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Abstract
The seismic damage state of building structure can be evaluated by observing the fundamental period change
of structure. Firstly, the fundamental period calculation formula that adapts to the deformation pattern and
distribution mode of horizontal seismic action for reinforced concrete frame structure is derived. Secondly, the
seismic damage assessment standard of building structure considering period variation is established. Then,
the seismic damage assessment method of building structure is constructed. Finally, the seismic damage
example is used to verify the established evaluation method. The results show that the established research
method has high accuracy and good engineering practicability.

Introduction
According to the related theory about structural dynamics, the fundamental period is the one of the three major
dynamic characteristics of structures, and the value of the structural vibration period is inversely proportional to
the square root of the structural stiffness. The structural stiffness degradation is the one of the specific
performance characteristics of structural seismic damage. Therefore, during the assessing process of the
structural seismic damage, it can be directly considering the change of fundamental period to indirectly
considering the change in structural stiffness due to seismic actions.

In the process of establishing structural seismic damage assessment method based on dynamic
characteristics, it is necessary to focus on two problems. a) It should be established a fundamental period
estimation formula which is simpleness and clear physical significance as well as have relatively accurate
estimation results. b) It should be constructed a functional relationship between fundamental period and
structural seismic damage. For the above, the relevant researchers have conducted a lot of research and
achieved certain research results.

Gilles et al. (2011) analyzed the theoretical basis of the seismic action calculation in the equivalent static
method of NBCC standard, and researched the differences of base shear calculation results for different height
buildings between using experience fundamental period formula and standard methodology. The results show
that when the fundamental period is calculated by empirical formula for estimating results, the base shear of
the structure is lowered by 3.5 times.

Sofi et al. (2015) focused on analyzing the mechanical principles and main characteristics of various
fundamental period computational formulas, and analyzed the impact of masonry infilled wall, concrete or
cement block partition wall on the fundamental period.

Sangamnerkar and Dubey (2015) analyzed 36 reinforced concrete frame structures with different underlying
dimensions and shaft-spacing structures. And influencing factors on the fundamental period are researched
such as the underlying width, the column cross-section size and the stiffness of the structural basis. The results
show that the growth ratio of structural fundamental period is proportional to the underlying width growth.

Young and Adeli (2016) designed 12 eccentric cantilever steel frame structures with different heights, spans
and spatial stiffness distributions, and used ETABS to analyze the fundamental periods of different structures.
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Comparing to ASCE7-10 formula, Raylei formula and ETABS analysis results, the recommendation fundamental
period calculation formula for different types of eccentric cantilever steel frame structures are given.

Wang et al. (2018) analyzed 414 high-rise, super-high-rise reinforced concrete structures and mixed structures.
The main influencing factors of the fundamental period are comprehensively analyzed, and the fundamental
period calculation formula for high-rise building structure is fitted. And 15 shake table test data, 27 pulsation
tests, wind test data and Chinese standardized calculation formula calculate results are used to verify the fitted
formula. After the correction, the fundamental period calculation formula and the first three-order cycle ratio
relationship for high-rise and supper-high-rise building are given.

Based on 90 fundamental period data of steel plate shear wall structures collected in literatures, Jiang et al.
(2020) determined a new calculation formula according to the multi-freedom structure dynamic characteristics
calculation theory. And the research formula is verified by the shake table tests.

In response to the shortcomings of the fundamental period of shear wall structures in the Indian seismic code,
Mandanka et al. (2020) selected 23 irregular shear walls considering the stiffness regular with different planar
dimension, structural height, shear wall size, etc., and analyzed the fundamental period of these buildings by
using ETABS software. Based on the numerical simulation analysis data, a new fundamental period estimation
formula for the stiffness irregular reinforced concrete shear wall structure is fitted considering influencing
factors such as total structural height, structural width, and inertial moments.

Elfath and Elhout (2020) applied the Egyptian code to design 36 steel frame structures with different structural
height, seismic intensity and elastic story-drift angle, and the change pattern of fundamental period was
analyzed focusing on the changes of structural stiffness and height distribution. It is believed that the
fundamental period of the bending frame structure is closely related to the seismic intensity and story-drift
angle.

For the coupling relationship between the fundamental period and the structural seismic damage, the relevant
researchers have been researched.

Eleftheriadou and Karabinis (2013) statistically analyzed the damage data of 164,135 buildings in the Parnitha
5.9 earthquake in 1999. The relationships between the range of different fundamental periods and the damage
ratio of buildings corresponding to different damage levels have been focused on.

Based on 300,000 nonlinear seismic response time history analysis data, Katsanos and Sextos (2015) used the
theory of elastoplastic response spectrum to study the calculation method of the period elongation of the
building structure under the seismic damage state. Research results shows that the periodic elongation rate of
damaged structures is significantly affected by the period of structural elasticity and the rate of structural
stiffness degradation.

Sarno and Amiri (2019) established a nonlinear single-degree-of-freedom structural system for reinforced
concrete structures, taking into account structural factors such as structural ductility coefficient and stiffness
degradation rate, and used OpenSees software input to consider the ground motion of the main aftershock
sequence for nonlinear time history analysis. The relationship between the period extension rate after structural
failure and the epicenter distance, the main aftershock PGA ratio, site type, duration, elastic basic period,
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ductility coefficient, stiffness degradation rate, cumulative damage and other factors has been emphatically
studied, and the final period extension rate estimation formula is given.

The structural failure factor is established according to the structural dynamic equation by Gunawan (2019).
The structural failure factor iterative calculation method is constructed using the high-order Runge-Kutta
method, and the sensitivity assessment of the structural failure factor was verified using single-degree-of-
freedom and double-degree-of-freedom system.

Gunawan et al. (2021) applied Euler-Bernoulli beam theory to construct a structural damage assessment
formula that taking structural natural vibration period as the dominant factor.

According to the above research literature, it is known that necessary research has been carried out in the
calculation of structural fundamental period and structural damage assessment based on periodic changes.
However, most of the existing period calculation formulas are based on empirical formulas, and most of the
formulas use the height of the structure or the number of floors to directly estimate the fundamental period of
the structure. Although a fewer independent variables can increase the convenience of formula application, it
also sacrifices the accuracy of the formula for calculating the fundamental period of complex and diverse
structures, which is unfavorable for structural damage assessment based on periodic changes. At the same
time, the existing research results mostly focus on the structural period extension ratio after the structure is
completely destroyed. While the relative research results on the period change interval corresponding to
different damage levels including slight damage, moderate damage, severe damage, and destroy are few. In
this paper, aiming at the shortcomings of the existing research work, the mechanical analysis of the generalized
single degree of freedom system is carried out by using the structural dynamics theory, and the basic period
estimation formula of the structure based on displacement is obtained. Using the direct coupling relationship of
structural damage, structural displacement response, structural stiffness degradation and structural periodic
change, the estimation interval of structural periodic change factor corresponding to different failure levels is
established. Finally, the seismic damage example is used to verify the research method.

1 Fundamental Period Calculation Formula - Conversion Quality Method
As a complex multi-degree-of-freedom structural dynamic system, the dynamic characteristics of the building
structure are closely related to the structural stiffness and mass distribution. For the building structure with
uniform mass and stiffness distribution, it can be simplified as a generalized single-degree-of-freedom system
in the analysis of structural dynamic characteristics. That is, assuming that the lateral displacement of the
building structure is in a single deformation form under external loads such as earthquake and wind load, the
structure has only one degree of freedom in the sense of structural dynamics. For the generalized single degree
of freedom system, the generalized mass Mz and the generalized stiffness Kz associated with the single degree
of freedom should be determined first in the process of calculating the natural vibration period.

For the building structure with bending deformation, the calculation diagram and the main vibration mode curve
are shown in Fig. 1.

a) Tall building structure b) Mechanical diagram c)Main vibration mode curve
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Figure 1 Mechanical diagram and main vibration mode curve diagram of building structure

Figure 1 (c) shows the main vibration mode, assuming its shape function is Eq. (1).

y ( x) = −
1
3 +

4x
3H +

1
3 1 −

x
H

4

1

Where, H is structural total height.

Then Eq. (2) and Eq. (3) can be obtained.
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So the formula for calculating the fundamental period of structure is Eq. (4).

T1 = 2π
MZ
KZ

= 2π
0.257mH4

3.2EI

4

Let w = mg and gravity acceleration g=9.8m/s2. And let 
wH4

8EI = Δn is the vertex displacement of the structure

under uniform load w, then Eq. (5) is obtained.

T1 = 2π
0.257mH4

3.2EI = 2π
0.257 × 8
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wH4

8EI = 1.607 Δn

5

2 Theoretical Hypothesis Of Structural Damage Assessment
For reinforced concrete structures, the curve relationship between horizontal displacement and external load
under lateral horizontal load is shown in Fig. 2.

It can be seen from Fig. 2 that when the deformation curve of the structure under external load is in the O-A
stage, it is considered that the structural stiffness is equal to the initial stiffness in the elastic stage, and the
structure is basically intact. When the curve is in the A-B stage, the structural stiffness degenerates, the
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fundamental period becomes longer, and the structural failure state is slight damaged. When the curve is in the
B-C stage, the structural stiffness is further degraded, the fundamental period continues to grow, and the
structural failure state is moderate damage. When the curve is in the C-D stage, the structural stiffness
continues to degenerate, and the structural failure state is serious damage. When the curve is in D-F stage, the
structure collapses. In short, in the process of stiffness degradation, the structural displacement response and
the structural fundamental period are increasing (Zhu and Guo, 2018).

The failure state of the structure under horizontal load is usually measured by the change of inter-story
displacement angle. Taking reinforced concrete frame structure as an example, Table 1 lists the corresponding
relationship between common displacement angles and different failure states.

Table 1
Seismic damage classification standard of reinforced concrete frame structure

References Intactness-
Slight
damage

Slight damage-
Moderate damage

Moderate damage-
Severe damage

Severe
damage-
Destroy

Chinese seismic design code
(GB 50011-2010, 2016)

1/550 1/250 1/120 1/60

FEMA273 (Agency F ,1997) - 1/100 1/50 1/25

Vision 2000 (Committee S
V.,1996)

1/500 1/200 1/67 1/40

ATC40 (Applied T. C.,1996) - 1/100 1/50 1/33

Lu Xilin (Lu, et al. 2011) 1/500 1/300 1/150 1/50

Since FEMA273 and ATC40 code adopt the one-stage design method to check the seismic action, the structural
deformation in elastic stage is not directly constrained. Through the comparative analysis of 80 typical RC
structures, Han et al. (2020) considered that the limit value of elastic inter-story displacement angle of RC
structure should be 1/500. For the convenience of analysis, the elastic inter-story displacement angle
corresponding to FEMA273 and ATC40 code is set as 1/500 in this paper.

According to Eq. (1), when the structure is in elastic state, that is, assuming that the structure is in basically
intact state, the maximum inter-story displacement angle of the structure corresponding to the fundamental

period T0 is approximately equal to δe ,n =
qH3

6EI , and the corresponding maximum displacement is 

Δe ,n =
qH4

8EI , which can be considered as δe ,n =
4

3HΔe ,n.

Define λ as the structural damage factor, namely

λ=
δx
δy

=
Δ

xΔy

6
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The damage state of the structure is determined according to Eq. (6). According to the value of λ, the damage
state of the structure is determined according to Tab. 2.

Table 2
Structural damage status assessment

References Elastic
threshold

Slight
damage

Moderate
damage

Severe
damage

Destroy

Chinese seismic design
code

1/550 1 ≤ λ < 2.2 2.2 ≤ λ < 4.58 4.58 ≤ λ < 
9.17

9.17 ≤ λ

FEMA273 1/500 1 ≤ λ < 5 5 ≤ λ < 10 10 ≤ λ < 20 20 ≤ λ

Vision 2000 1/500 1 ≤ λ < 2.5 2.5 ≤ λ < 7.46 7.46 ≤ λ < 
12.5

12.5 ≤ λ

ATC40 1/500 1 ≤ λ < 5 5 ≤ λ < 10 10 ≤ λ < 
15.15

15.15 ≤ 
λ

LU Xilin 1/500 1 ≤ λ < 
1.667

1.667 ≤ λ < 
3.333

3.333 ≤ λ < 
10

10 ≤ λ

The Eq. (5) shows that the fundamental period of the structure is related to the structure vertex displacement
under specific lateral horizontal load, as shown in Eq. (7).

Δn=(0.622 × T)2

7

Structural damage factor λ can be transformed to Eq. (8).

λ=
Δ

xΔy
=

T′
1

2

T1
2

8

Where, T′
1 is the fundamental period of the structure suffered by seismic action.

Combined with the relevant limits in Tab. 2, Eq. (8) can be directly applied to structural damage assessment.

3 Verification Of The Seismic Damage Examples
After the Tangshan M7.8 earthquake on July 28, 1976 in China, most areas of Tianjin suffered an intensity of 8
degree. The inpatient department building of Tianjin Hospital (hereinafter building A) and the Tianjin Friendship
Hotel building (hereinafter building B) in Tianjin City are affected by strong earthquakes (Liu, 1986). The
fundamental periods of the structure before and after the earthquake were measured by the seismic receiver
installed in two buildings. The section and measuring point layout of the two structures are detailed in Fig. 3
and Fig. 4. The basic situation, seismic damage characteristics and fundamental period changes of the two

( )
( )
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structures are shown in Tab. 3. ‘BE’ in Table 3 represents before the earthquake, and ‘AE’ in Table 3 represents
after the earthquake.

Table 3
Overview of two buildings in Tianjin, China

Serial
number

Building
name

Storey
number

Height Design
intensity

Encountered
intensity

Damage
level

Fundamental
period

λ

BE AE

S1 Building
A

8 33.4 non-
fortification

8 degree Slight
damage

0.55 0.61 1.23

S2 East
Section
of
building
B

8 37.4 7 degree 8 degree Slight
damage

0.5 0.85 2.89

S3 West
Section
of
building
B

11 47.3 7 degree 8 degree Slight
damage

0.5 0.67 1.80

The parameter λ in Tab. 3 is calculated by Eq. (8). According to the calculation results of λ in Tab. 3 and the
actual seismic damage level of the structure, the damage state assessment interval determined by different
seismic damage classification standards in Tab. 2 is compared. It is shown that the damage state assessment
interval determined by FEMA273 and ATC40 is reasonable, and the damage state assessment standard in Tab.
2 is basically in line with the actual seismic damage performance. Therefore, the structural seismic damage
assessment method established in this paper based on the fundamental period change of structure has good
assessment results and high engineering application value.

4 Conclusions
In this paper, the seismic damage assessment of building structures based on basic periodic variation is
studied. The results are summarized as follows.

(1) The basic period calculation formula of generalized single-degree-of-freedom system based on fixed-point
displacement calculation is established by using the conversion mass method, selecting the appropriate
vibration mode function and the distribution mode of horizontal seismic action.

(2) According to the relationship curve between force and displacement of reinforced concrete structure, the
mapping relationship between fundamental period of structure and structural damage factor is established
with displacement response as intermediate variable.

(3) Combined with the seismic damage assessment standard of building structure based on inter-story
displacement angle, the seismic damage assessment criterion of building structure with basic periodic change
is established.
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(4) Seismic damage examples are used to verify the established seismic damage assessment method of
building structures. The verification results show that the established method in this paper has good
assessment results and high engineering application value.
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Figure 1

Mechanical diagram and main vibration mode curve diagram of building structure
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Figure 2

Force-displacement curve of reinforced concrete structure
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Figure 3

Section and measuring point layout of the building A
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Figure 4

Section and measuring point layout of the building B


