1. Song, J., Herrmann, J.M. & Becker, T. Quality control of the mitochondrial proteome. Nat Rev Mol Cell Biol 22, 54-70 (2021).
2. Vatrinet, R. et al. The alpha-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab 5, 3 (2017).
3. Strumilo, S. Short-term regulation of the alpha-ketoglutarate dehydrogenase complex by energy-linked and some other effectors. Biochemistry (Mosc) 70, 726-9 (2005).
4. Hipp, M.S., Kasturi, P. & Hartl, F.U. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20, 421-435 (2019).
5. Moehle, E.A., Shen, K. & Dillin, A. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J Biol Chem 294, 5396-5407 (2019).
6. Varshavsky, A. The Ubiquitin System, Autophagy, and Regulated Protein Degradation. Annu Rev Biochem 86, 123-128 (2017).
7. Bota, D.A. & Davies, K.J. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4, 674-80 (2002).
8. Pryde, K.R., Taanman, J.W. & Schapira, A.H. A LON-ClpP Proteolytic Axis Degrades Complex I to Extinguish ROS Production in Depolarized Mitochondria. Cell Rep 17, 2522-2531 (2016).
9. Lavie, J. et al. Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism. Cell Rep 23, 2852-2863 (2018).
10. Yang, W. et al. Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization. Cell 167, 985-1000 e21 (2016).
11. Dekker, S.L., Kampinga, H.H. & Bergink, S. DNAJs: more than substrate delivery to HSPA. Front Mol Biosci 2, 35 (2015).
12. Schumann, J. et al. The mitochondrial protein TCAIM regulates activation of T cells and thereby promotes tolerance induction of allogeneic transplants. Am J Transplant 14, 2723-35 (2014).
13. Vogel, S.Z. et al. TCAIM decreases T cell priming capacity of dendritic cells by inhibiting TLR-induced Ca2+ influx and IL-2 production. J Immunol 194, 3136-46 (2015).
14. Kampinga, H.H. & Craig, E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11, 579-92 (2010).
15. Agashe, V.R. et al. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199-209 (2004).
16. Lu, Z. & Cyr, D.M. The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone Ydj1 assist Hsp70 in protein folding. J Biol Chem 273, 5970-8 (1998).
17. Mirdita, M. et al. ColabFold - Making protein folding accessible to all. bioRxiv, 2021.08.15.456425 (2021).
18. Kaushik, S. & Cuervo, A.M. Proteostasis and aging. Nat Med 21, 1406-15 (2015).
19. Brand, M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100, 14-31 (2016).
20. Zdzisinska, B., Zurek, A. & Kandefer-Szerszen, M. Alpha-Ketoglutarate as a Molecule with Pleiotropic Activity: Well-Known and Novel Possibilities of Therapeutic Use. Arch Immunol Ther Exp (Warsz) 65, 21-36 (2017).
21. Iwert, C. et al. TCAIM controls effector T cell generation by preventing Mitochondria-Endoplasmic Reticulum Contact Site-initiated Cholesterol Biosynthesis. bioRxiv, 2021.04.20.440500 (2021).
22. McGarry, J.D., Takabayashi, Y. & Foster, D.W. The role of malonyl-coa in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J Biol Chem 253, 8294-300 (1978).
23. Meyer, A.E., Hoover, L.A. & Craig, E.A. The cytosolic J-protein, Jjj1, and Rei1 function in the removal of the pre-60 S subunit factor Arx1. J Biol Chem 285, 961-8 (2010).
24. Ungewickell, E. et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature 378, 632-5 (1995).
25. Leandro, J. et al. DHTKD1 and OGDH display substrate overlap in cultured cells and form a hybrid 2-oxo acid dehydrogenase complex in vivo. Hum Mol Genet 29, 1168-1179 (2020).
26. Dai, W. et al. OGDHL silencing promotes hepatocellular carcinoma by reprogramming glutamine metabolism. J Hepatol 72, 909-923 (2020).
27. Kim, H.Y., Kim, Y.M. & Hong, S. DNAJB9 suppresses the metastasis of triple-negative breast cancer by promoting FBXO45-mediated degradation of ZEB1. Cell Death Dis 12, 461 (2021).
28. Wang, H. et al. DNAJC5 promotes hepatocellular carcinoma cells proliferation though regulating SKP2 mediated p27 degradation. Biochim Biophys Acta Mol Cell Res 1868, 118994 (2021).
29. Craig, E.A. Hsp70 at the membrane: driving protein translocation. BMC Biol 16, 11 (2018).
30. Wagner, I., Arlt, H., van Dyck, L., Langer, T. & Neupert, W. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J 13, 5135-45 (1994).
31. De Los Rios, P., Ben-Zvi, A., Slutsky, O., Azem, A. & Goloubinoff, P. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc Natl Acad Sci U S A 103, 6166-71 (2006).
32. Pinti, M. et al. Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim Biophys Acta 1857, 1300-1306 (2016).
33. Bezawork-Geleta, A., Brodie, E.J., Dougan, D.A. & Truscott, K.N. LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci Rep 5, 17397 (2015).
34. Shin, C.S. et al. LONP1 and mtHSP70 cooperate to promote mitochondrial protein folding. Nat Commun 12, 265 (2021).
35. Bayot, A. et al. Towards the control of intracellular protein turnover: mitochondrial Lon protease inhibitors versus proteasome inhibitors. Biochimie 90, 260-9 (2008).
36. Frase, H., Hudak, J. & Lee, I. Identification of the proteasome inhibitor MG262 as a potent ATP-dependent inhibitor of the Salmonella enterica serovar Typhimurium Lon protease. Biochemistry 45, 8264-74 (2006).
37. Sanchez-Lanzas, R. & Castano, J.G. Mitochondrial LonP1 protease is implicated in the degradation of unstable Parkinson's disease-associated DJ-1/PARK 7 missense mutants. Sci Rep 11, 7320 (2021).
38. Lecker, S.H., Goldberg, A.L. & Mitch, W.E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17, 1807-19 (2006).
39. Liu, H., Urbe, S. & Clague, M.J. Selective protein degradation in cell signalling. Semin Cell Dev Biol 23, 509-14 (2012).
40. Sowa, M.E., Bennett, E.J., Gygi, S.P. & Harper, J.W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389-403 (2009).
41. Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152, 36-51 (2005).
42. Zheng, S.Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331-332 (2017).
43. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192, 216-21 (2015).
44. Punjani, A., Rubinstein, J.L., Fleet, D.J. & Brubaker, M.A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290-296 (2017).
45. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-32 (2004).
46. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-21 (2010).