1. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95-103 (2014).
2. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25-34 (2015).
3. Nazirzadeh, M. A., Atar, F. B., Turgut, B. B. & Okyay, A. K. Random sized plasmonic nanoantennas on silicon for low-cost broad-band near-infrared photodetection. Sci. Rep. 4, 7103 (2014).
4. Qi, Z. et al. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection. Nanotechnology 28, 275202 (2017).
5. Nakamura, K. et al. Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles. J. Phys. Chem. Lett. 7, 1004-1009 (2016).
6. Zhong, Y., Ueno, K., Mori, Y., Oshikiri, T. & Misawa, H. Cocatalyst effects on hydrogen evolution in a plasmon-induced water-splitting system. J. Phys. Chem. C 119, 8889-8897 (2015).
7. Ding, D., Liu, K., He, S., Gao, C. & Yin, Y. Ligand-exchange assisted formation of Au/TiO2 Schottky contact for visible-light photocatalysis. Nano Lett. 14, 6731-6736 (2014).
8. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702-704 (2011).
9. Ueno, K. & Misawa, H. Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths. NPG Asia Mater. 5, e61 (2013).
10. Nishijima, Y. et al. Near-infrared plasmon-assisted water oxidation. J. Phys. Chem. Lett. 3, 1248-1252 (2012).
11. Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).
12. Sobhani, A. et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013).
13. Giugni, A. et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 8, 845-852 (2013).
14. Wen, L., Chen, Y., Liang, L. & Chen, Q. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites. ACS Photonics 5, 581-591 (2018).
15. Lin, K. T., Chen, H. L., Lai, Y. S. & Yu, C. C. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths. Nat. Commun. 5, 3288 (2014).
16. Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510-3514 (2014).
17. Lin, K. T. et al. Silicon-based embedded trenches of active antennas for high-responsivity omnidirectional photodetection at telecommunication wavelengths. ACS Appl. Mater. Interfaces 11, 3150-3159 (2019).
18. Habteyes, T. G. et al. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano 6, 5702-5709 (2012).
19. Giri, A. et al. Mechanisms of nonequilibrium electron-phonon coupling and thermal conductance at interfaces. J. Appl. Phys. 117, 105105 (2015).
20. Zhou, X. et al. Strong influence of Ti adhesion layer on electron-phonon relaxation in thin gold films: Ab initio nonadiabatic molecular dynamics. ACS Appl. Mater. Interfaces 9, 43343-43351 (2017).
21. Sze, S. M. & Ng, Kwok K. Metal−semiconductor contacts in Physics of Semiconductor Devices 134-196 (John Wiley & Sons, Inc, 2007).
22. Kusada, K. & Kitagawa, H. A route for phase control in metal nanoparticles: a potential strategy to create advanced materials. Adv. Mater. 28, 1129-1142 (2016).
23. Kusada, K. et al. Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability. J. Am. Chem. Soc. 136, 1864-1871 (2014).
24. Kurtin, S., McGill, T. C. & Mead, C. A. Fundamental transition in the electronic nature of solids. Phys. Rev. Lett. 22, 1433-1436 (1969).
25. Tersoff, J. Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465-468 (1984).
26. Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014).
27. Zhou, Y. et al. Investigating the origin of Fermi level pinning in Ge Schottky junctions using epitaxially grown ultrathin MgO films. Appl. Phys. Lett. 96, 102103 (2010).
28. Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140-1143 (2012).
29. Teraji, T. & Hara, S. Control of interface states at metal/6H-SiC (0001) interfaces. Phys. Rev. B 70, 035312 (2004).
30. Kato, H. et al. Preparation of an ultraclean and atomically controlled hydrogen-terminated Si (111)-(1× 1) surface revealed by high resolution electron energy loss spectroscopy, atomic force microscopy, and scanning tunneling microscopy: aqueous NH4F etching process of Si (111). Jpn. J. Appl. Phys. 46, 5701-5705 (2007).
31. Angermann, H. et al. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application. Appl. Surf. Sci. 254, 3615-3625 (2008).
32. Kim, S. H. et al. Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation. Appl. Catal. A Gen. 454, 53-58 (2013).
33. Fujitani, T., Nakamura, I., Akita, T., Okumura, M. & Haruta, M. Hydrogen dissociation by gold clusters. Angew. Chem. Int. Ed. Engl. 48, 9515-9518 (2009).
34. Qadir, K., Kim, S. H., Kim, S. M., Ha, H. & Park, J. Y. Support effect of arc plasma deposited Pt Nanoparticles/TiO2 substrate on catalytic activity of CO oxidation. J. Phys. Chem. C 116, 24054-24059 (2012).
35. Kim, S. H., Moon, S. Y. & Park, J. Y. Non-colloidal nanocatalysts fabricated using Arc plasma deposition and their application in heterogenous catalysis and photocatalysis. Top. Catal. 60, 812-822 (2017).
36. Kim, S. H., Jeong, Y. E., Ha, H., Byun, J. Y. & Kim, Y. D. Ultra-small platinum and gold nanoparticles by Arc plasma deposition. Appl. Surf. Sci. 297, 52-58 (2014).
37. Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A., 3rd & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957-966 (2016).
38. Yeh, J. et al. Growth of the room temperature Au/Si(111)-7 x 7 interface. Phys. Rev. Lett. 70, 3768-3771 (1993).
39. Fowler, R. H. The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev. 38, 45-56 (1931).
40. Lin, K. T., Lin. H. & Jia, B. Plasmonic nanostructures in photodetection, energy conversion and beyond. Nanophotonics 9, 3135-3163 (2020).
41. Ru, Q., Hirayama, T., Endo, J. & Tonomura, A. Hologram-shifting method for high-speed electron hologram reconstruction. Jpn. J. Appl. Phys. 31, 1919-1921 (1992).
42. Yamamoto, K., Kawajiri, I., Tanji, T., Hibino, M. & Hirayama, T. High precision phase-shifting electron holography. J. Electron Microsc. 49, 31-39 (2000).