1. Sepkoski, J. J. A factor analytic description of the Phanerozoic marine fossil record. Paleobiol. 7, 36-53 (1981).
2. Sepkoski, J. J. A compendium of fossil marine animal genera. Bull. Amer. Paleontol. 363 (2002).
3. Alroy, J. The shifting balance of diversity among major marine animal groups. Science 329, 1191-1994 (2010).
4. Bush, A. M. & Bambach, R. K. Sustained Mesozoic-Cenozoic diversification of marine metazoa: a consistent signal from the fossil record. Geology 43, 979-982 (2015).
5. Prokoph, A., Bilali, H. E. & Ernst, R. E. Periodicities in the emplacement of large igneous provinces through the Phanerozoic: Relations to ocean chemistry and marine biodiversity evolution. Geosci. Front. 4, 263-276 (2014).
6. Bambach, R.K. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32, 131–144 (1999).
7. Bush, A. M. & Bambach, R. K. Paleoecologic megatrends in marine metazoa. Ann. Rev. Earth Planet. Sci. 39, 241-269 (2011).
8. Vermeij, G. J. On escalation. Ann. Rev. Earth Planet. Sci. 41, 1–19 (2013).
9. Bush, A. M. & Payne, J. L. Biotic and abiotic controls on the Phanerozoic history of marine animal biodiversity. Ann. Rev. Ecol. Evol. System. 52, 269-289 (2021).
10. Bambach, R.K. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19, 372–397 (1993).
11. Martin, R.E., Quigg, A. & Podkovyrov, V. Marine biodiversification in response to evolving phytoplankton stoichiometry. Palaeogeog., Paleoclimatol., Palaeoecol. 258, 277-291 (2008).
12. Cárdenas, A. L. & Harries, P. J. Effect of nutrient availability on marine origination rates throughout the Phanerozoic eon. Nat. Geosci. 3, 430–434 (2010).
13. Allmon, W. D. & Martin, R. E. Seafood through time revisited: the Phanerozoic increase in marine trophic resources and its macroevolutionary consequences. Paleobiol. 40, 256-287 (2014).
14. Martin, R. E. & Servais, T. Review: Did the evolution of the phytoplankton fuel the diversification of the marine biosphere? Lethaia 53, 5-31 (2019).
15. Edmond, J. M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science 258, 1594-1597 (1992).
16. Richter, F. M., Rowley, D. B. & DePaolo, D. J. Sr isotope evolution of seawater: the role of tectonics. Earth Planet. Sci. Lett. 109, 11-23 (1992)
17. Tardy, Y., N’Kounkou, R. & Probst, J. L. The global water cycle and continental erosion during Phanerozoic time (570 my). Amer. Jour. Sci. 289, 455-483 (1989).
18. Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818-823 (2012).
19. Large, R., Halpin, J. A., Lounejeva, E., Danyushevsky, L., Maslennikov, V. V. et al. Cycles of nutrient trace elements in the Phanerozoic ocean. Gondwana Res. 28, 1282-1293 (2015).
20. Quigg, A., Finkel, Z. V., Irwin, A. J., Rosenthal, Y. & Ho, T. Y. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291-294 (2003).
21. Vermeij, G. J. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21, 125-152 (1995).
22. Botting, J.P. The role of pyroclastic volcanism in Ordovician diversification. Geological Society of London Special Publication 194, 88-113 (2002).
23. Thingstad, T.F., Krom, M.D., Mantoura, R.F.C. Flaten, G.A.F. & Groom, S. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science 309, 1068-1071 (2005).
24. Duggen, S., Croot, P., Schacht, U. & Hoffmann, L. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys. Res. Lett. 34, L01612 (2007).
25. van Helmond, N.A.G.M., Sluijs, A., Reichart, G.J., Sinninghé Damsté, J.S. & Slomp, C. P. et al. A perturbed hydrological cycle during Oceanic Anoxic Event 2. Geology 42, 123–126 (2014)
26. Shen, J., Lei, Y., Algeo, T. J., Qinglai, F., Servais, T. et al. Volcanic effects on microplankton during the Permian-Triassic transition (Shangsi and Xinmin, south China). Palaios 28, 552-567 (2013).
27. Percival, L. M. E., Cohen, A. S., Davies, M. K., Dickson, A. J., Hesselbo, S. et al. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change. Geology 44, 759-762 (2016).
28. Longman, J., Mills, B. J. W., Manners, H. R., Gernon, T. M. & Palmer, M. R. Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nat. Geosci. 14, 924-929 (2021).
29. Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules. (Princeton University Press, 2002).
30. Dessert, C., Dupré, B., Gaillardet, J., François, L. M., & Allègre, C. J. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273. doi: 10.1016/j.chemgeo.2002.10.001(2003).
31. Milliman, J. D. & K. L. Farnsworth, River Discharge to the Coastal Ocean: A Global Synthesis. (Cambridge, UK: Cambridge University Press, 2011).
32. Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A. J. Global chemical weathering and associated P-release-the role of lithology, temperature and soil properties. Chem. Geol. 363, 145-163 (2014).
33. Gernon, T. M., Hincks, T. K., Merdith, A. S., Rohling, E. J., Palmer, M. R. et al. Global chemical weathering dominated by continental arcs since the mid-Paleozoic. Nat. Geosci. 14, 690-696 (2021).
34. Johansson, L. Zahirovic, S., & Müller, R. M. The interplay between the eruption and weathering of large igneous provinces and the deep-time cycle. Geophys. Res. Lett. 45, 5380-5389 (2018).
35. Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).
36. Moore, C.M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701-710 (2013).
37. Sharoni S. & I. Halevy. Geologic controls on phytoplankton elemental composition. Proc. Nat. Acad. Sci. 119, https://doi.org/10.1073/pnas.2113263118 (2022).
38. Materials and Methods are available as Supplementary Materials at the Nature Geoscience website.
39. Föllmi, K. B. 160 m.y. record of marine sedimentary phosphorus burial: Coupling of climate and continental weathering under greenhouse and icehouse conditions. Geology 23, 859-862 (1995).
40. Miller, K. G., Kominz, M., Browning, J. V., Wright, J. D., Mountain, G. S. et al. The Phanerozoic record of global sea-level change. Science 310, 1293-1298 (2005).
41. Bown, P. R., Lees, J. A. & Young, J. R. Calcareous nannoplankton diversity and evolution through time, in Coccolithophores - From Molecular Processes to Global Impact (eds H. Thierstein, H. & Young, J.) Chap. 18 (Springer, 2004).
42. Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 20 million years. Nat. Comm. 8, doi: ncomms14845 |www.nature.com/naturecommunications (2017).
43. Valentine, J. W. & Moores, E. M. Global tectonics and the fossil record. Journal of Geology 80,167-184 (1972).
44. Martin, R. E. The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia 36, 179-193 (2003).
45. Hannisdal, B. & Peter, S. E. Phanerozoic earth system evolution and marine biodiversity. Science 334, 1121–1124 (2011).
46. Zaffos, A., Finnegan, S., Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Nat. Acad. Sciences 114, 5653-5658. doi:10.1073/pnas.1702297114 (2017).
47. Roberts, G. G. & Mannion, P. D. Timing and periodicity of Phanerozoic marine biodiversity and environmental change. Nature. doi.org/10.1038/s41598-019-42538-7 (2019).
48. Wong, K., Mason, E., Brune, S., East, M., Edmonds, S. et al. Deep carbon cycling over the past 200 million years: a review of fluxes in different tectonic settings. Front. Earth Sci. 7, doi:10.3389/feart.2019.00263 (2019).
49. Planck, T. & Manning, C. E. Subducting carbon. Nature 574, 343-352 (2019).
50. Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1, 493–509 (1978).
51. Cermeño, P. The geological story of marine diatoms and the last generation of fossil fuels. Perspect. Phycol. 2, 53–60 (2016).
52. Anderson, L. D., Delaney, M. L. & Faul, K. L. Carbon to phosphorus ratios in sediments: implications for nutrient cycling. Glob. Biogeochem. Cycles 15, 65–79 (2001).
53. Thayer, C. W. Sediment‐mediated biological disturbance and the evolution of marine benthos. in Biotic Interactions in Recent and Fossil Benthic Communities (eds Tevesz, M.J.S. & McCall, P.L.) Chapter (Plenum,1983).
54. van Mooy, B.A.S., Krupke, A., Dyhrman, S.T., Fredricks, H.F., Frischkorn, K.R. et al. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science 348, 783–785 (2015).
55. Cleal, C. J. & Cascales-Miñana, B. Composition and dynamics of the great Phanerozoic evolutionary floras. Lethaia 47, 469–484 (2014).
56. Dahl, T. W. & Arens, S. K. M. The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review. Chemical Geology 547, doi.org/10.1016/j.chemgeo.2020.119665 (2020)
57. Wright, I. J., Reich, P. B., Ackerly, D. D., Baruch, Z., Bongers, F. et al. The worldwide leaf economics spectrum. Nature 428, 821-827 (2004).
58. Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).
59. Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavore, S. et al. The global spectrum of plant form and function. Nature 529, 167-171 (2016).
60. D’Antonio, M P., Ibarra, D. E. & Boyce, C. K. Land plant evolution, decreased, rather than increased weathering rates. Geology48, 29-33.
61. Zhou, Y.-Q., Sawyer, A. H., David, C. H. & Famiglietti, J. S. Fresh submarine groundwater discharge to the near-global coast. Geophys. Res. Lett. 46, 5855-5863 (2019).
62. Moldowan, J. M. & Talyzina, N. M. Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian. Science 281, 1168–1170 (1998).
63. Servais, T., Martin, R. E. & Nützel, A. The impact of the ‘terrestrialization process’ in the late Palaeozoic: pCO2, pO2, and the ‘phytoplankton blackout’. Rev. Palaeobot. Palynol. 224, 26–37 (2016).
64. Algeo, T. J. & Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosoph. Trans.Roy. Soc. London B353, 113-130 (1998).
65. Munnecke, A. & Servais, T. Palaeozoic calcareous plankton: evidence from the Silurian of Gotland. Lethaia 41, 185–194 (2008).
66. Rabosky D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Amer. Natural. 185, 572-583 (2015).
67. Harmon, L. J. & Harrison, S. Species diversity is dynamic and unbounded at local and continental scales. Amer. Natural. 185, 584-593 (2015).
68. Rosenzweig, M L. & Abramsky, Z. How are diversity and productivity related? in Species Diversity in Ecological Communities: Historical and Geographical Perspectives (eds Ricklefs, R. E. & Schluter, D.) Chap. 5 (University of Chicago Press, 1993).
69. Antell, G. W. & Saupe, E. E. Bottom-up controls, ecological revolutions and diversification in the oceans through time. Curr. Biol. 31, R1237-R1251. https://doi.org/10.1016/j.cub.2021.08.069 (2021).
70. Martin, R.E. Catastrophic fluctuations in nutrient levels as an agent of mass extinction: upward scaling of ecological processes? in Biodiversity Dynamics: Turnover of Populations, Taxa, and Communities (eds McKinney, M.L. & Drake, J.A.) Chap. 17 (Columbia University Press, 1998).
71. Algeo, T. J., Chen, Z. Q., Fraiser, M. L., & Twitchett, R. J. Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeog., Palaeoclimatol., Palaeoecol. 308, 1-11 (2011).
72. Hurlbert, A. H. & Stegen, J. C. When should species richness be energy limited, and how would we know? Ecol. Lett. 17, 401-413 (2014).