Andela N, Morton DC, Giglio L, Chen Y, Van der Werf GR, Kasibhatla PS, DeFries RS et al (2017) A human-driven decline in global burned area. Science 356:1356-1362. https://doi.org/10.1126/science.aal4108
Baggio G, Qadir M, Smakhtin V (2021) Freshwater availability status across countries for human and ecosystem needs. Sci Total Environ 792:148230. https://doi:10.1016/j.scitotenv.2021.1482
Ball G, Regier P, González-Pinzón R, Reale J, Van Horn D (2021) Wildfires increasingly impact western US fluvial networks. Nat Commun 12:1-8. https://doi.org/10.1038/s41467-021-22747-3
Barros G, da Silva Brito MT, Peluso LM, de Faria É, Izzo TJ, Teixido AL (2020) Biased research generates large gaps on invertebrate biota knowledge in Brazilian freshwater ecosystems. Perspect Ecol Conserv 18:190-196. https://doi.org/10.1016/j.pecon.2020.06.003
Belillas CM, Rodà F (1993) The effects of fire on water quality, dissolved nutrient losses and the export of particulate matter from dry heathland catchments. J Hydrol 150:1-17. https://doi.org/10.1016/0022-1694(93)90153-Z
Bixby RJ, Cooper SD, Gresswell RE, Brown LE, Dahm CN, Dwire KA (2015) Fire effects on aquatic ecosystems: an assessment of the current state of the science. Freshw Sci 34:1340-1350. https://doi.org/10.1086/684073
Boerner RE, Huang J, Hart SC (2009) Impacts of Fire and Fire Surrogate treatments on forest soil properties: a meta‐analytical approach. Ecol Appl 19:338-358. https://doi.org/10.1890/07-1767.1
Brito DQ, Santos LH, Passos CJ, Oliveira-Filho EC (2021) Short‐term effects of wildfire ash on water quality parameters: a laboratory approach. Bull Environ Contam Toxicol 107:500-505. https://doi.org/10.1007/s00128-021-03220-9
Brooks BW, Lazorchak JM, Howard MD, Johnson MV, Morton SL, Perkins DA, Reavie ED et al (2015) Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ Toxicol Chem 35:6-13. https://doi.org/10.1002/etc.3220
Bury RB (2004) Wildfire, fuel reduction, and herpetofaunas across diverse landscape mosaics in northwestern forests. Conserv Biol 18:968-975. https://doi.org/10.1111/j.1523-1739.2004.00522.x
Butler OM, Elser JJ, Lewis T, Mackey B, Chen C (2018) The phosphorus-rich signature of fire in the soil-plant system: a global meta-analysis. Ecol Lett 21:335-344. https://doi.org/10.1111/ele.12896
Caldwell CA, Jacobi GZ, Anderson MC, Parmenter RR, McGann J, Gould WR, DuBey R et al (2013) Prescribed-fire effects on an aquatic community of a southwest montane grassland system. N Am J Fish Manag 33:1049-1062. https://doi.org/10.1080/02755947.2013.824934
Carignan R. D'Arcy P, Lamontagne S (2000) Comparative impacts of fire and forest harvesting on water quality in Boreal Shield lakes. Can J Fish Aquat 57:105-117. https://doi.org/10.1139/f00-125
Carrizo SF, Lengyel S, Kapusi F, Szabolcs M, Kasperidus HD, Scholz M, Markovic D et al (2017) Critical catchments for freshwater biodiversity conservation in Europe: identification, prioritisation and gap analysis. J Appl Ecol 54:1209-1218. https://doi.org/10.1111/1365-2664.12842
Carvalho F, Pradhan A, Abrantes N, Campos I, Keizer JJ, Cássio F, Pascoal C (2019) Wildfire impacts on freshwater detrital food webs depend on runoff load, exposure time and burnt forest type. Sci Total Environ 692:691-700. https://doi.org/10.1016/j.scitotenv.2019.07.265
Certini G, Moya D, Lucas-Borja ME, Mastrolonardo G (2021) The impact of fire on soil-dwelling biota: A review. For Ecol Manag 488:118989. https://doi.org/10.1016/j.foreco.2021.118989
Clark JA, May RM (2002) Taxonomic bias in conservation research. Science 297:191-193. https://doi.org/10.1126/science.297.5579.191b
Cook CN, Possingham HP, Fuller RA (2013) Contribution of systematic reviews to management decisions. Conserv Biol 27:902-915. https://doi.org/10.1111/cobi.12114
Darwall WR, Holland RA, Smith KG, Allen D, Brooks EG, Katarya V, Pollock CM et al (2011) Implications of bias in conservation research and investment for freshwater species. Conserv Lett 4:474-482. https://doi.org/10.1111/j.1755-263X.2011.00202.x
Doerr SH, Santín C (2013) Wildfire: A burning issue for insurers? Global fire patterns, trends, impacts and perceptions. Lloyd’s, London
Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163-182. https://doi.org/10.1017/S1464793105006950
Dunham JB, Rosenberger AE, Luce CH, Rieman BE (2007) Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians. Ecosystems 10:335-346. https://doi.org/10.1007/s10021-007-9029-8
Eccles KM, Thomas PJ, Chan HM (2020) Relationships between mercury concentrations in fur and stomach contents of river otter (Lontra canadensis) and mink (Neovison vison) in Northern Alberta Canada and their applications as proxies for environmental factors determining mercury bioavailability. Environ Res 181:108961. https://doi.org/ 10.1016/j.envres.2019.108961
Emelko MB, Silins U, Bladon KD, Stone M (2011) Implications of land disturbance on drinking water treatability in a changing climate: demonstrating the need for “source water supply and protection” strategies. Water Res 45:461-472. https://doi.org/10.1016/j.watres.2010.08.051
Gleick PH, Wolff GH, Cooley H, Palaniappan M, Samulon A, Lee E, Morrison J et al (2006) The world’s water 2006-2007. The biennial report on freshwater resources. Island Press, Washington
González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter–a review. Environ Int 30:855-870. https://doi.org/10.1016/j.envint.2004.02.003
Gustine RN, Hanan EJ, Robichaud PR, Elliot WJ (2021) From burned slopes to streams: how wildfire affects nitrogen cycling and retention in forests and fire-prone watersheds. Biogeochemistry 157:51-68. https://doi.org/10.1007/s10533-021-00861-0
Hallema DW, Robinne FN, Bladon KD (2018) Reframing the challenge of global wildfire threats to water supplies. Earth's Future 6:772-776. https://doi.org/10.1029/2018ef000867
Halofsky JE, Peterson DL, Harvey BJ (2020) Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol 16:1-26. https://doi.org/10.1186/s42408-019-0062-8
Harper AR, Santin C, Doerr SH, Froyd CA, Albini D, Otero XL, Viñas L et al (2019) Chemical composition of wildfire ash produced in contrasting ecosystems and its toxicity to Daphnia magna. International Journal of Wildland Fire 28:726. https://doi.org/10.1071/wf18200
Harrison I, Abell R, Darwall W, Thieme ML, Tickner D, Timboe I (2018) The freshwater biodiversity crisis. Science 362:1369-1369. https://doi.org/10.1126/science.aav9242
Hayashi M (2004) Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion. Environmental Monitoring and Assessment 96:119-128. https://doi.org/10.1023/b:emas.0000031719.83065.68
He T, Lamont BB, Pausas JG (2019) Fire as a key driver of Earth's biodiversity. Biol Rev 94:1983-2010. https://doi.org/10.1111/brv.12544
Hebert CE, Chételat J, Beck R, Dolgova S, Fordy K, Kirby P, Martin P et al (2021) Inter-annual variation of mercury in aquatic bird eggs and fish from a large subarctic lake under a warming climate. Sci Total Environ 766:144614. https://doi.org/10.1016/j.scitotenv.2020.144614
Hitt NP (2003) Immediate effects of wildfire on stream temperature. Journal of Freshwater Ecology 18:171-173. https://doi.org/10.1080/02705060.2003.9663964
Hohner AK, Cawley K, Oropeza J, Summers RS, Rosario-Ortiz FL (2016) Drinking water treatment response following a Colorado wildfire. Water Res 105:187-198. https://doi.org/10.1016/j.watres.2016.08.034
Hossack BR Pilliod DS (2011) Amphibian responses to wildfire in the western United States: Emerging patterns from short-term studies. Fire Ecol 7:129-144. https://doi.org/10.4996/fireecology.0702129
Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DM (2015) Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun 6:1-11. https://doi.org/10.1038/ncomms8537
Keeler BL, Polasky S, Brauman KA, Johnson KA, Finlay JC, O’Neill A, Kovacs K et al (2012) Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proceedings of the National Academy of Sciences 109: 18619-18624. https://doi.org/10.1073/pnas.1215991109
Kelly LT, Giljohann KM, Duane A, Aquilué N, Archibald S, Batllori E, Bennett AF et al (2020) Fire and biodiversity in the Anthropocene. Science 370:eabb0355. https://doi.org/10.1126/science.abb0355
Larson DM (2014) Grassland fire and cattle grazing regulate reptile and amphibian assembly among patches. Environmental Management 54:1434-1444. https://doi.org/10.1007/s00267-014-0355-2
Lathrop Jr, RG (1994) Impacts of the 1988 wildfires on the water quality of Yellowstone and Lewis Lakes, Wyoming. International Journal of Wildland Fire 4:169-175. https://doi.org/10.1071/WF9940169
Leal Filho, Totin E, Franke JA, Andrew SM, Abubakar IR, Azadi H, Nunn PD et al (2022) Understanding responses to climate-related water scarcity in Africa. Sci Total Environ 806:150420. https://doi.org/10.1016/j.scitotenv.2021.150420
Loiselle D, Du X, Alessi DS, Bladon KD, Faramarzi M (2020) Projecting impacts of wildfire and climate change on streamflow, sediment, and organic carbon yields in a forested watershed. J Hydrol 590:125403. https://doi.org/10.1016/j.jhydrol.2020.125403
Lovich JE, Quillman M, Zitt B, Schroeder A, Green DE, Yackulic C, Gibbons P et al (2017) The effects of drought and fire in the extirpation of an abundant semi-aquatic turtle from a lacustrine environment in the southwestern USA. Knowl Manag Aquat Ecosyst 418:1-11. https://doi.org/10.1051/kmae/2017008
McCullough IM, Cheruvelil KS, Lapierre JF, Lottig NR, Moritz MA, Stachelek J, Soranno PA (2019) Do lakes feel the burn? Ecological consequences of increasing exposure of lakes to fire in the continental United States. Global Change Biol 25:2841-2854. https://doi.org/10.1111/gcb.14732
Migiro G (2018) European countries with the most forest fires. WorldAtlas. https://www.worldatlas.com/articles/european-countries-with-the-most-forest-fires.html. Accessed 15 December 2021
Misachi J (2018) Which country has the most fresh water? WorldAtlas. https://www.worldatlas.com/articles/countries-with-the-most-freshwater-resources.html. Accessed 23 December 2021
Monaghan KA, Machado AL, Corado M, Wrona FJ, Soares AM (2019) Seasonal time-series reveal the impact and rapid recovery in richness, abundance and community structure of benthic macroinvertebrates following catchment wildfire. Sci Total Environ 651:3117-3126. https://doi.org/10.1016/j.scitotenv.2018.10.176
Monaghan KA, Machado AL, Wrona FJ, Soares AM (2016) The impact of wildfire on stream fishes in an Atlantic-Mediterranean climate: evidence from an 18-year chronosequence. Knowledge and Management of Aquatic Ecosystems 417:1-11. https://doi.org/10.1051/kmae/2016015
Muñoz A, Felicísimo ÁM, Santos X (2019) Assessing the resistance of a breeding amphibian community to a large wildfire. Acta Oecol 99:103439. https://doi.org/10.1016/j.actao.2019.06.002
Naylor BJ, Mackereth RW, Kreutzweiser DP, Sibley PK (2012) Merging END concepts with protection of fish habitat and water quality in new direction for riparian forests in Ontario: a case study of science guiding policy and practice. Freshw Sci 31:248-257.
Nieder R, Benbi DK, Reichi FX (2018) Reactive water-soluble forms of nitrogen and phosphorus and their impacts on environment and human health. In: Nieder R, Benbi DK, Reichl FX (eds) Soil components and human health. Springer, Dordrecht, pp 223-225
Nuñez MA, Chiuffo MC, Pauchard A, Zenni RD (2021) Making ecology really global. Trends Ecol Evol 36:766-769. https://doi.org/10.1016/j.tree.2021.06.004
Oliver AA, Bogan MT, Herbst DB, Dahlgren RA (2012) Short-term changes in-stream macroinvertebrate communities following a severe fire in the Lake Tahoe basin, California. Hydrobiologia 694:117-130. https://doi.org/10.1007/s10750-012-1136-7
Omer NH (2019) Water quality parameters. In: Summers JK (ed) Water quality: science, assessments and policy. IntechOpen, London, pp 3⎼19.
Pastro LA, Dickman CR, Letnic M (2014) Fire type and hemisphere determine the effects of fire on the alpha and beta diversity of vertebrates: a global meta-analysis. Global Ecol Biogeog 23:1146-1156. https://doi.org/10.1111/geb.12195
Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. BioScience 59:593-601. https://doi.org/10.1525/bio.2009.59.7.10
Pausas JG, Ribeiro E (2017) Fire and plant diversity at the global scale. Global Ecol Biogeog 26:889-897. https://doi.org/10.1111/geb.12596
Pennino MJ, Leibowitz SG, Compton JE, Beyene MT, LeDuc SD (2022) Wildfires can increase regulated nitrate, arsenic, and disinfection byproduct violations and concentrations in public drinking water supplies. Sci Total Environ 804: 149890. https://doi.org/10.1016/j.scitotenv.2021.149890
Pereira P, Úbeda X, Francos M (2019) Laboratory fire simulations: plant litter and soils. In: Pereira P, Mataix-Solera J, Úbeda X, Rein G, Cerdà A (eds) Fire effects on soil properties. CSIRO Publishing, Clayton South, pp 15-38.
Pettit NE, Naiman RJ (2007) Fire in the riparian zone: Characteristics and ecological consequences. Ecosystems 10:673-687. https://doi.org/10.1007/s10021-007-9048-5
Pilliod DS, Bury RB, Hyde EJ, Pearl CA, Corn PS (2003) Fire and amphibians in North America. For Ecol Manag 178:163-181. https://doi.org/10.1016/s0378-1127(03)00060-4
Pradhan A, Carvalho F, Abrantes N, Campos I, Keizer JJ, Cássio F, Pascoal C (2020) Biochemical and functional responses of stream invertebrate shredders to post-wildfire contamination. Environ Poll 267:115433. https://doi.org/10.1016/j.envpol.2020.115433
Pullin AS, Stewart GB (2006) Guidelines for systematic review in conservation and environmental management. Conserv Biol 20:1647-1656. https://doi.org/10.1111/j.1523-1739.2006.00485.x
R Development Core Team (2020) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PT, Kidd KA et al (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94:849-873. https://doi.org/10.1111/brv.12480
Rhea AE, Covino TP, Rhoades CC (2021) Reduced N‐limitation and increased in‐stream productivity of autotrophic biofilms 5 and 15 years after severe wildfire. Journal of Geophysical Research: Biogeosciences 126:e2020JG006095. https://doi.org/10.1029/2020jg006095
Robinne FN, Bladon KD, Miller C, Parisien MA, Mathieu J, Flannigan MD (2018) A spatial evaluation of global wildfire-water risks to human and natural systems. Sci Total Environ 610-611:1193-1206. https://doi.org/10.1016/j.scitotenv.2017.08.112
Robinne FN, Hallema DW, Bladon KD, Flannigan MD, Boisramé G, Bréthaut CM, Doerr SH et al (2021) Scientists' warning on extreme wildfire risks to water supply. Hydrol Process 35:1-11. https://doi.org/10.1002/hyp.14086
Rugenski AT, Minshall GW (2014) Climate-moderated responses to wildfire by macroinvertebrates and basal food resources in montane wilderness streams. Ecosphere 5:1Hydrological Processes24. https://doi.org/10.1890/ES13-00236.1
Rust AJ, Randell J, Todd AS, Hogue TS (2019) Wildfire impacts on water quality, macroinvertebrate, and trout populations in the Upper Rio Grande. For Ecol Manag 453:117636. https://doi.org/10.1016/j.foreco.2019.117636
Santín C, Doerr SH (2016) Fire effects on soils: the human dimension. Philos Trans R Soc B: Biol Sci 371:20150171. https://doi.org/10.1098/rstb.2015.0171
Shakesby RA, Doerr SH (2006) Wildfire as a hydrological and geomorphological agent. Earth-Sci Rev 74:269-307. https://doi.org/10.1016/j.earscirev.2005.10.006
Shiklomanov IA (1993) World fresh water resources. In: Gleik PH (ed) Water in crisis: a guide to the world’s fresh water resources. Oxford University Press, New York, pp 13-24.
Silva LG, Doyle KE, Duffy D, Humphries P, Horta A, Baumgartner LJ (2020) Mortality events resulting from Australia's catastrophic fires threaten aquatic biota. Global Change Biol 26:5345-5350. https://doi.org/10.1111/gcb.15282
Silva V, Abrantes N, Costa R, Keizer JJ, Goncalves F, Pereira JL (2016) Effects of ash-loaded post-fire runoff on the freshwater clam Corbicula fluminea. Ecol Eng 90:180-189. https://doi.org/10.1016/j.ecoleng.2016.01.043
Silva V, Pereira JL, Campos I, Keizer JJ, Gonçalves F, Abrantes N (2015) Toxicity assessment of aqueous extracts of ash from forest fires. Catena 135:401-408. https://doi.org/10.1016/j.catena.2014.06.021
Smith HG, Sheridan GJ, Lane PN, Nyman P, Haydon S (2011) Wildfire effects on water quality in forest catchments: A review with implications for water supply. J Hydrol 396:170-192. https://doi.org/10.1016/j.jhydrol.2010.10.043
Sundarambal P, Balasubramanian R, Tkalich P, He J (2010) Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: field observations. Atmos Chem Phys 10:11323-11336.
Teixido AL, Sehn H, Quintanilla LG, Gonçalves SR, Fernández‐Arellano GJ, Dáttilo W, Izzo TJ et al (2021) A meta‐analysis of the effects of fragmentation on the megadiverse herpetofauna of Brazil. Biotropica 53:726-737. https://doi.org/10.1111/btp.12955
Townsend SA, Douglas M (2004) The effect of a wildfire on stream water quality and catchment water yield in a tropical savanna excluded from fire for 10 years (Kakadu National Park, North Australia). Water Res 38:3051-3058. https://doi.org/10.1016/j.watres.2004.04.009
UN General Assembly (2015) Transforming our world: the 2030 Agenda for sustainable development, 21 October 2015, A/RES/70/1. https://www.refworld.org/docid/57b6e3e44.html. Accessed 22 December 2021
USGS (2013) Where is Earth’s water? United States Geological Survey. United States Department of the Interior. http://ga.water.usgs.gov/edu/earthwherewater.html. Accessed 17 december 2021
Vasconcelos HL, Maravalhas JB, Cornelissen T (2017) Effects of fire disturbance on ant abundance and diversity: a global meta-analysis. Biodivers Conserv 26:177-188. https://doi.org/10.1007/s10531-016-1234-3
Veach AM, Troia MJ, Cregger MA (2021) Assessing biogeographic survey gaps in bacterial diversity knowledge: A global synthesis of freshwaters. Fresh Biol 66:1595-1605. https://doi.org/10.1111/fwb.13777
Venne LS, Frederick PC (2013) Foraging wading bird (Ciconiiformes) attraction to prescribed burns in an oligotrophic wetland. Fire Ecol 9:78-95. https://doi.org/10.4996/fireecology.0901078
Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S et al (2010) Global threats to human water security and river biodiversity. Nature 467:555-561. https://doi.org/10.1038/nature09440
Vukomanovic J, Steelman T (2019) A systematic review of relationships between mountain wildfire and ecosystem services. Landsc Ecol 34:1179-1194. https://doi.org/10.1007/s10980-019-00832-9
Wan S, Hui D, Luo Y (2001) Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analisis. Ecol Appl 11:1349-1365. https://doi.org/10.1890/1051-0761(2001)011[1349:feonpa]2.0.co;2
Wurtsbaugh WA, Heredia NA, Laub BG, Meredith CS. Mohn HE, Null SE, Pluth DA et al (2015) Approaches for studying fish production: Do river and lake researchers have different perspectives? Can J Fish Aquat 72:149-160. https://doi.org/10.1139/cjfas-2014-0210
Wyk PT, Scarpa J (1999) Water quality requirements and management. In: Wyk PT, Davis-Hodgkins M, Laramore R, Main KL, Mountain J, Scarpa J (eds) Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, St. Lucie, pp 141-161.
Xu M, Wang Z, Duan X, Pan B (2014) Effects of pollution on macroinvertebrates and water quality bio-assessment. Hydrobiologia 729:247-259. https://doi.org/10.1007/s10750-013-1504-y
Yu P, Xu R, Abramson MJ, Li S, Guo Y (2020) Bushfires in Australia: a serious health emergency under climate change. Lancet Planet Health 4:e7-e8. https://doi.org/10.1016/s2542-5196(19)30267-0