1. Zhang, Y. S., Liu, C. Y., Emelyanenko, A. V. & Liu, J. H. Synthesis of Predesigned Ferroelectric Liquid Crystals and Their Applications in Field-Sequential Color Displays. Adv. Funct. Mater. 28, 1706994 (2018).
2. Tsujimura, T. OLED Display Fundamentals and Applications. John Wiley & Sons, Inc. (2012).
3. Armitage, D., Underwood, I. & Wu, S.-T. Introduction to Microdisplays. (John Wiley & Sons, Ltd., 2006).
4. Luo, Z., Zhang, G., Zhu, R., Gao, Y. & Wu, S.-T. Polarizing grating color filters with large acceptance angle and high transmittance. Appl. Opt. 55, 70–76 (2016).
5. Yang, C. et al. Compact multilayer film structure for angle insensitive color filtering. Sci. Rep. 5, 9285 (2015).
6. Si, G. Y., Leong, E. S. P., Danner, A. J. & Teng, J. H. Plasmonic Coaxial Fabry-Pérot Nanocavity Color Filter. in Proc. of SPIE 7757 (2010).
7. Xiao, T. P. et al. Diffractive Spectral-Splitting Optical Element Designed by Adjoint-Based Electromagnetic Optimization and Fabricated by Femtosecond 3D Direct Laser Writing. ACS Photonics 3, 886–894 (2016).
8. Kim, G., Dominguez-Caballero, J. A., Lee, H., Friedman, D. J. & Menon, R. Increased photovoltaic power output via diffractive spectrum separation. Phys. Rev. Lett. 110, 123901 (2013).
9. Wang, P. & Menon, R. Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics. Optica 2, 933–939 (2015).
10. Lee, K. T., Seo, S. & Guo, L. J. High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers. Adv. Opt. Mater. 3, 347–352 (2015).
11. Chen, H., Tan, G. & Wu, S.-T. Ambient contrast ratio of LCDs and OLED displays. Opt. Express 25, 33643–33656 (2017).
12. Kelley, E. F., Lindfors, M. & Penczek, J. Display daylight ambient contrast measurement methods and daylight readability. J. Soc. Inf. Disp. 14, 1019–1030 (2006).
13. Bennett, S. & Trapani, G. Contrast enhancement of LED, vaccum fluorescent and plasma displays with circular polarizing filters. Displays 5, 159–164 (1984).
14. Singh, R., Narayanan Unni, K. N., Solanki, A. & Deepak. Improving the contrast ratio of OLED displays: An analysis of various techniques. Opt. Mater. (Amst). 34, 716–723 (2012).
15. Chen, O. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).
16. Kim, H.-J., Shin, M.-H., Lee, J.-Y., Kim, J.-H. & Kim, Y.-J. Realization of 95% of the Rec 2020 color gamut in a highly efficient LCD using a patterned quantum dot film. Opt. Express 25, 10724–10734 (2017).
17. Meinardi, F. et al. Highly efficient luminescent solar concentrators based on earth-Abundant indirect-bandgap silicon quantum dots. Nat. Photonics 11, 177–185 (2017).
18. Batchelder, J. S., Zewai, A. H. & Cole, T. Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. Appl. Opt. 18, 3090–3110 (1979).
19. Debije, M. G. & Verbunt, P. P. C. Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment. Adv. Energy Mater. 2, 12–35 (2012).
20. Bronstein, N. D. et al. Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration. ACS Photonics 2, 1576–1583 (2015).
21. Babar, S. & Weaver, J. H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 54, 477–481 (2015).
22. Bronstein, N. D. et al. Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. ACS Nano 8, 44–53 (2014).
23. Yablonovitch, E. Thermodynamics of the fluorescent planar concentrator. J. Opt. Soc. Am. 70, 1362–1363 (1980).
24. Wilton, S. R. et al. Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators. Opt. Express 22, A35–A43 (2014).
25. Sahin, D., Ilan, B. & Kelley, D. F. Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles. J. Appl. Phys. 110, 033108 (2011).
26. Boher, P., Leroux, T., Bignon, T. & Blanc, P. Color display evaluation vs. viewing angle using L*a*b*color space and Fourier-optics measurements. J. Inf. Disp. 12, 179–190 (2011).
27. Lim, Y. J. et al. Viewing angle controllable liquid crystal display with high transmittance. Opt. Express 18, 6824–6830 (2010).
28. Boher, P., Leroux, T., Collomb-Patton, V. & Bignon, T. Optical Characterization of OLED Displays. J. Soc. Inf. Disp. 23, 429–437 (2015).
29. Mori, H. The wide view (WV) film for enhancing the field of view of LCDs. J. Disp. Technol. 1, 179–186 (2005).
30. Barycka, I. & Zubel, I. Silicon anisotropic etching in KOH-isopropanol etchant. Sensors Actuators A. Phys. (1995).
31. Mitjà, C. & Escofet, J. LCD displays performance comparison by MTF measurement using the white noise stimulus method. in Proc. of SPIE vol. 7867 (2011).
32. Hanifi, D. A. et al. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science (80-. ). (2019).