

performance, even when trained on the full 708 patient cohort (Figure S4b). As shown in Figure S4c, 239 

TMB was minimally correlated with all final model gene expression biomarkers (Spearman ρ = -0.106 240 

[CD4] to -0.0.015 [PD-1]), while correlation of individual gene expression biomarkers ranged from ρ = 241 

0.217 (ADAM12 vs. PD-1) to ρ = 0.675 (PD-L2 vs. CD4).  242 

Integrative Immune Response Score (IRS) Development  243 

To evaluate the potential of the multivariate model to predict pembrolizumab treatment outcome in 244 

patients, we derived individual Immunotherapy Response Scores (IRS) from the final five variable model, 245 

assigned the 708 patients to one of three IRS groups based on potential clinical utility (see Methods; IRS-246 
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High [-H; n=266], IRS-Intermediate [-I; n=176] and IRS-Low [-L; n=266]; IRS-H associated with 247 

greatest benefit of pembrolizumab), and compared group outcomes. Kaplan Meier analysis of 248 

pembrolizumab TTNT showed that treatment outcome varied widely across groups, with median TTNT 249 

ranging from > 24 months in IRS-H, to 17.5 months in IRS-I, to 7 months in IRS-L (log-rank test 250 

p<0.0001 IRS-H vs. -L; Figure 1b). To compare to OS, Kaplan Meier analysis was also performed with 251 

respect to time-to-death, censoring patients with respect to latest date of follow-up, producing similarly 252 

significant difference in outcome for IRS-H vs. -L (n=707, log-rank test p<0.0001; Figure S5a).  253 

 254 

To establish the IRS model as predictive and not prognostic, we evaluated a chemotherapy comparator 255 

cohort, consisting of the most recent previous chemotherapy line from the 166 of 708 (23%) 256 

pembrolizumab patients with documented chemotherapy treatment prior to monotherapy pembrolizumab. 257 

While chemotherapy median TTNT was similar across all three IRS groups at 7.0-8.2 months (Figure 258 

1c), pembrolizumab had significantly longer TTNT than chemotherapy in IRS-H (median TTNT >24 259 

months vs. 7.1 months; log-rank p value <0.001) and IRS-I (median TTNT 13.5 months vs. 8.2 months, 260 

log-rank p value 0.02), but no significant difference was observed for pembrolizumab vs. chemotherapy 261 

TTNT in IRS-L (median TTNT 5.8 vs. 7.1 months; log-rank p value = 0.65). The test for interaction 262 

between pembrolizumab vs. previous chemotherapy treatment and continuous IRS was significant 263 

(likelihood ratio test for interaction p<0.005), confirming the predictive nature of the IRS biomarker. 264 

Through a similar analysis using continuous TMB (instead of the IRS model), TMB alone was also 265 

confirmed as a predictive biomarker of pembrolizumab TTNT (likelihood ratio test for interaction 266 

p<0.005). However, IRS (expression component + TMB) had significantly greater predictive ability than 267 

TMB alone (likelihood ratio test between models, p=0.04). As in the overall cohort, TTNT and OS 268 

comparisons were similar between IRS-H vs. -L patients in this predictive analysis (in addition to a cohort 269 

of 201 patients considering pembrolizumab monotherapy or combination therapy vs. previous 270 

chemotherapy), although IRS-I did not appear to be a separate group in these comparisons (Figure S5b-271 
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d). Taken together, these results demonstrate the predictive nature of the IRS model for pembrolizumab 272 

benefit prediction vs. an internal chemotherapy comparator and highlight the benefit of combining CGP 273 

biomarkers (TMB) with parallel quantitative gene expression of the tumor and TME to improve 274 

performance. 275 

Robustness of IRS model to potential confounding factors 276 

We next evaluated potential factors that could confound the utility of IRS [i.e., tumor type, therapy type 277 

(monotherapy vs combination therapy) and TMB status]. First, we compared pembrolizumab TTNT in 278 

the 293 patients with NSCLC (41.4%) to 415 patients with other tumor types (48.6%) across IRS groups 279 

and found no significant differences (median TTNT >24 vs. >24, log-rank p= 0.13 for IRS-H; median 280 

TTNT > 24 vs. 13.5, log-rank p=0.19 for IRS-I; median TTNT 7.2 vs. 6.1, log-rank p=0.10 for IRS-L; 281 

Figure 2a). Then we compared pembrolizumab TTNT in the 481 patients treated with pembrolizumab 282 

monotherapy (67.9%) to 227 patients treated with pembrolizumab plus chemotherapy (combination 283 

therapy) (32.1%), and found no significant difference in any IRS risk group (median TTNT >24 vs. >24, 284 

log-rank p= 0.87 for IRS-H; median TTNT > 17.5 vs. 15.6, log-rank p=0.77 for IRS-I; median TTNT 6.4 285 

vs. 7.2, log-rank p=0.20 for IRS-L; Figure 2b). Lastly, given the pan-tumor approval of pembrolizumab 286 

in TMB-H patients, if the IRS risk groups were exactly overlapping with TMB status, the IRS would have 287 

no clinical utility. Therefore, we examined the predictive effect of IRS groups among the 208 (29.4%) 288 

TMB-H patients and 500 (70.6%) TMB-L patients. While 167 (80%), 28 (13%) and 13 (6%) of the 208 289 

TMB-H patients were IRS-H, -I, and -L, respectively, the TMB-H/IRS-H group still had significantly 290 

longer pembrolizumab TTNT compared to TMB-H/IRS-L (median TTNT >24 months vs. 10.4 months; 291 

log rank p-value = 0.001, Figure 3c), demonstrating the added predictive value of immune gene 292 

expression, even among TMB-H patients. Among the 500 TMB-L patients, 99 (20%), 148 (30%) and 253 293 

(50%) were IRS-H, -I, and -L, respectively. IRS robustly stratified pembrolizumab TTNT, with median 294 

pembrolizumab TTNT of 20.8 months, and 7 months in IRS-H, and -L groups, respectively (log rank p-295 

value = <0.001, Figure 3c), demonstrating that TMB alone is insufficient for maximizing the prediction 296 
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of pembrolizumab benefit. Together, these results demonstrate that the IRS biomarker is robust to tumor 297 

type, pembrolizumab monotherapy vs. combination chemotherapy treatment, and TMB status.  298 

 299 

Stability of IRS across temporal sample collection variability prior to CPI treatment 300 

Tissue based TMB has recently been shown to be stable for nearly all patients with advanced cancer 301 

through whole genome sequencing of sequential tissue samples,44 however less is known about the 302 

stability of an integrative CGqTP model predicting pembrolizumab benefit. Hence, we first confirmed 303 

that in the 426 total patients treated with both chemotherapy (regardless of whether chemotherapy was 304 

pre- or post- pembrolizumab treatment) and pembrolizumab, the timing of sample collection (pre-305 

chemotherapy and pembrolizumab vs. post-chemotherapy but prior to pembrolizumab) did not 306 

significantly impact median pembrolizumab TTNT across IRS groups (Figure S6a). Next, we directly 307 

assessed IRS stability across patients in the SCMD with sequentially tested tissue samples. As analyses 308 

presented thus far were limited to the most recently tested sample per patient (if testing had been 309 

performed more than once) and to patients who started pembrolizumab after the collection date of the 310 

included sample, we therefore identified 69 total patients in the SCMD who 1) had valid IRS scores from 311 

two specimens with different collection dates, 2) were confirmed to be of clonal origin as part of routine 312 

StrataNGS clinical testing, and 3) did not have CPI therapy starting between the collection dates of the 313 

samples. As shown in Figure S6b, the integrative IRS model scores were highly correlated (Pearson 314 

r=0.75, respectively) in paired specimens, and only two (3%) patients (n=2) moved from the IRS-H to -L 315 

(or vice versa), supporting the stability of the IRS across temporal sampling in the absence of checkpoint 316 

inhibitor therapy. Lastly, we assessed the performance of IRS in 84 patients who otherwise would have 317 

been included in the 708 total patient discovery cohort described above, but had their sample collected 318 

after starting pembrolizumab. Hypothesizing that CGP testing in this clinical scenario would usually be 319 

performed as the patient was progressing on pembrolizumab, we predicted that IRS would be minimally 320 

predictive of pembrolizumab TTNT. In these 84 patients, continuous IRS was not predictive of 321 
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pembrolizumab TTNT (p=0.61), with median pembrolizumab TTNT of 15.9 vs. 15.6 months in IRS-H 322 

vs. -L, log rank p=0.92, Figure S6c). Together, these results support the stability and validity of IRS in 323 

sequential tumor tissue samples collected prior to CPI treatment. 324 

Pan Solid Tumor Distribution of IRS groups  325 

Although future studies are required to prospectively validate IRS performance for routine clinical use, 326 

we sought to leverage IRS distributions across tumor types (and pan-cancer biomarkers) in the entire 327 

SCMD to understand the potential impact of IRS both within and outside of currently approved 328 

pembrolizumab indications. Thus, we determined IRS for the 25,770 patients in the SCMD 329 

(NCT03061305) with valid TMB and gene expression data, with 13.2%, 17.5%, and 69.3% of all patients 330 

classified as IRS-H, -I, and -L, respectively (Figure 3a). Pembrolizumab approved tumor types (without 331 

consideration of PD-L1 IHC status) had a substantially higher proportion (22.1% vs. 7.1%) of IRS-H 332 

patients than non-pembrolizumab approved tumor types, as well as a higher proportion (23.6% vs. 13.4%) 333 

of IRS-I group patients (Figure 3b). Tumor types with the highest proportion of IRS-H group patients 334 

include several known to be highly responsive to CPIs, including melanoma, non-melanoma skin cancer, 335 

NSCLC, lung small cell carcinoma (Lung – Other), and bladder (urothelial) tumors (Figure 3c). We next 336 

examined the pan-solid tumor distribution of IRS groups by TMB status, given the pan-tumor approval of 337 

pembrolizumab in TMB-H tumors. Whereas 91% of TMB-H patients were also IRS-H or -I, 22.0% of all 338 

patients in the SCMD were IRS-H or -I and TMB-L (vs. 8.7% IRS-H or -I and TMB-H), demonstrating 339 

that while TMB-H identifies most IRS-I/-H patients, IRS identifies a larger set of TMB-L patients 340 

predicted to benefit from pembrolizumab (Figure 3d). Finally, to estimate the overall proportion of 341 

patients with solid tumors who might benefit from pembrolizumab outside of currently approved tumor 342 

types and biomarkers, we stratified the SCMD population by all pembrolizumab approved indications 343 

(pembrolizumab approved tumor types, TMB-H, or MSI-H as approved). As shown in Figure 3e, if 344 

prospectively validated, an additional 2.2-9.6% of patients (2.2% IRS-H and 7.4% IRS-I) with solid 345 
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tumors outside of currently approved indications are predicted to have substantial benefit from 346 

pembrolizumab. 347 

Discussion 348 

Leveraging a robust clinical molecular database from the StrataTrial (NCT03061305), we developed a 349 

highly significant, integrative, multivariate Immune Response Score (IRS) model that combined TMB 350 

and quantitative immune gene expression to predict real-world pembrolizumab treatment outcomes in 708 351 

patients from 28 solid tumor types. IRS model inputs were generated from simultaneously performed, 352 

clinically validated, multiplex PCR based DNA and RNA NGS (StrataNGS CGP and a separate RNA 353 

panel for quantitative gene expression)40-42. These assays were performed on co-isolated DNA and RNA 354 

and share the same key sample input requirements defined from over 30,000 consecutively received FFPE 355 

tumor samples for CGP testing: ≥20% tumor content and 2mm2 tumor surface area (from 10 x 5um FFPE 356 

sections)41,42. Of note, only 38.3% of samples in the development cohort included herein, and 38.8% of 357 

the 25,770 total patients in the SCMD used to assess IRS distribution, met the minimum tumor surface 358 

area requirements (≥25mm2) of FoundationOne CDx45, the FDA approved companion diagnostic device 359 

to identify TMB-H tumors.  360 

The IRS model predicts an individual patient’s likelihood of benefit with pembrolizumab therapy. 361 

Patients were grouped into three categories (IRS-H, IRS-I, and IRS-L) based on pembrolizumab TTNT as 362 

a measure for potential clinical utility, with IRS-H patients having median pembrolizumab TTNT > 24 363 

months, while IRS-L patients had median pembrolizumab TTNT of 7 months. Critically, in the subset of 364 

166 patients treated with pembrolizumab monotherapy who had prior chemotherapy treatment, we 365 

confirmed the predictive nature of the IRS model, as IRS-H patients had significantly longer TTNT on 366 

pembrolizumab vs. their immediately preceding chemotherapy treatment (median TTNT >24 months vs. 367 

7.1 months), whereas IRS-L patients did not (median TTNT 5.8 vs. 7.1), with a significant test for 368 

interaction between continuous IRS and pembrolizumab vs. chemotherapy. Notably, the association of 369 
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IRS with pembrolizumab TTNT was stable when stratified by NSCLC vs. other tumor types, 370 

pembrolizumab monotherapy vs. combination therapy, TMB-H vs. TMB-L tumors, and pre- vs. post-371 

chemotherapy sample collection, suggesting that the model captures universal biological features of 372 

pembrolizumab benefit. When applied to all 25,770 patients in the SCMD where IRS could be generated, 373 

IRS-H was more frequent in tumor types known to derive benefit from CPI, but occurred in subsets of 374 

nearly every tumor type. Outside of approved pembrolizumab tumor type indications, including TMB-H 375 

and MSI-H pan cancer, 2.2% patients in the SCMD were IRS-High, representing a conservative estimate 376 

as many approved indications have PD-L1 IHC requirements. Hence, if subsequently validated in our 377 

ongoing studies, the improved predictive clinical utility of the integrative IRS model would be 378 

demonstrated to more accurately identify patients across tumor types with a high probability of response 379 

to pembrolizumab over single biomarker approaches.   380 

Intriguingly, an additional 7.4% of patients were IRS-I outside of tumor types with FDA-approved 381 

pembrolizumab indications (also excluding MSI-H and TMB-H). Although these patients had 382 

significantly longer monotherapy pembrolizumab TTNT vs. their previous chemotherapy (13.5 vs. 8.2 383 

months) and the proportion of IRS-I patients in selected tumor types is consistent versus observed 384 

response rates (ORR) in early phase pembrolizumab (e.g.,13% of SCMD patients with pancreatic cancer 385 

are IRS-I versus an ORR of 10% in non-biomarker selected patients treated with pembrolizumab 386 

monotherapy in the KEYNOTE-028 trial36), tumor specific trials may be needed to demonstrate a clear 387 

benefit of pembrolizumab in this subset of patients. 388 

As the IRS was developed from a single integrative clinical platform using co-isolated DNA and RNA to 389 

generate TMB and highly quantitative gene expression assessment of the tumor and TME from over 700 390 

patients across 24 tumor types, the IRS model holds several potentially interesting biological insights. 391 

First, TMB, PD-1 expression, and PD-L2 expression were each independent predictors of pembrolizumab 392 

benefit, indicating a multiplicative predictive effect across these biomarkers representing increased 393 

antigenicity (TMB), the direct target of pembrolizumab (PD-1), and one of the two PD-1 interacting 394 
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ligands (PD-L2). Notably, although PD-L1 expression was predictive of pembrolizumab TTNT on 395 

univariate analysis, it was not an independent significant predictor identified through our multi-step 396 

multivariate model developed process. In an exploratory analysis, when PD-L1 RNA was added into the 397 

IRS model and trained on the entire cohort, essentially no change in performance was observed, 398 

consistent with its predictive ability being captured by the other model components. While PD-L1 399 

evaluation by IHC is the current FDA-approved biomarker to predict pembrolizumab (or other CPI) 400 

benefit either individually or in models45-47, expression varies by antibody clone and nearly all studies 401 

show at least some responsive PD-L1–IHC low/negative patients , suggesting that other PD-1 ligands 402 

beyond PD-L1, such as PD-L2, may be relevant for predicting clinical response30,48-51. Consistent with 403 

this observation, in head and neck squamous cell carcinoma, PD-L2 expression by IHC predicted 404 

pembrolizumab response and progression free survival independent of PD-L1 IHC status46. CD4 and 405 

ADAM12 were both negative predictors of pembrolizumab TTNT in numerous model training iterations 406 

and were significant in the final five variable IRS model. Although both effector CD8+ and CD4+ T cells 407 

have been shown to express PD-147, CD8A (which encodes CD8 and was included in our 21 candidate 408 

genes), was more predictive of CPI benefit in a recent metanalysis of whole transcriptome data than either 409 

PD-L1 expression or the T cell inflamed gene expression signature15, and hence the inclusion of CD4 as a 410 

negative predictive factor in the final IRS model likely reflects at least in part the ratio of effector (CD8+) 411 

to helper/regulatory CD4+ T cells in the TME.  412 

Although less is known about the direct role of ADAM12 in CPI response, it is highly expressed by cancer 413 

associated fibroblasts CAFs—as shown through single cell sequencing studies and bulk tumor profiling—414 

as a driver of feed forward TGF-β signaling, has been shown to act as a T cell co-stimulatory molecule 415 

expressed on some regulatory T cells, and has been identified in a signature of negative response to ICI in 416 

melanoma52-57. Of note, in colorectal cancer, where single cell sequencing demonstrated high ADAM12 417 

expression in CAFs58, as well as urothelial carcinoma, TGF-β signaling from CAFs has been shown to 418 

drive T cell exclusion, a hallmark of low response to ICI59-63. Taken together, these results support 419 
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additional investigation into a potential mechanistic role for ADAM12 in ICI resistance, as well as 420 

demonstrate the complementary nature of the integrative biomarkers in the IRS model, which integrates 421 

measurement of tumor neo-antigenicity (TMB), with quantification of key tumor and TME biomarkers.  422 

Current FDA-approved CPI biomarkers include PD-L1 IHC, TMB and MSI-H (although the latter 423 

indication was initially approved without a companion diagnostic biomarker), however these biomarkers 424 

have several practical challenges for clinical use including variations in assay parameters, platforms, and 425 

predictive thresholds4,64-67. For example, although there are multiple tissue TMB assays commercially 426 

available (LDTs, FDA cleared devices, and a single FDA approved device), TMB testing typically has a 427 

large tissue requirement, which is frequently not feasible in patients with advanced cancers, and such 428 

approaches do not allow for parallel assessment of gene expression biomarkers. Thus, there is a need for 429 

optimized CPI biomarkers with improved predictive utility that can be developed into a scalable clinical 430 

test that is applicable to nearly all cancer patients, including those with limited tumor tissue available. As 431 

described herein, IRS addresses these needs by 1) co-isolating DNA and RNA to measure multiple classes 432 

of biomarkers from the same tissue sample; 2) optimizing pembrolizumab treatment benefit prediction via 433 

explainable model development using highly quantitative gene expression data in a large pan-tumor 434 

cohort with real world treatment data; and 3) utilizing a clinically validated and scalable platform 435 

developed for real world FFPE samples with minimal tumor size (2 mm2 tumor surface area)41,42. In 436 

comparison, only 38.8% of the 25,770 patients in the SCMD used to assess IRS distribution met the 437 

minimum tumor surface area requirements (≥25 mm2) for FoundationOne CDx, the FDA approved 438 

companion diagnostic device to identify TMB-H tumors45, suggesting that the majority of real-world 439 

patients with advanced solid tumors have insufficient tumor samples to determine TMB.  440 

Our analysis has several potential limitations. First, the real-world dataset was biased toward tumor types 441 

for which pembrolizumab is FDA-approved or treatment was selected based on other biomarker results, 442 

and thus, as expected, was enriched for patients benefiting from pembrolizumab. Indeed, the proportion of 443 

patients in the IRS-High group was much higher in the pembrolizumab treatment cohort (38%) than the 444 
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broader tumor profiling dataset (13.2%). Second, the TTNT endpoint likely includes some patients who 445 

stopped treatment due to treatment toxicity or switching therapy to a more appropriate regimen based on 446 

molecular results (as described above) and not disease progression, although this likely represents a 447 

minority of events. Additionally, only advanced patients were eligible for the Strata Trial, but adjuvant 448 

therapy cannot be directly excluded using our treatment data collection approach, with this limitation 449 

being relevant for our pembrolizumab vs. prior chemotherapy analysis; however, this would tend to bias 450 

against pembrolizumab TTNT being longer than adjuvant chemotherapy in patients with significant delay 451 

between adjuvant chemotherapy and development of metastatic disease (and pembrolizumab treatment). 452 

Additionally, although it is unclear if our model is applicable to other PD-1 monoclonal antibodies, PD-453 

L1 monoclonal antibodies, and/or combined PD-1/PD-L1 and CTLA4 antibody therapy, we focused on 454 

pembrolizumab herein given the large amount of treatment data in our cohort across tumor types. 455 

Likewise, future studies will also investigate whether inclusion of single gene-based DNA biomarkers 456 

identified as potentially predictive in one or more tumor types (e.g. STK11, PBRM1, ARID1A, CDNK2A68-457 

75 or additional immune related genes assessed on the current expanded quantitative expression panel run 458 

in parallel with StrataNGS testing can improve the performance of the IRS model. Limited PD-L1 IHC 459 

data was available for subjects in the SCMD, and hence we are not able to directly compare performance 460 

of IRS and PD-L1 IHC for predicting pembrolizumab benefit; additionally, this limitation also biases 461 

against the overall proportion of patients outside of currently approved indications predicted to benefit 462 

from pembrolizumab by IRS, as herein we considered all patients in approved tumor types to be in an 463 

approved indication, although in many tumor types only a minority of patients are approved for 464 

pembrolizumab treatment based on PD-L1 IHC cutoffs. Notably, we chose to use standard multivariate 465 

regression with a minimum number of variables versus other approaches that have included a larger 466 

number of immune related genes27,34,39 or used more advanced machine learning approaches76 to leverage 467 

the highly quantitative nature of CGqTP and minimize the risk of overfitting, as our model was trained 468 

and characterized on the same dataset. Importantly, while we were able to use an internal chemotherapy 469 

control cohort to determine the predictive nature of the biomarker, additional, pre-specified validation of 470 
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the IRS model in an independent cohort will be required to establish the clinical utility of IRS groups for 471 

predicting pembrolizumab benefit. 472 

In summary, after demonstrating the face validity a clinical molecular database containing treatment data 473 

and molecular profiling from a large observational trial of patients with advanced cancer, we report the 474 

development of a biologically rational, integrative CGqTP based model of pembrolizumab benefit that is 475 

robust to tumor type, TMB status, pembrolizumab monotherapy vs. combination therapy treatment, and 476 

pre-pembrolizumab sample collection timing. Importantly, the IRS biomarker was developed from a 477 

single clinically validated NGS platform capable of simultaneously performing comprehensive genomic 478 

profiling (required for TMB but also for therapy options outside of CPI) and in parallel precise 479 

quantification of tumor- and TME-relevant gene expression, providing a clear diagnostic pathway for 480 

potential clinical application. IRS has potential application for both refining the use of pembrolizumab in 481 

tumor types for which immunotherapy is indicated and therapeutic choice is present (as well as 482 

monotherapy pembrolizumab vs. combination therapy as in NSCLC), as well as for guiding 483 

pembrolizumab treatment decisions for patients outside of indicated tumor types. Most notably, IRS-High 484 

patients treated with pembrolizumab had not reached median TTNT after 24 months (compared to a 485 

median TTNT of 7.1 months on their prior line of chemotherapy), suggesting that this population may 486 

benefit similarly to the TMB-H population identified in KEYNOTE-158 (29% overall response rate; 66% 487 

of responders having a duration of response ≥ 24 months). Herein, across the entire SCMD, 2.2% of 488 

patients were IRS-H/TMB-L/not-MSI-H and outside of approved pembrolizumab approved tumor types, 489 

and an additional 7.4% were IRS-I. Hence, if further validated in additional cohorts, the IRS model has 490 

the potential to markedly expand the benefit of pembrolizumab across solid tumors, addressing one of the 491 

most important challenges in precision oncology.  492 

 493 

  494 
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FIGURE LEGENDS 754 

Figure 1. An integrative Immune Response Score (IRS) model predicts real-world pembrolizumab 755 

treatment outcome across solid tumors. a) The tumor type distribution of 708 patients in the StrataTrial 756 

(NCT03061305) clinical molecular database used to develop the IRS model, an integrative algorithm 757 

predicting pembrolizumab benefit. Included patients were treated with pembrolizumab and had available 758 

tumor mutation burden (from comprehensive genomic profiling) and in-parallel quantitative gene 759 

expression data of immune relevant biomarkers from clinical testing of routine tumor tissue. b) Real-760 

world pembrolizumab progression-free survival, stratified by IRS group. After IRS model development, 761 

patients were binned into three groups based on predicted pembrolizumab benefit: IRS-Low (grey line), 762 

IRS-Intermediate (inter., light blue line), and IRS-High (dark blue line). Real world progression free 763 

survival was determined using time to next therapy (TTNT; see Methods). c) Confirmation of the 764 

predictive nature of the IRS model. Real-world progression-free survival on monotherapy pembrolizumab 765 

(Pembro; purple) vs. immediately preceding chemotherapy (Chemo; line green) stratified by IRS group 766 

was compared for the applicable subset of 166 patients. The interaction test for continuous IRS and 767 

pembrolizumab vs. chemotherapy treatment was significant (likelihood ratio test for interaction p<0.005).  768 
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Figure 2. Robustness of the IRS model to potential confounding factors. a) Real-world progression-769 

free survival on pembrolizumab in patients with non-small cell lung cancer (NSCLC, blue) versus other 770 

tumor types (Other, lime green), stratified by IRS group. b) Real-world progression-free survival on 771 

pembrolizumab in patients treated with pembrolizumab monotherapy (mono, blue) versus pembrolizumab 772 

+ chemotherapy combination (combo, lime green), stratified by IRS group. c) Real-world progression-773 

free survival on pembrolizumab in TMB-low and TMB-high patients, stratified by IRS groups (IRS-low 774 

[grey], IRS-intermediate [light blue], or IRS-high [dark blue line]). TMB, tumor mutation burden. 775 
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Figure 3. Distribution of IRS scores across the Strata Clinical Molecular Database (SCMD) to 777 

assess potential clinical utility. a) IRS groups were determined for all 25,770 patients in the SCMD with 778 

valid TMB and gene expression data. The distribution by IRS group (IRS-low [grey], IRS-intermediate 779 

[light blue], and IRS-high [dark blue]) is shown. b) IRS distribution by pembrolizumab approved vs. not 780 

not-approved tumor types. c) Stratification of b) by tumor type. d) IRS distribution by TMB-high vs. 781 

TMB-low. e) IRS distribution by any pembrolizumab approved indication (approved tumor type, MSI-H 782 

or TMB-H as approved) vs. not approved indication. Pembro, Pembrolizumab, TMB, Tumor Mutation 783 

Burden; CRC, colorectal cancer; CUP, cancer of unknown primary; Lung- Other, lung small cell 784 

carcinoma; NSCLC, non-small cell lung cancer; NMSC, nonmelanoma skin cancer; Small Intes., small 785 

intestine. Numbers in subpanels may not add to the totals in a) due to rounding.786 
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TABLES 

Table 1. Univariate and multivariate associations of comprehensive genomic and quantitative 

transcriptomic profiling derived candidate biomarkers and real world pembrolizumab progression 

free survival in 708 patients  

Biomarker Univariate  Multivariate (IRS model)  
HR (95% CI) p HR p 

TMB 0.77 (0.70 – 28.02) 3.7E-09 0.75 (0.69 – 0.82) 5.8E-10 

CD274 (PD-L1) Composite 0.90 (0.85 – 10.47) 7.1E-04   
PDCD1 (PD-1) Composite 0.89 (0.84 – 9.83) 1.1E-03 0.86 (0.79 – 0.94) 5.0E-04 

PDCD1LG2 (PD-L2) 0.91 (0.85 – 7.77) 4.6E-03 0.87 (0.79 – 0.95) 1.3E-03 

TNFRSF9 0.92 (0.87 – 7.07) 7.4E-03   
IDO1 0.95 (0.92 – 5.42) 0.023   

UBE2C* 0.91 (0.83 – 5.09) 0.029   
TIGIT 0.95 (0.90 – 3.51) 0.088   
LAG3 0.94 (0.88 – 3.19) 0.109   
CD8A 0.95 (0.90 – 3.17) 0.111   
IFNG 0.98 (0.95 – 2.51) 0.176   
TCF7 0.95 (0.87 – 2.35) 0.196   

CTLA4 0.97 (0.92 – 2.10) 0.233   
GZMA 0.97 (0.91 – 1.57) 0.337   

TOP2A* 0.96 (0.87 – 1.49) 0.356   
VTCN1 0.99 (0.96 – 1.28) 0.413   
FOXP3 0.98 (0.92 – 1.19) 0.439   

ADAM12 1.02 (0.95 – 0.69) 0.620 1.08 (1.01 – 1.15) 0.03 

CD4 1.02 (0.93 – 0.63) 0.646 1.15 (1.01 – 1.31) 0.04 

AXL 0.98 (0.90 – 0.52) 0.699   
HAVCR2 1.00 (0.93 – 0.11) 0.929   
TNFRSF4 1.00 (0.93 – 0.08) 0.946   

 

For each biomarker, the hazard ratio (with 95% confidence interval bounds) and log-likelihood p-value 

are shown. TMB (log2) was from StrataNGS CGP testing; the remaining biomarkers were target gene 

expression from in-parallel quantitative transcriptomic profiling by Multiplex PCR-based RNA 

sequencing. The multivariate analysis was performed using the final five component Immune Response 

Score (IRS) model. Candidate proliferation markers are indicated by *. For PD-L1 and PD-1, two 

independent target amplicons were assessed for each gene; normalized target gene expression was 

averaged from the independent amplicons (per gene) to yield a composite result.  
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