1. Beja-Pereira A, Caramelli D, Lalueza-Fox C, Vernesi C, Ferrand N, Casoli A, et
al. The origin of European cattle: evidence from modern and ancient DNA[J]. Proceedings
of the National Academy of Sciences. 2006; 103(21): 8113-8118.
2. Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, et al. The yak genome and adaptation
to life at high altitude[J]. Nature genetics. 2012; 44(8): 946-949.
3. Wiener G, Han J L, Long R J. The yak. Second edition. Bangkok: FAO Regional Office
for Asia and the Pacific Food and Agriculture Organization of the United Nations.
2003
4. Weir EK, Tucker A, Reeves JT, Will DH, Grover RF. The genetic factor influencing
pulmonary hypertension in cattle at high altitude[J]. Cardiovascular Research. 1974;
8(6): 745-749.
5. Hecht HH, Kuida H, Lange RL, Thorme JL, Browen AM. Brisket disease: II. Clinical
features and hemodynamic observations in altitude-dependent right heart failure of
cattle[J]. The American journal of medicine. 1962; 32 (2): 171-183.
6. Shao B, Long R, Ding Y, Wang J, Ding L, Wang H. Morphological adaptations of yak
(Bos grunniens) tongue to the foraging environment of the Qinghai-Tibetan Plateau[J].
Journal of Animal Science. 2010; 88(8): 2594-2603.
7. Wang H, Long R, Liang JB, Guo XS, Ding LM, Shang ZH. Comparison of nitrogen metabolism
in Yak (Bos grunniens) and indigenous cattle (Bos taurus) on the Qinghai-Tibetan Plateau[J].
Asian-Australasian Journal of Animal Sciences. 2011; 24(6): 766-773.
8. Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar1 SR, et al. II.
Morphological adaptations of human skeletal muscle to chronic hypoxia[J]. International
journal of sports medicine. 1990; 11(S1): S3-S9.
9. Ahmad K S, Hameed M, Fatima S, Ashraf M, Ahmad F, Naseer M, et al. Morpho-anatomical
and physiological adaptations to high altitude in some Aveneae grasses from Neelum
Valley[J]. Western Himalayan Kashmir, Acta physiologiae plantarum. 2016; 38(4): 93.
10. Monge C, Leon-Velarde F. Physiological adaptation to high altitude: oxygen transport
in mammals and birds[J]. Physiological Reviews. 1991; 71(4): 1135-1172.
11. Wang K, Yang Y, Wang L, Ma T, Shang H, Ding L, et al. Different gene expressions
between cattle and yak provide insights into high‐altitude adaptation[J]. Animal genetics.
2016; 47(1): 28-35.
12. Qi X, Zhang Q, He Y, Yang L, Zhang X, Shi P, et al. The transcriptomic landscape
of yaks reveals molecular pathways for high altitude adaptation[J]. Genome biology
and evolution. 2019; 11(1): 72-85.
13. Guan J, Long K, Ma J, Zhang J, He D, Jin L, et al. Comparative analysis of the
microRNA transcriptome between yak and cattle provides insight into high-altitude
adaptation[J]. PeerJ. 2017; 5: e3959.
14. Liu L, Xiao Q, Gilbert ER, Cui Z, Zhao, Wang Y, et al. Whole-transcriptome analysis
of atrophic ovaries in broody chickens reveals regulatory pathways associated with
proliferation and apoptosis[J]. Scientific reports. 2018; 8(1): 7231.
15. He JH, Han ZP, Zou MX, Wang L, Lv YB, Zhou JB, et al. Analyzing the LncRNA, miRNA,
and mRNA regulatory network in prostate cancer with bioinformatics software[J]. Journal
of Computational Biology. 2018; 25(2): 146-157.
16. Chen B, Huang S. Circular RNA: an emerging non-coding RNA as a regulator and biomarker
in cancer[J]. Cancer letters. 2018; 418: 41-50.
17. Shih JW, Chiang WF, Wu A, Wu MH, Wang LY, Yu YL, et al. Long noncoding RNA LncHIFCAR/MIR31HG
is a HIF-1α co-activator driving oral cancer progression[J]. Nature communications.
2017; 8: 15874.
18. Choudhry H, Harris A L. Advances in hypoxia-inducible factor biology[J]. Cell metabolism. 2018; 27(2): 281-298.
19. Massart J, Sjögren RJO, Lundell LS, Leonidas SL, Jonathan MM, Niclas F, et al.
Altered miRNA-29 Expression in Type 2 Diabetes Influences Glucose and Lipid Metabolism
in Skeletal Muscle[J]. Diabetes. 2017; 66(7):1807-1818.
20. Goyal N, Kesharwani D, Datta M. Lnc-ing non-coding RNAs with metabolism and diabetes:
roles of lncRNAs[J]. Cellular and Molecular Life Sciences. 2018; 75(10): 1827-1837.
21. Anastasiadou E, Jacob L S, Slack F J. Non-coding RNA networks in cancer[J]. Nature
Reviews Cancer. 2018; 18(1): 5-18.
22. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional
regulation by microRNAs: are the answers in sight? [J]. Nature reviews genetics. 2008;
9(2): 102-114.
23. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs[J]. Molecular cell.
2011; 43(6): 904-914.
24. Bhan A, Deb P, Shihabeddin N, Ansari KI, Brotto M, Mandal SS. Histone methylase
MLL1 coordinates with HIF and regulate lncRNA HOTAIR expression under hypoxia[J].
Gene. 2017; 629: 16-28.
25. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural
RNA circles function as efficient microRNA sponges[J]. Nature. 2013; 495(7441): 384-388.
Doi: 10.1038/nature11993
26. Salmena L, Poliseno L, Tay Y, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone
of a hidden RNA language? [J]. Cell. 2011; 146(3): 353-358.
27. Tong Q, Zheng L, Lin L, Li B, Wang D, Huang C, et al. VEGF is upregulated by
hypoxia-induced mitogenic factor via the PI-3K/Akt-NF-κB signaling pathway[J]. Respiratory
research. 2006; 7(1): 37.
28. Knerr I, Schubert SW, Wich C, Amann K, Aigner T, Vogler T, et al. Stimulation
of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells
under normoxic and hypoxic conditions[J]. FEBS letters. 2005; 579(18): 3991-3998.
29. Vaupel P, Multhoff G. Hypoxia-/HIF-1α-Driven Factors of the Tumor Microenvironment
Impeding Antitumor Immune Responses and Promoting Malignant Progression//Oxygen Transport
to Tissue XL[J]. Springer, Cham. 2018; 171-175.
30. Amoasii L, Olson E N, Bassel-Duby R. Control of muscle metabolism by the mediator
complex[J]. Cold Spring Harbor perspectives in medicine. 2018; 8(2): a029843.
31. Klecha AJ, Genaro AM, Gorelik G, Barreiro Arcos ML, Silberman DM, Schuman M,
et al. Integrative study of hypothalamus–pituitary–thyroid–immune system interaction:
thyroid hormone-mediated modulation of lymphocyte activity through the protein kinase
C signaling pathway[J]. Journal of Endocrinology. 2006; 189(1): 45-55.
32. Häussinger D, Schliess F. Glutamine metabolism and signaling in the liver[J].
Front Biosci. 2007; 12(4): 371-391.
33. Xu X, Zhou X, Wang R, Peng W, An Y, Chen L. Functional analysis of long intergenic
non-coding RNAs in phosphate-starved rice using competing endogenous RNA network[J].
Scientific reports. 2016; 6: 20715.
34. Lan X, Wang Y, Tian K, Ye F, Yin H, Zhao X, et al. Integrated host and viral
transcriptome analyses reveal pathology and inflammatory response mechanisms to ALV-J
injection in SPF chickens[J]. Scientific Reports. 2017; 7: 46156.
35. Han D, Zhang Y, Chen J, Hua G, Li J, Deng X, Deng X. Transcriptome analyses of
differential gene expression in the bursa of Fabricius between Silky Fowl and White
Leghorn[J]. Scientific reports. 2017; 7: 45959.
36. Mann S, Sipka A S, Grenier J K. The degree of postpartum metabolic challenge in
dairy cows is associated with peripheral blood mononuclear cell transcriptome changes
of the innate immune system[J]. Developmental & Comparative Immunology. 2019; 93:
28-36.
37. Veith C, Schermuly RT, Brandes RP, Weissmann N. Molecular mechanisms of hypoxia‐inducible
factor‐induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension[J].
The Journal of physiology. 2016; 594(5): 1167-1177.
38. Peng S L, Gerth A J, Ranger A M, Glimcher LH. NFATc1 and NFATc2 together control
both T and B cell activation and differentiation[J]. Immunity. 2001; 14(1): 13-20.
39. Xie L, Collins J F. Transcriptional regulation of the Menkes copper ATPase (Atp7a)
gene by hypoxia-inducible factor (HIF2α) in intestinal epithelial cells[J]. American
Journal of Physiology-Cell Physiology. 2011; 300(6): C1298-C1305.
40. Tang Q, Gu Y, Zhou X, Jin L, Guan J, Liu R, Li J, Long K, Tian S, Che T, Hu S,
Liang Y, Yang X, Tao X, Zhong Z, Wang G, Chen X, Li D, Ma J, Wang X, Mai M, Jiang
A, Luo X, LV X, Gladyshev V, Li X, Li M. Comparative transcriptomics of 5 high-altitude
vertebrates and their low-altitude relatives[J]. GigaScience. 2017; 6(12): 1-9.
41. Yang J, Jin Z, Chen J, Huang X, Li X, Liang Y, Mao J, Chen X, Zheng Z, Bakshi
A, Zheng D, Zheng M, Wray N, Visscher P, Lu F, Qu J. Genetic signatures of high-altitude
adaptation in Tibetans[J]. Proceedings of the National Academy of Sciences. 2017;
114(16): 4189-4194.
42. Wang H, Chai Z, Hu D, Ji Q, Xin J, Zhang C, Zhong J. A global analysis of CNVs
in diverse yak populations using whole-genome resequencing[J]. BMC genomics. 2019;
20(1): 61.
43. Hung S, Pochampally R, Chen S, Hsu S, Prockop D. Angiogenic effects of human multipotent
stromal cell conditioned medium activate the PI3K‐Akt pathway in hypoxic endothelial
cells to inhibit apoptosis, increase survival, and stimulate angiogenesis[J]. Stem
cells, 2007, 25(9): 2363-2370.
44. Zhou J, Schmid T, Frank R, Brüne B. PI3K/Akt is required for heat shock proteins
to protect hypoxia-inducible factor 1α from pVHL-independent degradation[J]. Journal
of Biological Chemistry, 2004, 279(14): 13506-13513. 52. Macian F. NFAT proteins:
key regulators of T-cell development and function[J]. Nature Reviews Immunology, 2005,
5(6): 472-484.
45. Macian F. NFAT proteins: key regulators of T-cell development and function[J].
Nature Reviews Immunology, 2005, 5(6): 472-484.
46. Giampaolo S, Wójcik G, Klein-Hessling S, Serfling E, Patra A. B cell development
is critically dependent on NFATc1 activity[J]. Cellular & molecular immunology, 2018:
1.
47. Xiao Z, Han L, Lee H, Zhuang L, Zhang Y, Baddour J, Nagrath D, Wood C, Gu J, Wu
X, Liang H, Gan B. Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy
metabolism and inhibits renal tumor development[J]. Nature Communications, 2017, 8(1):783.
48. Dai X, Chen C, Yang Q,Xue J, Chen X, Sun B, Luo F, Liu X, Xiao T, Xu H, Sun Q,
Zhang A, Liu Q. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217
regulation of EZH2, is involved in the malignant transformation of human hepatic cells
by accelerating the cell cycle and promoting cell proliferation[J]. Cell Death & Disease,
2018, 9(5):454.
49. Xu S, Zhou L, Ponnusamy M, Zhang L, Dong Y, Zhang Y, Wang Q, Liu J, Wang K. A
comprehensive review of circRNA: from purification and identification to disease marker
potential [J]. Peer J, 2018, 6: e5503.
50. Zhang W, Li F, Nie L. Integrating multiple 'omics' analysis for microbial biology:
application and methodologies[J]. Microbiology, 2010, 156(Pt 2):287-301
51. Vilne B, Schunkert H. Integrating Genes Affecting Coronary Artery Disease in Functional
Networks by Multi-OMICs Approach[J]. Frontiers in Cardiovascular Medicine, 2018, 5:
89.
52. Liu L, Xiao Q, Gilbert E, Cui Z, Zhao X, Wang Y, Yin H, Li D, Zhang H, Zhu Q.
Whole-transcriptome analysis of atrophic ovaries in broody chickens reveals regulatory
pathways associated with proliferation and apoptosis[J]. Sci Rep, 2018, 8(1): 7231.
53. Drake J, Paull E, Graham N, Lee J, Smith B, Titz B, Stoyanova T, Faltermeier C,
Uzunangelov V, Carlin D, Fleming D, Wong C, Newton Y, Sudha S, Vashisht A, Huang J,
Wohlschlegel J, Graeber T, Witte O, Stuart J. Phosphoproteome Integration Reveals
Patient-Specific Networks in Prostate Cancer[J]. Cell, 2016, 166: 1041-1054.
54. Ye P, Shi Y, An N, Zhou Q, Guo J, Long X. miR-145 overexpression triggers alteration
of the whole transcriptome and inhibits breast cancer development[J]. Biomedicine
& Pharmacotherapy. 2018; 100: 72-82.
55. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic
composition to classify protein-coding and long non-coding transcripts[J]. Nucleic
acids research. 2013; 41(17): e166.
56. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, et al. CPC: assess the protein-coding
potential of transcripts using sequence features and support vector machine[J]. Nucleic
acids research. 2007; 35(suppl_2): W345-W349.
57. Lin M F, Jungreis I, Kellis M. PhyloCSF: a comparative genomics method to distinguish
protein coding and non-coding regions[J]. Bioinformatics. 2011; 27(13): i275-i282.
58. Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular
RNA identification[J]. Genome biology. 2015; 16(1): 4.
59. Pertea M, Kim D, Pertea G M, Leek JT, Salzberg SL. Transcript-level expression
analysis of RNA-seq experiments with HISAT, StringTie and Ballgown[J]. Nature protocols.
2016; 11(9): 1650-1667.
60. Li J, Ma W, Zeng P, Wang J, Geng B, Yang J. LncTar: a tool for predicting the
RNA targets of long noncoding RNAs[J]. Briefings in bioinformatics. 2014; 16(5): 806-812.