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Abstract
Despite a growing focus on neuroimmune mechanisms of Alzheimer’s disease (AD), the role of peripheral
monocytes remains largely unknown. Circulating monocytes communicate with the brain’s resident
myeloid cells, microglia, via chemical signaling and can directly infiltrate the brain parenchyma.1 Thus,
molecular signatures of monocytes may serve as indicators of neuropathological events unfolding in the
CNS.2–5 However, no studies have yet directly tested the association of monocyte gene expression on
longitudinal cognitive decline or postmortem neuropathology and brain gene expression in aging. Here
we present a resource of RNA sequencing of purified CD14+ human monocytes - including an eQTL map -
from over 200 elderly individuals, most with accompanying bulk brain RNA sequencing profiles,
longitudinal cognitive assessments, and detailed postmortem neuropathological examinations. We tested
the direct correlation of gene expression between monocytes and bulk brain tissue, finding very few
significant signals driven largely by genetic variation. However, we did identify sets of monocyte-
expressed genes that were highly predictive of postmortem microglial activation, diffuse amyloid plaque
deposition, and cerebrovascular disease. Our findings prioritize potential blood-based molecular
biomarkers for AD; they also reveal the previously unknown architecture of shared gene expression
between the CNS and peripheral immune system in aging.

Introduction
Over the past decade, the role of myeloid cells in susceptibility to Alzheimer’s disease (AD) has become
progressively more established given the growing number of susceptibility loci with evidence of having
functional consequences in myeloid cells and the fact that such variants make up a large proportion of
known AD susceptibility variants6,7. While microglia have received most of the attention to date since
they are the resident immune cells of the brain, many other myeloid cells are found in the central nervous
system and could have a role in AD since (1) they share many of the transcriptional programs of
microglia and (2) enrichment analyses using genetic data are enriched for all myeloid cells. Further,
monocytes have been a useful substitute in human functional genetic studies8,9 and can be
differentiated into microglia-like cells that complement induced pluripotent stem cells (iPSC)-derived
microglia-like cells as a model system for microglia10. Both model systems share a similar extent of gene
expression with primary human microglia.

Monocytes, dendritic cells, and microglia-like cells are found in the cerebrospinal fluid11, and
macrophages are found in atherosclerotic lesions, around blood vessels, and in the meninges12,13.
Further, infiltrating monocytes differentiate into activated parenchymal macrophages that are difficult to
distinguish in tissue with current tools from activated microglia. In aging, blood-brain barrier integrity is
compromised and monocytes may be more likely to directly infiltrate brain tissue where they can
differentiate into microglia-like mononuclear macrophages and further contribute to the central immune
response to age-related pathology.14 Overall, the genetic evidence in AD to date does not exclude any of
these cell populations from having a role in AD. Myeloid cells are part of the innate immune system and
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have many different roles, including acute and chronic inflammatory responses to pathogens. One
example is the association of gingivitis with the risk of AD, which could lead to a chronic inflammatory
response that affects the CNS through circulating immune cells and/or mediators of systemic
inflammation.15,16 Alternatively, peripheral cells could be responding to the same mediators of
inflammation that affect all other organs, including the CNS.

Given the roles of monocytes in responding to events unfolding within the CNS, their molecular
phenotype may be sensitive to neuropathological changes associated with aging even if they are not
causally involved, making them a substrate for biomarker discovery in the diagnosis and prognosis of
neurodegenerative illness.17 Here, we set out to examine the role of peripheral blood monocytes – which
are mostly recent bone marrow emigrants – and AD by measuring the transcriptome of this cell type
purified from blood collected from living participants in a longitudinal study of aging with prospective
blood and brain collection. Specifically, we retrieved frozen peripheral blood mononuclear cells from an
archive of cryopreserved material from participants who had undergone autopsy and had transcriptomic
data generated from the dorsolateral prefrontal cortex. We compare monocyte RNA expression levels
directly with those from bulk postmortem brain tissue in the same individuals, and we identify genes that
are predictive of cognitive decline and certain aging-related neuropathologies. These associations are
validated against results from over a dozen human and preclinical experiments of immune cell
transcriptomics in inflammatory and AD-related models. Finally, we explore the moderating effects of
APOE genotype, clinical AD stage, and biological sex on identified associations.

Results
Cryopreserved peripheral blood mononuclear cells (PBMCs) were thawed and fluorescence activated cell
sorting (FACS) was used to isolate the CD14+ cells from each sample into RNA lysis buffer. 2000 sorted
CD14+ cells were collected per participant, and a transcriptome was generated from each sample using
the SmartSeq2 protocol. Data were pre-processed as outlined in the Methods section and yielded
expression values for 9,129 genes in 218 participants. Demographic details of the participants used in
downstream analyses are presented in Supplementary Table 1.

Monocyte-brain gene expression correlation

We first asked the relatively naïve question of whether genes in the monocyte transcriptome were strongly
correlated with the bulk cortical transcriptome in the same individuals; we assessed all 8,757 genes with
detectable expression in both tissues. Despite a small but significant positive difference in mean
correlation compared to null (1000 permutations of all gene-wise correlations yielded p=0, with mean
observed rho=0.016), most of the transcriptome has no individual correlation between monocytes and
cortex (Figure 1A). A small number of genes did exhibit strong FDR-corrected correlations in their level of
RNA expression (170 positively correlated, 6 negatively correlated); negatively correlated genes had rho
values ranging from -0.26 to -0.24 (RPS16, PDE4B, RABGAP1, FOXP1, TSPY26P, RPS28), whereas the top
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10 most positively correlated genes had considerably larger effect sizes, with rho between 0.68-0.9 (HLA-
DRB5, HLA-DRB1, ERAP2, RPS26, U2AF1L5, PI4KAP1, RPL9P9, XRRA1, RPSAP58, SNHG5).

To understand which biologically relevant pathways are overrepresented in this pool of correlated genes,
we performed gene ontology (GO) enrichment analyses of the four gene pools (positive and negatively
correlated at nominal p<0.05 or corrected FDR<0.05 thresholds) using gprofiler2 ordered queries (Figure
1B-C).18 To improve interpretability of the results, we semantically collapsed significantly enriched
biological processes (see Methods), which revealed enrichment of antigen processing and presentation
of endogenous peptide antigen in the positively correlated pool of 170 genes (a highly similar enrichment
pattern was observed in the larger mutually inclusive pool of 587 nominally correlated genes).
Intriguingly, enrichment for pathogenesis of SARS-COV2 mediated by nsp9-nsp10 complex was also
observed in this pool, suggesting a connection to systemic inflammation as all brain and blood samples
were collected pre-pandemic. Among negatively correlated genes (219 in the nominally correlated pool),
enrichment was principally observed for mRNA catabolic process and SRP-dependent co-translational
protein targeting to membrane, which are composed primarily of ribosomal protein subunit (RPS) and
signal recognition particle (SRP) genes (all significant enrichment results in Supplementary Table 2)

Next, to assess whether these correlations represent true proxies in blood for brain expression of certain
genes, we generated a map of transcriptome-wide expression quantitative trait locus results for cis
effects (cis-eQTL) in monocytes. This eQTL map is accessible online via the AD Knowledge Portal (will be
uploaded prior to publication. We also accessed brain cis-eQTL data from our prior DLPFC xQTL-serve
platform19 (which was updated in June 2021) as well as GTEx (v8) frontal cortex data (Brodmann area
(BA) 9). As illustrated in Figure 1D, there is strong overlap in eQTL between frontal cortex and monocytes:
275/411 egenes in monocytes have significant eQTLs in at least one other dataset, with the majority
(189) shared with both (fold-enrichment=5.87, p=1.3x10−99). In addition, genes with stronger
monocyte:cortex correlations have significantly stronger eQTLs in both tissues (Figure 1E). Thus, while
the monocyte RNA expression of these genes could offer a proxy for brain expression, they largely reflect
the effect of genetic variants in those genes, and the added utility of measuring this largely constitutive
genetic effect on monocyte gene expression is probably limited.

Having established that the monocyte transcriptome offers little in terms of a proxy for measuring the
cortical transcriptome, we turned to evaluating the relation of individual gene expression levels to a
variety of ante-mortem cognition-related traits, post-mortem neuropathologic indices, and diagnostic
categories.

Association of monocyte genes with cognitive and neuropathologic traits

Full monocyte transcriptome differential expression results are visualized in Figure 2A and compared to
results obtained from the cortical transcriptome (Figure 2B-C) for the same traits, using the same analytic
models.
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Focusing first on cognition-related traits, we found few significant associations of monocyte gene
expression with measures of cognitive performance in different domains that were collected at the time
of blood sampling. The measure of global cognitive performance, which summarizes all of the tests, only
had 10 genes meeting FDR<0.05. Most of those genes overlapped with results for the component
cognitive measures, notably episodic memory, which is profoundly affected in AD; Figure 2D. By contrast,
consistent with prior analyses of these data, the DLPFC transcriptome is broadly associated with
cognitive performance. At a more liberal FDR correction threshold of FDR < 0.2, we did find significant
overlap between genes associated with semantic memory (p=0.001) and episodic memory (p=0.002) in
both tissues.

In evaluating neuropathologic indices, we first focus on the AD-related traits. Looking at a pathologic
diagnosis of AD (pathoAD) using the Reagan criteria20, we again see only a small number of
associations, compared to the large changes seen in DLPFC, where measurable atrophy happens late in
the disease. Pathologic AD is defined by the severity and extent of neuritic plaques and neurofibrillary
tangles, the two defining pathologic features of AD. There are multiple different ways to measure these
pathologies, and all strongly associated with a large fraction of the DLPFC transcriptome. In monocytes,
we found no associations of gene expression with measures of tau proteinopathy (neurofibrillary tangles
(NFT) measured by silver stain or paired helical filament tau (PHF) tau using immunohistochemistry for
the AT8 antibody). However, we did observe some associations with measures amyloid β proteinopathy,
including an immunofluorescence-based measure of amyloid β (Total Aβ), neuritic plaques measured by
silver stain, and diffuse plaques (DP). In particular, the DP trait had more associations than the neuritic
plaques or Aβ (ngenes=51); though all four genes associated with neuritic plaques were also associated
with DP (Figure 2E). We also found associations with severity of cerebral amyloid angiopathy
(ngenes=281), which is a measurement of Aβ deposition in meningeal and parenchymal blood vessels.
This suggests that the monocyte transcriptome may be influenced by or have an effect on some of the
same factors that influence the accumulation of amyloid proteinopathy. This narrative connects with the
observation that activated microglia surround amyloid plaques and that some AD variants may influence
phagocytosis of Aβ.21

There were also associations with other neuropathologies; in particular, there were strong associations
with cerebral arteriolosclerosis (ngenes=635). However, the most prominent associations of monocyte
gene expression are found in relation to the proportion of activated microglia (PAM), a trait based on
counting the number of microglia with an activated, stage III morphology.22 The two measures of cortical
PAM (from the midfrontal (MF) cortex and inferior temporal (IT) cortex) showed the most associations,
despite limited power from the reduced sample size of individuals who have monocyte RNA expression
and PAM measures (nsubjects=51). All measures of PAM had significant overlap in the gene sets they were
associated with (Figure 2F), though the strongest overlap was observed between cortical measures
(noverlap=154), and 7 genes were significantly associated with all four measures (phypergeometric=7.1x10−9;
EXOSC5, MLST8, NUP58, PVT1, RAF1, RNASEH2B, SERINC1). In Figure 3, we present an alternative
visualization of the transcriptome-wide results, emphasizing global cognition, diffuse amyloid,
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cerebrovascular, and microglial pathologies. Full differential expression results and scatterplots for top
individual gene effects for all phenotypes are available for download online (will be uploaded to AD
Knowledge Portal prior to publication).

Overall, while there are hundreds of individual genes significantly associated with arteriosclerosis,
cerebral amyloid angiopathy, and microglial activation, the monocyte transcriptome does not appear to
be strongly associated with the canonical AD-related traits of Total Aβ, neuritic amyloid plaques, PHF tau,
or NFTs.

Comparison with Published Myeloid Cell Differential Expression Signatures

In the absence of comparable monocyte datasets with postmortem neuropathologic phenotype data for
examination, we extended our findings by accessing summary statistics from the myeloid landscape 2
(ML2) repository.23,24 This collection of differential gene expression results is assembled from 35
experiments in human and preclinical brain tissues and myeloid cells of the CNS and periphery, each
providing effect size and significance estimates for individual gene associations with Alzheimer’s
disease-related and neuroinflammatory traits, perturbations, preclinical models, and cell populations. We
evaluated the overlap of each set of differentially expressed genes from our monocyte analyses for all
neuropathologic and cognitive traits with differentially expressed genes from each ML2 experiment in a
pairwise manner (on the background of genes common in both analyses; results in Supplementary Figure
1 and Supplementary Table 3). Overall, there were many overlapping gene sets (hypergeometric p<0.05),
though not all showed strong consistency in effect direction concordance. Among the top results were
overlaps between genes differentially expressed in cortical CD11b+ microglia (GSE7524625 &
GSE6785826) from lipopolysaccharide-injected mice monocyte genes associated with cerebral
arteriolosclerosis (p=6.8x10−8), midfrontal PAM (p=0.027), and diffuse amyloid plaques (p=0.011).
Several other overlaps of interest were identified e.g., between monocyte genes associated with posterior
putamen PAM and genes differentially expressed in CD11b cells of a tau-P301S mutant mouse model
(p=2.8x10−3).

Functional enrichment for biological processes

GO overrepresentation analyses for biological processes were performed separately for up- and down-
regulated gene sets for each trait (Supplementary Table 4). Given the low number of genes associated
with some traits, we also performed rank-based gene set enrichment analyses using the full set of
summary statistics for each differential expression analysis, ranked by moderated t-statistic (top results
shown in Supplementary Figure 2; full results Supplementary Table 5). Many fewer enrichments were
observed for overrepresentation in discrete sets of genes than for rank-based tests. GSEA analyses
revealed the most significant enrichment for ribosomal genes, translational initiation, and mRNA
metabolism across several phenotypes including subcortical PAM measures, cerebral atherosclerosis,
TDP-43 proteinopathy, and cognition. The most significant enrichment for diffuse plaque-associated
genes were for cellular response to decreased oxygen levels (NES=-2.4, pFDR=4.5x10−8). Notably, beta-
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amyloid clearance was significantly enriched in genes negatively associated with midfrontal PAM
(NES=-2.0, pFDR=0.01), suggesting that part of the monocyte signature for cortical microglial activation
may reflect the loss of activated microglia’s ability to clear amyloid effectively.

Analyzing modules of co-expressed genes

To complement the single gene analyses and maximize power to discover broad patterns in gene
expression given our moderate sample size, we created modules of co-expressed genes using the WCGNA
method27 (Figure 4). The monocyte transcriptome (Figure 4A) exhibited a somewhat bifurcated pattern of
diffuse correlations (two major sets of genes represented in large part by the blue (ngenes=1,096) and
turquoise (ngenes=2,327) modules), with several smaller well-defined clusters of strongly co-expressed
genes (a total of 14 clustered modules with 2,595 remaining unclustered genes). In comparison with the
clustered DLPFC transcriptome (Figure 4B), there were fewer identified modules (14 vs. 38 modules),
consistent with the lack of cell type heterogeneity in our purified monocyte samples and the largely
immature nature of monocytes. In line with our single-gene cross-tissue analyses, the purple monocyte
module (significantly enriched for ribosomal genes (Figure 4C)) had the strongest shared identity when
comparing monocyte and DLPFC module membership (84 shared genes between purplemonocyte[142] and
darkolivegreendlpfc[128]; hypergeometric p=5.6x10−137). Full results of pairwise comparisons are shown in
Supplementary Figure 3.

In module-trait association analyses, we observed association of multiple monocyte gene modules with
cerebrovascular traits as well as with Lewy body (α synucleinopathy) pathology (Figure 4D), though no
associations survived FDR correction for multiple testing. This result was somewhat surprising, given the
large number of individual genes associated with microglial activation and cerebrovascular phenotypes
in the single-gene analyses. We investigated this further by plotting eigengene loadings for genes in each
module with their standardized effect estimates from single-gene differential expression analyses
(Supplementary Figure 4). This analysis revealed that for modules enriched with significantly-associated
genes (e.g. The brown module has 87 genes significantly associated with midfrontal microglial
activation), there were substantial numbers of genes with discordant directions of effect but concordant
loadings. This demonstrates a lack co-expression among monocyte genes that are associated with brain
pathology in the same direction – a result that is supported by the minimal biological process enrichment
found in overrepresentation analyses of the PAM phenotype differentially-expressed genes
(Supplementary Table 4). Interestingly, the yellow monocyte module, which was nominally associated
with lower cerebral amyloid angiopathy (beta=-2.2, praw=0.041) and Lewy body stage (beta=-2.8,
praw=0.035), had the hub gene ARID4B (AT-rich interactive domain-containing protein 4B); expression of

family member ARID5B in human monocytes has been recently associated with carotid arteriosclerosis.28

Interaction effects with APOE genotype, clinical AD diagnosis, and sex

Finally, we explored whether APOE genotype, clinical disease stage, and biological sex moderated the
observed relationships between monocyte gene expression and brain pathology and cognition. To test
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this, we performed principal components analysis on expression residuals of significantly differentially
expressed genes for each phenotype. We then associated the top PC (essentially an eigengene
representing cohesive expression of only trait-associated genes; Figure 5A) with their respective
outcomes in separate linear or logistic regression models, including an interaction term for: 1) APOE ε4
allele carrier status (present vs. absent), 2) clinical AD diagnosis at time of death (no cognitive
impairment, mild cognitive impairment, probable AD), and 3) biological sex (male vs. female) (Figure 5B).
After FDR correction across all models (18 outcomes x 3 interacting factors = 54 models), one interaction
remained significant: that between monocyte gene expression and clinical AD stage on MMSE scores
(interaction p=2.5x10−4, pFDR=0.014) suggesting that the relationship between monocyte gene expression
and MMSE is only present in those with an eventual consensus diagnosis of dementia likely due to AD
(Figure 5C). We interpret this result with caution, as the MMSE is often used to screen for dementia, and
homoscedasticity is not maintained across diagnostic categories. Nonetheless, MMSE scores do not
determine the consensus AD diagnosis, and the effect is pronounced, so we examined PC1 and found
that it loaded most strongly onto IL6ST (0.68) and AMPD3 (-0.72), in opposite directions. This indicates
that anticorrelated expression of these genes in monocytes are strongly linked to MMSE score in those
with substantial cognitive deficits, where the variation in performance is greatest. The IL6ST result aligns
well with the association of higher circulating IL6 levels with AD, as IL6ST is one of the subunits of the
IL6 receptor. In addition, we found near-significant interactions of monocyte gene expression with APOE
ε4 status on global cognitive performance (interaction p=2.8x10−3, pFDR=0.15), whereby the association
of expression and cognition was stronger in ε4 carriers than in non-carriers (Figure 5D). Expression PC1
for global cognition genes loaded most strongly, in concordant directions, onto SARS1 (0.47), ARAP1
(0.44), and PQLC2 (0.41). No notable interactions were observed for biological sex.

Discussion
This report establishes a new resource of peripheral monocyte gene expression with matched data from
human postmortem brain tissue, with all data and results available through the AD Knowledge Portal to
facilitate repurposing. A recent review summarized gene expression studies in human monocytes29, and
our data are unique given the availability of rich ante- and post-mortem traits from each participant. The
relationship between brain and peripheral gene expression has previously been explored in whole blood,
which has limitations given the heterogeneity of component cells and smaller samples sizes of these
studies.30,31 Here, we focused on a cell type robustly implicated in AD from human genetic analyses, and
we have demonstrated that the monocyte transcriptome, captured ex vivo, has little correlation with the
postmortem brain transcriptome measured in the prefrontal cortex. There are some exceptions, with a
subset of strongly correlated immune and ribosomal genes; however, these correlations are driven by
strong eQTLs that are active in both tissues. We have also shown that the peripheral monocyte
transcriptome has little association with the majority of AD-related traits: overall, peripheral monocytes do
not appear to have any robust relationship with canonical AD-related pathologies. 
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However, these monocyte transcriptomes from older individuals were associated with traditionally non-
AD pathologies such as cerebral atherosclerosis, consistent with existing work32. More interesting are the
associations with microglial activation state in both cortical and subcortical brain regions. This result
aligns with the intuition that central and peripheral immune cells may respond similarly to systemic cues.
However, these signals appear to be diverse and may be driven by a variety of factors, as groups of
individually associated genes do not yield evidence of association when collapsed within co-expressed
gene modules. Further, while the proportion of activated microglia is associated with AD traits22, these
associations do not appear to be strongly linked to monocyte gene expression. Thus, peripheral
monocytes deserve further attention given their relation to microglial states, but it is unlikely that this
inter-connection of peripheral and central immunity is strongly related to AD. They may be more relevant
for other aging-related pathologic processes. 

 

In more detailed modelling, we found little evidence for the influence of AD disease stage or APOE
genotype on gene-pathology associations. One exception was an effect of IL6ST on MMSE score that
was only observed in individuals with a diagnosis of dementia (likely due to AD), suggesting that the later
stages of AD may accompany perturbations of the IL6 pathway and other measures of systemic
inflammation that are not part of an early risk profile. Thus, while monocytes may be less likely to have a
causal role in AD, they may reflect some of the effects of the disease downstream of cognitive
dysfunction, which is different from microglia implicated in the accumulation of amyloid and tau
proteinopathy22,33,34. Another conditional effect (albeit not significant after correction for multiple testing)
was observed for cognition-associated genes, represented most strongly by SARS1, ARAP1, and PQLC2,
whereby their association with global cognition was stronger in APOE ε4 carriers. Some of these genes
have known links to AD; brain expression of ARAP1 has recently been associated with beta-amyloid load
in African-Americans35 and PQLC2 is a lysosomal lysine/arginine transporter important for the unfolded
protein response36, which is protective against neurodegeneration37. It is possible that APOE ε4 carriers,
which have increased pro-inflammatory response to lipopolysaccharide injection38, are particularly
susceptible to inflammatory alterations in peripheral monocytes; our cognition-associated monocyte
genes were significantly enriched for response to interleukin-1.

 

This study has several limitations. First, the sample size was limited, so we can only exclude the
possibility of large effects in interpreting the results of our largely negative results for the AD-related
traits. Second, the monocyte RNA sequencing data were produced in two batches; this technical
heterogeneity was mitigated with cross-batch normalization and the use of voomWithQualityWeights.
However, such methods could over-correct or attenuate certain results. Third, we performed a large
number of comparisons and the FDR did not account for testing of 26 phenotypes in addition to all genes
in both tissues. This is a trade-off based on the limited sample size; while not strictly conservative, this



Page 10/28

approach allows for prioritizing genes for further evaluations. Since rank in the results does not change,
our GSEA-based enrichment results and their interpretation are not altered. 

 

In conclusion, we have identified monocyte gene expression signatures for microglial activation,
neurovascular pathology, and cognitive performance in late life. Given the roles of monocytes in
monitoring and responding to events unfolding within the CNS, their molecular phenotype may be
sensitive to some neuropathological changes associated with aging and place them as suitable
biomarkers for vascular, inflammatory, and possibly cognitive consequences of neurodegenerative illness
in aging.17 

Methods

Study Participants
All participants in this study were part of the Religious Orders Study or Rush Memory and Aging Project
(ROS/MAP)39. All subjects were recruited free of known dementia (mean age at entry = 78 ± 7.8 (SD)
years), agreed to annual clinical and neurocognitive evaluation, and signed an Anatomical Gift Act
allowing for brain autopsy at time of death. Written informed consent was obtained from all participants
and study protocols were approved by an Institutional Review Board of Rush University Medical Center.
All participants signed a repository consent that allowed for resource sharing.  Data can be requested
at https://www.radc.rush.edu. 

 

Assessment of Cognitive Performance 
All subjects were administered 17 cognitive tests annually spanning five cognitive domains. Raw scores
for tests within each domain were z-scored (using the mean and standard deviation of the entire
ROS/MAP cohort at baseline) and averaged to form the composite measures used as outcomes in
differential expression analysis. The list of individual cognitive tasks and their corresponding domains
has been published22. Further, the Mini Mental Status Examination (MMSE), a widely used 30 item
measure of global cognition and dementia severity40, was also administered.

 

Assessment of Postmortem Neuropathology and
Consensus Diagnoses

https://www.radc.rush.edu/
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With an average postmortem interval of 9.3 hours (SD=8.1), brains were removed in a standard fashion
as previously described.41 All brains were examined by a board-certified neuropathologist blinded to
clinical data. A total of 18 disease- and age-related neuropathological and were measured brain-wide,
including validated measures of Aβ peptides, neuritic and diffuse plaques, hyperphosphorylated tau
protein, neurofibrillary tangles, micro and macro cerebral infarcts, cerebral atherosclerosis, degree of
alpha-synucleinopathy, TDP43 proteinopathy, and hippocampal sclerosis. A binary summary diagnosis of
neuropathologic Alzheimer’s disease was also calculated according to NIA-REAGAN criteria (absent if
likelihood was no or low and present if intermediate or high)20. A subset of samples were also evaluated
for the presence of microglia at three stages of activation in four regions (midfrontal (MF) cortex, inferior
temporal (IT) cortex, ventral medial caudate (VM), and posterior putamen (PPUT)), based on morphology:
stage I (thin ramified processes), stage II (plump cytoplasm and thicker processes), and stage III
(appearance of macrophages). Detailed descriptions of all neuropathological variables have been
previously published.22 In addition, at the time of death, a consensus summary diagnostic opinion was
rendered by one or more neurologist(s) regarding the most likely clinical diagnosis of Parkinson’s disease,
blind to neuropathological data.42 

 

Isolation of Peripheral Blood Monocytes
Peripheral blood mononuclear cells (PBMCs) were isolated from blood and frozen. CD14+CD16-
monocytes were isolated from thawed PBMCs using the EasySep Human Monocyte Isolation Kit
(Negative selection kit, Stemcell Technologies, 19359) according to manufacturer's instructions (details in
Supplementary methods). 

 

Sequencing of RNA from Monocytes
RNA sequencing libraries were prepared using a SMART-seq2 (Batch 1 and 2) protocol for cDNA
preparation followed by Nextera XT DNA library preparation. For each sample, cDNA was prepared from
20-2000 FACS-sorted cells. Libraries were pooled and sequenced on a HiSeq 2500 (Illumina) using 2 x
101bp (Batch 1) and 2 x 76bp cycles (Batch 2). Full details are available on the ROS/MAP AMP-AD
Knowledge portal (syn3219045) and have been made available in Supplementary Methods.

 

Sequencing of RNA from Bulk Brain (DLPFC)
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RNA sequencing on DLPFC tissue was carried out in 13 batches within three distinct library preparation
and sequencing pipelines. All samples were extracted using Qiagen's miRNeasy mini kit (cat. no. 217004)
and the RNase free DNase Set (cat. no. 79254), and quantified by Nanodrop and quality was evaluated by
Agilent Bioanalyzer. Full details on these methods are available on the AMP-AD knowledge portal
(syn3219045). Briefly, for pipeline #1, The Broad Institutes's Genomics Platform performed RNA-Seq
library preparation using the strand specific dUTP method43 with poly-A selection44. Sequencing was
performed on the Illumina HiSeq with 101bp paired-end reads and achieved coverage of 150M reads of
the first 12 samples. The remaining samples were sequenced with coverage of 50M reads. For pipeline
#2, RNA sequencing libraries were prepared using the KAPA Stranded RNA-Seq Kit with RiboErase
(kapabiosystems) in accordance with the manufacturer’s instructions. Sequencing was performed on the
Illumina NovaSeq6000 using 2 x 100bp cycles targeting 30 million reads per sample. For pipeline
#3, RNA was extracted using Chemagic RNA tissue kits (Perkin Elmer, CMG-1212) on a Chemagic 360
instrument. 500ng total RNA was used as input for sequencing library generation and rRNA was depleted
with RiboGold (Illumina, 20020599). A Zephyr G3 NGS workstation (Perkin Elmer) was utilized to generate
TruSeq stranded sequencing libraries (Illumina, 20020599). Sequencing was performed on a NovaSeq
6000 (Illumina) at 40-50M reads (2x150bp paired end).

 

RNAseq Processing and Quality Control

Alignment pipeline and quality control
For monocytes, two batches (nbatch1=46, nbatch2=201; initial ntotal=247) were processed using the same
pipeline: 1) fastq file quality control was performed using FastQC v0.11.5 (default parameters), 2) STAR
v2.5.3a was used to align reads (GRCh38.91 reference), 3) RSEM v1.2.31 was used to quantify
expression from aligned BAM files, and 4) multiqc v1.5 was used to aggregate quality metrics from
fastqc and Picard tools v2.17.4, 5) quality reports were examined for each batch and exclusion of
samples was initially carried out according to manual identification of outlying samples primarily
considering low numbers of aligned reads, excess GC coverage bias, high percentage of read duplicates,
and abnormal distribution of read assignments across genomic annotations (nine outliers were identified
at this stage and removed; new ntotal=238). For DLPFC, the identical pipeline was applied for all 13
batches (initial ntotal=1,110). Expression of the XIST gene was evaluated at this stage to exclude subjects
with contradictory reported biological sex. For monocytes, five subjects were identified (new ntotal=233),
and for DLPFC, 13 subjects were identified (new ntotal=1,097). 
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Count data quality control and initial outlier removal
Expected counts, calculated by RSEM, were aggregated across both batches and used as input to limma
(v3.48.3) voom in R (v4.1.1). Genes with insufficient expression (median count value was less than 15
across the combined sample) were removed. Naïve multidimensional scaling (MDS) analysis was then
performed for each batch separately on the top 5000 most variable genes (using limma “plotMDS”) to
identify subjects with outlying expression patterns. Outliers were defined as those with values of either of
the first two latent dimensions exceeding ±4 times the interquartile range (IQR) of their within-batch
median value. Following this step, 224 subjects remained for monocytes, and 1,091 remained for DLPFC.
To limit bias in modeling due to extreme within-subject outlier observations, we conservatively coerced
extreme expression values separately per gene: any values beyond 8xIQR of the voom-transformed
sample median values were coerced to the nearest maximum or minimum point of the sample
distribution. In this way, we were able preserve some influence for such observations in linear modeling
while limiting leverage inflation. These QC’d data were then trimmed mean of M-values (TMM)
normalized. 

 

Co-variate selection
Next, co-variates for inclusion in downstream analyses were determined by evaluating the effects of
candidate variables on the top 20 principal components (PCs) of gene expression in monocytes and
DLPFC separately (Supplementary Figures 5 & 6):

 

For monocytes, influential technical variables were determined to be: batch, % of usable bases, % of
passed filter reads aligned, % read duplicates, median 3’ bias, estimated library size, and study (ROS vs.
MAP). In addition, we observed effects on expression PCs by important biological and clinical variables
measured at time of blood draw that were also included in downstream association analyses of
monocyte expression: biological sex, age, fasting status, hematologic medication status, blood
hemoglobin, mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC),
platelet count, and white blood cell count (WBC). These variables were not selected in isolation;
correlations between all potential co-variates were examined prior to inclusion and variables were
selected to avoid redundancy (Supplementary Figures 7 & 8). In downstream models of postmortem
outcomes, age at death and postmortem interval (PMI) were also included as covariates. For cognitive
outcomes, years of education were included.

 

For DLPFC, the following variables were selected using the same procedure described above: batch,
study, biological sex, age at death, PMI, median coefficient of variation for coverage values of the 1000
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most highly expressed genes, % of aligned bases mapping to ribosomal RNA, % coding bases, % UTR
bases, log(estimated library size), log(passed filter aligned reads), median 5’ to 3’ bias, % of passed filter
reads aligned, % read duplicates, median 3’ bias, and % of intergenic bases. Again, for cognitive
outcomes, years of education were also included.

 

Estimation of brain cell type proportions in DLPFC
Prior to calculating residual expression values, a brain cell type-corrected expression matrix was
generated for DLPFC on voom-transformed expression values. This matrix was used as input for cross-
tissue correlation analyses, transcriptome-wide differential expression analyses, as well as WGCNA. Cell
type proportions were estimated using the Brain Cell Type Specific Gene Expression Analysis
(BRETIGEA)45 package in R. Human marker genes (n=50 per set) from Darmanis et al. (2015)46 were
used in the application of a validated singular value decomposition method47 (the “adjustBrainCells”
function).

 

Final QC for post-processed expression residuals
As a final step to ensure the robustness of included data, linear effects of identified technical co-variates,
age at draw (age at death and PMI for DLPFC), and biological sex were removed using the “lmfit”
(specifying robust Huber regression48), and expression values residualized. Individuals were then
hierarchically clustered (agglomerative) and the resulting dendrograms (see Supplementary Figure 9)
were manually inspected to identify any additional subject outliers escaping recognition by two-
dimensional MDS (6 identified for monocytes, 18 for DLPFC). This resulted in two high quality RNAseq
datasets: monocytes (218 subjects and 9,129 genes) and DLPFC bulk tissue (ngenes=17 465).

 

Weighted Gene Co-Expression Network Analysis (WGCNA)
The WGCNA pipeline (v1.70-3)27 was used to detect co-expressed gene modules in the monocyte and
DLPFC datasets separately using the signed network approach. For network construction, gene
expression residuals were used as input; for monocytes, covariates included all selected technical
variables plus age at blood draw and biological sex. This set of residuals was chosen to allow for
downstream module-trait analyses on both cognitive and postmortem variables, which require different
analytical covariates. DLPFC expression residuals adjusted for all selected variables listed above, in
addition to brain cell type proportions. Briefly, WGCNA calculates a topological overlap matrix (TOM)
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based on the signed correlation between all input genes, raised to a power (which optimizes scale-free
network topology and improves module detection). To improve the robustness of our TOM network
structure, we used biweight midcorrelations as our pairwise similarity measure (corType=“bicor”),
allowing for 5% of observations for any given correlation to be considered outliers (maxPOutliers=0.05).
 The optimal soft threshold for calculation of adjacency was determined by visual assessment of the
scale free topology index R2 calculated from the “pickSoftPowerThreshold” function (8 for monocytes
and 16 for DLPFC; see Supplementary Figure 10 for threshold determination experiment results). The
TOM is then hierarchically clustered, and distinct clusters of genes detected using a dynamic tree-cutting
and merging process (non-default parameters: minClusterSize=30, deepSplit=3, detectCutHeight=0.995,
minKMEtoStay=0.3, pamStage=TRUE, pamRespectsDendro=TRUE). After clustering into gene modules,
eigen-decomposition was used to identify latent features capturing the most linear covariance among all
genes expressed within each module and each dataset. These “eigengenes” therefore summarize the
expression of all genes within a given module, weighted by the similarity of each member gene to the
other members. This resulted in a set of high confidence, structurally cohesive gene module identities for
further examination. Gene modules identified in monocytes and DLPFC separately were assessed for
overlapping identities (gene members) using the WGCNA “overlapTable” and function. 

 

Monocyte Expression Quantitative Trait Loci (eQTL)
Analysis
Genotype data was available for 2067 ROS/MAP subjects, between two batches: nbatch1=1686 genotyped
using the Affymetrix GeneChip 6.0 and nbatch2=381 genotyped using the Illumina OmniQuad Express

platform. Details of raw genotype quality control have been previously described.49 Each batch was
imputed separately using the TOPMed Imputation Server (TOPMed reference r2),50 including Eagle (v2.4)
for allelic phasing and Minimac4 (v1.5.7) for imputation. Prior to submission for imputation, genotypes
were preprocessed using the TOPMed Imputation Server-recommended data preparation pipeline
available here: https://topmedimpute.readthedocs.io/en/latest/prepare-your-data.html. Imputed output
data from the TOPMed server for each batch were filtered for imputation quality (removing SNPs with
r<0.8) before merging and mapping to rsIDs (dbSNP build 155). This resulted in a final high-quality
dataset of 9,329,439 bi-allelic autosomal SNPs. PLINK2 (v2.00a3) was used to perform QC on SNP data
prior to eQTL analysis, including removing variants with minor allele frequency (MAF) > 0.05 and
violating Hardy-Weinberg Equilibrium (HWE) with a p-value below 1x10-6. BootstrapQTL (v1.0.5)51 was
used to perform cis-eQTL mapping within a distance of 1MB from the start and stop sites of each gene
passing QC in our monocyte RNAseq experiment (GRCh38 coordinates). Analyses co-varied for biological
sex, age at blood draw, and the top 10 genomic PCs estimated from only genotyped SNPs overlapping
between genotyping platforms (nsnps=188,936). 1000 bootstrap iterations were performed to address the
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“winner’s curse” common in cis-eQTL mapping studies51 and maximize the confidence of our results.
Code used for cis-eQTL mapping is available at (www.github.com/dfelsk/monocyteRNAseq).

 

External Postmortem Brain Cis-eQTL Resources
For comparison of our monocyte is-eQTL map with cis-eQTL data from human frontal cortex, we
accessed two existing resources: the GTEx cis-eQTL database v8 (dbGaP accession phs000424.v8.p2)
and the recently updated (June 2021) xQTL-serve19, which was built directly from DLPFC expression and
genotype data from the ROS/MAP studies. Specifically, for GTEx, the single-tissue egene collection for
frontal cortex (BA9) was downloaded. For both datasets, each gene was matched to its strongest eQTL
(i.e. SNP) for downstream analysis. 

 

Gene Set Enrichment Analyses
The R Bioconductor gprofiler2 (v0.2.0)18 package was used for gene set overrepresentation analyses
across a broad range of annotations in cross-tissue correlation analysis (Figure 1B-C). For biological
process gene ontology (GO) overrepresentation analysis of module membership and rank-based gene set
enrichment analysis (GSEA) of transcriptome-wide differential expression results, the clusterProfiler R
package (v4.0.2) was used (parameters: minGSSize=20; maxGSSize=300; OrgDb=org.Hs.eg.db). For
GSEA, an FDR-corrected threshold of q<0.05 was applied across all tested GO gene sets within each
phenotype. Following enrichment tests, the rrvgo (v1.5.2; https://ssayols.github.io/rrvgo/) package was
used to perform semantic similarity reduction of enriched GO terms of informative GO terms. Rrvgo uses
semantic similarity (“Rel” threshold set at 0.7) to simplify and improve interpretability of GO analyses
where many terms may be significantly enriched.

 

Extension of Findings in Publicly Available Myeloid Cell
Experiments
To test if genes identified in our monocyte differential expression analyses had been identified previously
in myeloid cells or brain tissue as associated with traits related to Alzheimer’s disease of
neuroinflammation, we systematically queried the myeloid landscape 2 online database.23,24 This
collection of differential expression results is assembled from 35 experiments in human and preclinical
brain tissues and myeloid cells of the CNS and periphery, each providing gene-wise effect size and

http://www.github.com/dfelsk/monocyteRNAseq
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significance estimates. Full descriptions of each component study and their analyses can be found
online (http://research-pub.gene.com/BrainMyeloidLandscape/BrainMyeloidLandscape2/#). 

 

Statistical Analyses

Correlation of gene expression between tissues
Using covariate-normalized gene expression residuals, Spearman rank correlations were calculated for
each gene between monocytes and DLPFC, followed by correction for multiple testing using Benjamini-
Hochberg FDR.52 To assess whether the mean correlation was different from 0, we performed
permutation analysis, randomly shuffling subjects in both expression datasets and re-calculating
correlation coefficients for every gene 1000 times. This procedure yielded a null distribution of mean
correlations from which the p-value for the null test (H0:µcross-tissue rho≠0) could be calculated: p =
proportion of permutations for which the absolute value of the mean correlation was greater than the
mean correlation from our observed, unshuffled data.

 

Comparing cis-eQTL results with cross-tissue correlated genes
Values for assessing evidence for genetic regulation were calculated for each gene with at least one
significant eQTL in both monocytes and DLPFC (corrected peQTL < 0.05) as the -log10 Fisher’s meta p-
value of its top eSNPs in both tissues (not necessarily the same lead SNPs). Cross-tabulation followed by
two-sided Fisher’s exact test was used to visualize and statistically test for pairwise overlap in significant
(pFDR < 0.05) eQTLs between all three datasets (monocytes, DLPFC, and GTEx frontal cortex).
Hypergeometric tests were used to identify significance of overlap of significant cross-tissue correlated
genes with genes possessing significant eQTLs in each dataset separately. For consistency in
visualization, we also performed a Kruskall-Wallis test on eQTL significance (-log10(p-value)) between
three pools of mutually-exclusive genes used in the Figure 1A visualization: uncorrelated (p>0.05),
nominally correlated (p<0.05 & pFDR>0.05), and significantly correlated (pFDR < 0.05). Post-hoc Wilcoxon
rank sum tests were performed to identify pairwise differences between groups, with Bonferroni
correction for multiple testing (three tests; pthreshold=0.0176).

 

Transcriptome-wide differential expression analysis

http://research-pub.gene.com/BrainMyeloidLandscape/BrainMyeloidLandscape2/
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Differential expression analysis was performed using limma/voom for associations with neuropathology
and cognitive performance outcomes. For monocytes, filtered gene expression values processed with
voomWithQualityWeights were used as input, co-varying for all technical and biological confounders
specified above. For DLPFC, the same approach was used, except filtered and voom-transformed
expression values were first corrected for brain cell type proportions, as described above. Robust linear
modeling was used for differential expression, allowing up to 20,000 iterations to reach convergence.
Significance of the effects for target outcomes in our multivariate models was performed using empirical
Bayes moderation (eBayes function). P-values were adjusted using the FDR approach within each
phenotype and tissue separately.

 

Comparison of differential expression results between monocytes
and DLPFC
For each cognition-related and neuropathologic outcome, hypergeometric tests were used to determine if
the identity of associated genes significantly overlapped between monocytes and DLPFC. These tests
used the background of genes commonly expressed in both tissues (ngenes=8,757) and were performed
for three levels of FDR significance (FDR<0.05, 0.1, and 0.2). In addition, hypergeometric tests were
applied to subsets of outcomes within each tissue, to determine if genes associated with similar traits
also had overlapping identities. Tests were implemented using the SuperExactTest (v1.0.7)53 package in
R.

 

Association of gene modules with cognitive and neuropathological
variables
Module eigengenes were associated with the same set of cognitive and pathological outcomes as in
transcriptome-wide differential expression analyses, using the same covariates. Ordinary least squares
regression was used for association. FDR-based multiple testing correction was as applied across the full
set of modules and phenotypes, but separately for monocyte and DLPFC analyses.

 

Data Availability
All data used in the analyses described can be found on the AMP-AD Knowledge Portal
(https://adknowledgeportal.synapse.org/).
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Figures

Figure 1

Cross-Tissue Correlation Analysis. A) Histogram of Spearman rho correlation coefficients for 8,757 genes
detected in both monocytes and DLPFC tissue (n=194). The yellow dashed line indicates the mean
correlation (µrho=0.016), and colors correspond to non-overlapping categories of significance following
multiple testing correction (p-values are two-sided). Panel A also shows the histogram of 1000 permuted
correlation means, demonstrating pperm<0.001 for test of mean of transcriptomic correlations being equal
to 0. Functional enrichment result summaries are shown for B) positively correlated genes, and C)
negatively correlated genes. Highlighted top terms were chosen to emphasize key consolidated processes
and are described below dot plots for added detail. D) Venn diagram showing the overlap in significant
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cis-eGenes (genes with significant cis-eQTLs after correction) in monocytes, DLPFC (xQTL serve;
ROS/MAP), and frontal cortex (BA9; GTEx v8). Fold-enrichment (FE) and p-value shown from
hypergeometric test of overlap of all three tissue eQTLs. E) Beeswarm plots showing median cis-eQTL
strength (y-axis) for all eGenes in each tissue as a function of cross-tissue correlation significance group
(x-axis; 0=uncorrelated, 1=nominally correlated at puncorrected<0.05 and pFDR>0.05; 2=significantly
correlated at pFDR<0.05). Omnibus Kruskall-Wallis tests revealed significant effects of correlation

significance group on eQTL strength in all tissues (all p<4.7x10-9), with all post-hoc Wilcoxon rank-sum
tests showing p<0.001 after Bonferroni correction except for the contrast between uncorrelated and
nominally correlated genes in monocytes (pBonf=0.29). All p-values are two-sided. BP=biological process;
CC=cellular component; DLPFC=dorsolateral prefrontal cortex; eQTL=expression quantitative trait locus;
GO=gene ontology; MF=molecular function; WP=Wikipathways.

Figure 2
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Summary of Results from Transcriptome-wide Differential Expression Analysis in Monocytes and DLPFC.
A) and B) show the number of genes passing the FDR-corrected significance threshold of pFDR<0.05 (two-
sided). C) The number of genes passing the indicated FDR threshold for trait association overlapping
between monocytes and DLPFC. The x-axis indicates significance of hypergeometric overlap test with the
full background of genes detected in both monocytes and DLPFC (ngenes=8,757). As a visual aid for
interpretation, the vertical red dashed line indicates an uncorrected p-value of 0.05. D-F) Sets of genes
passing pFDR<0.05 in monocytes in common between related cognitive and neuropathologic groups of
traits. Bar height shows the number of genes in common between significant gene sets for all traits with
filled-in black dots directly below. Each bar and corresponding overlap set is mutually exclusive. The bar
fill color scale indicates significance of hypergeometric tests for the indicated overlap, showing
substantial overlap between genes significantly associated with related traits.  AA=amyloid angiopathy;
AB=total amyloid-beta; Dx=diagnosis; Global=global cognitive summary score; IT=inferior temporal
cortex; MF=midfrontal cortex; MMSE=mini mental status exam; NFT=neurofibrillary tangles;
PAM=proportion of active microglia; PD=Parkinson’s disease; TDP-43=tar-DNA binding-43 proteinopathy;
VM=ventral medial.
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Figure 3

Chicago Plots Showing Detailed Results of Differential Expression Analysis in Monocytes for Selected
Traits. Y-axes show the signed log10(pFDR) for each gene (ngenes=9,129), x-axes and highlighted segments
show chromosomes. The top 20 genes are labelled for reach trait, except where fewer genes meet
corrected significance (pFDR<0.05), in which case only those significant genes are labelled.
MT=mitochondrial chromosome.

Figure 4
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Monocyte Gene Co-Expression Module Analysis. A) network visualization of monocyte transcriptome
colored by WGCNA modules, accompanied by histogram showing size and central hub gene of each
module. B) Gene dendrograms for the monocyte and DLPFC transcriptomes processed using the same
analytical pipeline. Module identities are shown in the colored bar below each dendrogram. The central
alluvial plot shows overlapping identities of gene modules, with each curved line connection representing
one of the 8,757 genes commonly expressed in both tissues. C) Results of gene enrichment analysis for
biological processes. Only the top five significant GO terms are shown for each module, and only five
modules were significantly enriched for at least one term (pFDR < 0.05). Gene module sizes in GO
enrichment analysis may differ slightly from those reported elsewhere as mapping from Ensembl gene
IDs to Entrez gene IDs is imperfect. D) Heatmaps showing association statistics for each gene module in
monocytes and DLPFC against each cognitive and neuropathological outcome (colors indicate strength
and direction of association t-statistic, with blue indicating negative and red indicating positive values;
*praw < 0.05, **pFDR<0.05). AA=amyloid angiopathy; AB=total amyloid-beta; Dx=diagnosis; Global=global
cognitive summary score; IT=inferior temporal cortex; MF=midfrontal cortex; MMSE=mini mental status
exam; NFT=neurofibrillary tangles; PAM=proportion of active microglia; PD=Parkinson’s disease; TDP-
43=tar-DNA binding-43 proteinopathy; VM=ventral medial.
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Figure 5

Interaction effects of monocyte gene expression with APOE genotype, clinical AD stage, and biological
sex. A) Barplot showing the proportion of variance (y-axis) explained by the top principal component
(PC1) for each set of significant differentially expressed genes for each phenotype (number of significant
genes entered into PCA shown in brackets on x-axis). B) Dotplot showing the significance of the
interaction term between PC1 and either APOE e4 genotype status, AD diagnosis (Dx), or biological sex, in
regression models of each cognitive and pathological outcome. All p–values are two-sided. FDR
correction was applied across all phenotypes and interaction models, with significance (corrected p<0.05)
indicated by point shape. C) Scatterplot showing the association between PC1 of MMSE-associated
monocyte gene expression residuals (x-axis) and MMSE score at time of blood draw, faceted by AD
diagnosis stage (interaction praw=2.5x10-4, pFDR=0.01). D) Scatterplot showing the interaction between
PC1 of global cognition-associated monocyte gene expression residuals and APOE genotype, in
association with global cognition at time of blood draw (interaction praw= 2.8x10-3, pFDR=0.15).
AA=amyloid angiopathy; AB=total amyloid-beta; Dx=diagnosis; Global=global cognitive summary score;
IT=inferior temporal cortex; MF=midfrontal cortex; MMSE=mini mental status exam; NFT=neurofibrillary
tangles; PAM=proportion of active microglia; PD=Parkinson’s disease; TDP-43=tar-DNA binding-43
proteinopathy; VM=ventral medial.
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