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Abstract
On October 17 and 29, 2018, two rock and glacier avalanches occurred on the western slope of the
Sedongpu Basin upstream of the Yarlung Zangbo River in the Tibetan Plateau, forming the disaster
chains and causing damage to many bridges and roads. Based on the comparative analysis of multiple
pre-and post-remote sensing images, the initial sliding body, which was composed of rock and glacial
material, was located on a steep slope above an elevation of 6000 m. Under the coupling effect of
multiple factors such as gravity, rainfall, and weather changes, the initial sliding body detached from the
source zone and then transformed into a debris flow after impact and fragmentation. The debris flow
traveled downstream and scraped loose glacial till in its path, causing the volume of the sliding body to
increase. In addition, the debris flow traveled 10 km under low frictional resistance, as a result of the
lubrication via early rainfall and glacial meltwater. Eventually, the debris flow rushed out onto the valley
floor, forming a landslide dam and blocking the Yarlung Zangbo River. The deposit volumes on October
17 and 29 were 20.4 million m3 and 10.1 million m3, respectively, with a total mean thickness of ~22m.
This study provides an insight into the dynamic process as they unfolded, through multitemporal satellite
imagery and numerical simulation. Furthermore, we also discuss the potential cause of rock/ice
avalanche and disaster scenarios, as well as the tendency of the rock and glacier avalanches are
discussed.

1. Introduction
In October 2018, two rock and glacier avalanche disaster chains occurred in the Sedongpu Basin, which is
located on the left bank of the Yarlung Zangbo River in Tibet, China. A debris flow accumulated at the
mouth of the gully to form a giant dam. After the landslide dam breached, the outburst flood caused
serious damage in Medog County and to hydropower stations downstream, with over 16000 people
affected, and the direct economic loss exceeded 300 million yuan (Chen et al. 2020). On March 22, 2021,
a debris flow, the accumulation of which had blocked the Yarlung Zangbo River, occurred again, and the
upstream submerged area was ~10 km in length. Fortunately, the landslide dam breached two days later,
and the water level of the dammed lake began to decrease without causing casualties. Geographically,
the Sedongpu Basin is located in the plate compressional and collisional zone of the Himalayan region;
the basin has the highest elevation on the Earth, the widest terrain elevation difference, and the largest
scale. A large number of glaciers and ice lakes are present in high mountainous areas with elevations
above 4000 m asl. Over the past two decades, the Himalayas have experienced a significant increase in
temperature, more than the global average, especially in winter (Bhutiyani et al. 2010; Nakamura et al.
2018; Shreshtha et al. 1999). With increasing temperatures due to global warming, glaciers are melting at
an increasingly faster rate, and natural hazards in high mountainous areas are associated with glacial
activity, such as glacier/rock avalanches, landslides, and debris flows, which have also increased and
resulted in the extensive loss of lives and property (Allen et al. 2011; Fischer et al. 2012; Gruber et al.
2017; Kääb et al. 2018; Kirschbaum et al. 2019; Jacquemart et al. 2020). A dammed lake outburst caused
by rainfall and melting ice and snow occurred in the Kedarnath district of Uttarakhand, India, leading to
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approximately 6000 people killed and at least 30 hydropower stations damaged in 2013 (Allen et al.
2016; Bhambri et al. 2016). Recently, on February 7, 2021, a rock and glacier avalanches occurred in
Chamoli in Uttarakhand, India, which resulted in at least 20 deaths and 177 missing and two hydropower
stations under construction in the downstream were destroyed. This hazardous event had a strong
international response and attracted the continuous attention of many scholars (Martha et al. 2021;
Pandey et al. 2021; Yin et al. 2021; Shugar et al. 2021). However, the mechanism causing rock and glacier
disaster chains is extremely complex, with sudden occurrences, fast movements, a wide range of damage
and long-runout distances.

Similar high-level glacier/snow geological disasters have frequently occurred; these disasters were
affected by seismic activity, rainfall, and climate warming in Tibet, thereby causing serious casualties
and infrastructure damage (Shang et al. 2003; Yin and Xing, 2012; Cui and Jia, 2015). For example, a
massive landslide occurred in Zamunong Gully of Yigong, Tibet; it was the largest landslide and river
blockage event in China in the past 100 years and has attracted widespread attention from many
scholars (Yin, 2011; Yin and Xing, 2012; Delaney and Evans, 2015; Wu et al. 2020). The source area was
located on a slope with an elevation of ~5000 m asl with deposits of approximately 280 ~300 million m3

that accumulated at the mouth of the gully, blocked the Yigong Zangbo River, and produced a dammed
lake. Eventually, the outburst flood occurred with a maximum peak flow of ~130000 m3/s after the dam
burst, causing serious damage to downstream roads and bridges. In 2018, two large rock landslides
occurred, and both blocked the Jinsha River, thereby forming a barrier lake in Baige village in Jiangda
County, Tibet. The upstream villages and towns were submerged due to the barrier lake. The flooding
reached the Sichuan and Yunnan regions and caused some damage after the dam breaking (Zhong et al.
2020; Tian et al. 2020; Zhang et al. 2020). Generally, high-level geological disasters have large potential
energy. Therefore, the sliding body travels at a high speed and disintegrates quickly after the conversion
of gravitational potential to kinetic energy during which a large amount of deposit material in the path is
scoured, resulting in an increase in the volume of the initial landslide mass. The sliding bodies travel
suddenly a long-runout distance as a result of lubrication by snow and glacial meltwater. As a result,
these problems originating from high-level hazards, including mechanisms, formation patterns, early
identification, monitoring and early warning, have gradually become research focuses (Xu et al. 2011; Yin
et al. 2016). Historically, the Sedongpu Basin has experienced many high-level disaster events that have
blocked the Yarlung Zangbo River. Therefore, it is necessary to study the dynamic mechanism of the high-
level disaster chain that occurred in the Sedongpu Basin to provide a better scientific basis for risk
prediction. In this study, based on the two rock and glacier avalanches that occurred on October 17 and
29, 2018, we conduct a detailed analysis of disaster characteristics combined with multitemporal remote
sensing images. In addition, RAMMS is used to simulate the dynamic process, and we also discuss the
disaster causes, evolution mechanisms and trends of disaster chains in the future.

2. Characteristics Of The Sedongpu Basin Rock And Glacier
Avalanches On October 17 And 29, 2018
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Located on the western slope of the Gyala Barwa Mountain (elevation: 7294 m asl), the rock and glacier
avalanches (located at: 29°45'1.47"N and 94°56'14.37"E) originated on a steep slope of the Sedongpu
Basin, which is part of the canyon zone on the left bank of the Yarlung Zangbo River (Fig. 1). Moreover,
the Sedongpu Basin has been an also areas with frequent massive chain disasters on the Tibetan
Plateau. Topographically, this region is exceedingly rugged with steep slopes, with different elevations
ranging from 2700 m asl to 7500 m asl. The landforms include high mountains, narrow valleys, and deep
gorges. The highest peak in the region is Namcha Barwa Mountain, with an elevation of 7782 m asl. The
Sedongpu Basin occupies approximately 66.8 km2 with abundant glaciers and snow in the upstream
valley which occupy an area of ~​​23.6 km2.

Geologically, the study area is located on the Greater Himalaya tectonic unit, which also coincidentally
happens to be location of the strong collisional belt between the Indian and Eurasian plates. In addition,
this region has many active faults and frequent earthquakes due to the strong compression and collision
between plates. Therefore, these young mountains are structurally fragile and are exposed to extreme
climates that are common in the area. The main strata in the region are composited of the Proterozoic
Namcha Barwa Group and Quaternary loose sediment (Fig. 2). The lithologies include plagioclase gneiss,
granulite, monzonite gneiss, etc. The frequency of high-level geological disasters blocking the river in the
Sedongpu Basin has increased since 2015. Seven disaster events from 2015 to 2021 occurred in the
Sedongpu Basin at different scales (Table 1). Among them, two disaster events occurred in October 2018,
and both blocked the Yarlung Zangbo River with an upstream submerged area length of ~20 km. After
the dam burst, the outburst flood caused serious damage to the downstream towns and infrastructure.
Nowadays, a large number of deposits are accumulated in the Yarlung Zangbo River, forming a narrow
river channel. Recently, two small debris flows blocked the river in 2021 with a submerged area length of
15 km, but did not produce danger to the upstream and downstream villages.
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Table 1
High-level geological disaster events from 2015 to 2021 in the Sedongpu Basin

No Date Type of failure Total deposits volume
(m3)

Scale Dammed
river༟

1 2017-10-
22

Debris flow 3×106 Large Yes

2 2017-12-
21

Rock and glacier
avalanches

1.1×107 Oversized Yes

3 2018-10-
17

Rock and glacier
avalanches

2.05×107 Oversized Yes

4 2018-10-
29

Rock and glacier
avalanches

1×107 Oversized Yes

5 2019 Debris flow ༜1×105 Small No

6 2021-3-
22

Debris flow ༜1×105 Small Yes

7 2021-8-
10

Debris flow ༜1×105 Small Yes

Note: small, 1~10 ×104 m3; large, 100~1000 ×104 m3, oversized, more than 1000 ×104 m3.

3. Long-runout Avalanche Debris-flood Disaster Chain
The rock and glacier mass detached from a high position at an elevation of ~6500 m asl. During the
course of sliding, the initial mass rapidly transformed into a debris flow that mixed with snowmelt and
glacial meltwater as a result of impact and friction between the debris flow and valley floor.
Simultaneously, the debris flow scraped the loose deposits, such as colluvial deposits, glacial till, snow,
and glacial material. Finally, the debris flow accumulated downstream, blocking the river and forming a
large dammed lake in the upstream landslide dam. This hazard chain mode is summarized as follows:
complex rock and glacier avalanches →debris flow →river blocking →dammed lake →outburst flood. The
disaster chain process consisted of four sections, including the source zone, dynamic erosion zone,
debris flow accumulation and damming zone, and flood flow zone.

Source zone

The source zones in which the two hazards occurred were located on the mountain to the left of the
upstream Sedongpu Basin in October 2018, with an elevation of ~6000 m asl (Fig. 3). The source area of
the disaster that occurred on October 17, 2018, was ~336000 m3. Based on the pre- and post-satellite
images (Fig. 4), glacier cracks appeared along the front and middle margins of the sliding mass in 2014,
with lengths of ~150 m and widths 20 m~30 m. Subsequently, the tension cracks continually extended
and widened between 2015 and 2017, the quantity increased to ~12, and the longest crack reached ~210
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m. Fig. 4d and Fig. 4e show that some glacial till under the source area slid and formed a glacial lake.
According to records, a debris flow indeed occurred between February and December 2017, arising mainly
from melting glaciers (Table 1). Eventually, the landslide mass detached from the source area and directly
scoured the residual glacial till below. The other source area of disaster that occurred on October 29 was
located on a steep slope and occupied an area of ~0.29 km2. It was obvious from the remote sensing
images between 2014 and 2017 that glacier cracks gradually appeared and widened. In addition, signs of
melting glaciers were recognized in the source area after the landslide mass slipped, in which the residual
material mixed with the water and became a viscous feature (Fig. 5).

Dynamic erosion zone

The dynamic erosion zone was located at elevations ranging from 3000 m asl to 3800 m asl, with ~5 km
along the valley floor (Fig. 3). The upstream section, which was mainly composed of colluvial deposits
more than 30 m thick, had a gentle and spacious terrain that contributed to material accumulation. The
downstream valley was long and narrow, where the bedrock outcrop was clearly visible, showing a “V”-
shaped feature in cross section. Due to scouring by rainstorms or debris flows, small rockfalls or
landslides have frequently occurred on both sides of the slopes, during which abundant colluvial
materials accumulated on the valley floor, thereby providing a material basis for the next scraping of
debris flows or debris avalanches and causing magnification of disaster scale.

Debris flow accumulation and damming zone

The debris flow accumulation and damming zone is approximately 1800 m long, ranges in elevation from
2700 m asl to 3000 m asl and has a gradient ratio of 166‰ (Fig. 3). Based on the analysis of remote
sensing images and ground photographs (Fig. 7), the deposit area was composed of area Ⅰ and area Ⅱ.
Among them, area Ⅰ was estimated to have a volume of ~2.400×107 m3, which formed on 17 October
with a thickness of 20 m~40 m; this deposit directly blocked the river and resulted in a dammed lake
forming upstream. Area Ⅱ was located at the river channel where the deposit volume was ~1.76×107 m3

with a length of ~6 km due to a “10.29” disaster event. These sediment deposits in the river were mainly
composed of soil, rock, and glaciers. Therefore, the landslide dam was unstable and easily failed. Fig. 8
shows two geophysical profiles whose positions are shown in Fig. 7a. It was speculated that the scopes
ranging from 10 m to 30 m were sediment deposits, with a low resistivity of less than 400 Ω ∙ m.
Apparently, the riverbed was uplifted after damming.

In addition, due to the accumulation of a large amount of sediment deposits in the river after disaster
events in October 2018, the riverbed was raised and the river channel whose width ranged from 20 m to
40 m was narrowed. Therefore, a small debris flow would have also blocked the river. In 2021, two small
scale high-level glacial rock avalanches occurred in the Sedongpu Basin, both of which caused a
temporal river blocking event. The first occurred on March 22, in which river blocking lasted for ~3 days
(Fig. 9a). The upstream submerged lake area was approximately 10 km long, with the water level rising
by 1 m. However, due to the small volume (<100000 m3), as the lake water level exceeded the dam crest,
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the right side of the dam breached and resulted in further flooding. Nevertheless, the flood was too small
in scale to be destructive without inducing casualties downstream. On August 10, glacier avalanches
occurred again in the Sedongpu Basin, which quickly transformed into debris flows and directly blocked
the Yarlung Zangbo River. This hazard may have been caused by rising temperatures, which accelerated
the rate of glacial melting. According to aerial photos (Fig. 9b, 9c), the submerged lake area was ~8 km
long, with the water level rising by 1~2 m, which directly submerged the bridge in Gyala village and low
terrain in the river.

Flood flow zone

The flood flow zone was located downstream of the landslide dam in the Yarlung Zangbo River, with a
length of ~100 km and an elevation difference of ~1500 m. Many towns were distributed along the
Yarlung Zangbo River in this area. Among the previous disaster events, two large floods, which both
occurred in October 2018, caused the most serious damage due to the landslide dam bursting. First, a
barrier lake quickly formed upstream of the barrier dam after a debris flow blocked the Yarlung Zangbo
River on October 17. At 12:00 noon on October 17, the upstream submerged lake area was ~27 km long,
the lake water level rose approximately 40 m above the original level and was still rising at a mean rate of
0.61 m per hour, with a storage capacity of approximately 150 million m3. Correspondingly, the water
level decreased from 74.82 m to 73 m, and the flow rate also decreased from 3430 m3/s to 2620 m3/s in
the downstream Dexing Town Hydrological Station after landslide dam formation. The outburst flood
occurred at around 13:30 pm on October 19, with a peak breaching flow of ~32,000 m3/s, resulting in
16,600 affected people, 7100 urgently resettled people, and a large amount of damage to infrastructure,
such as roads, canals, and water supply pipelines. Second, the maximum water depth of the barrier lake
was ~77 m, which occurred on 29 October, and the water storage capacity reached 3.2×108 m 3. At 9:30
on October 31, a natural overflow occurred on the right side of the barrier dam, and the maximum flow
rate reached 1.8×104 m3/s at 12:30. Subsequently, the downstream Dexing Town Hydrological Station
had the largest peak discharge of ~1.25×104 m3/s at 18:30 until the flood danger was relieved at 9 am on
November 1.

4. Disaster Chain Simulation By Ramms

4.1 Introduction to RAMMS
Rapid mass movements simulation (RAMMS) is a professional dynamic numerical simulation analysis
software for debris avalanches designed by the Swiss Institute of Ice, Snow and Avalanche (SLF). Based
on a two-dimensional numerical calculation model, RAMMS can quickly simulate debris avalanches,
rockfalls, and debris flows, and obtain motion parameters including motion distance, velocity impact
pressure, and flow path, in three-dimensional terrain (Christen et al. 2010). In recent years, Rapid Mass
Movement Simulation (RAMMS) has been widely used to analyze the dynamic process of geological
disasters such as mudslides, avalanches, and rock slides in high mountains. Singh et al (2020) used
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RAMMS to simulate the Chowkibal-Tangdhar (CT) -8 avalanche movement in India in 2018. The results
showed that the maximum avalanche speed was 25 m·s−1, and the accuracy of this calculation was
verified based on ground observation data. Based on regional geological surveys, Gan and Zhang (2019)
used RAMMS to predict the debris flow in Luzhuang Gully, China, and indicated that the Voellmy model is
more suitable for simulating the movement process of debris flows. According to the different motion
characteristics of landslide masses, RAMMS sets up three modules: avalanche, debris flow debris flow
and rockfall. In this paper, the RAMMS: DEBRIS FLOW module is used for numerical calculation, and the
calculation steps are shown in Fig. 11.

4.2 Model
In the continuum model, the debris avalanche is assumed to be an unstable and heterogeneous fluid.
Based on the continuum model and fluid mechanics theory, RAMMS uses the Voellmy friction law to
accurately simulate the movement of debris avalanches under complex three-dimensional terrain
conditions. Moreover, the model also considers the solid phase and the viscous or turbulent fluid phase
resistance, which is suitable for the simulation of debris avalanches in valley floors. The model further
divides the friction resistance into two parts: dry Coulomb friction (coefficient µ) and viscous-turbulent
friction (coefficient ε), (Voellmy, 1955; Salm et al. 1990). The friction coefficients are responsible for the
behavior of the flow. µ dominates when the flow begins to stop, and ε dominates when the flow is
running quickly. In version 1.6.20, the model also introduces yield stress, which is more suitable for ideal
plastic materials. Its formula is as follows:

S=μN +
ρgu2

ϵ + （ 1 − μ ） N0 − (1 − μ)N0e−
N
N0

where: S is the friction resistance (Pa), ρ is the density (kg/m3), g is the gravitational acceleration, µ is the
friction coefficient, u is the flow velocity (m·s-1), ε is the viscous- turbulent friction coefficient, N is the
normal stress (Pa), and N0 is the yield stress (Pa).

In addition, according to the actual movement, RAMMS sets up an erosion module with the critical shear
stress. When the shear stress generated by debris avalanches exceeds the critical shear stress, it can
erode sediments in the channel. The erosion parameters are obtained by many back calculations
corresponding to the actual situation.

4.3 Recommended parameters
To successfully start a new RAMMS project, a few important preparations are necessary. First, a digital
elevation model (DEM) generally can be used to build terrain models in RAMMS. However, a high
resolution DEM produces more accurate simulation results than a low resolution DEM. Second, the
release and erosion areas can be directly delineated in RAMMS according to the results of field
investigations or satellite image interpretation. We also assign other values, such as the thickness,
erosion rate, and maximum erosion depth. The friction coefficients (µ and ε) are the essential parameters
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that directly control the movement distance and reflect accumulation characteristics. We obtain the
appropriate friction parameter values by many back calculations, and the concrete parameter values are
shown in Table 2.

Table 2
RAMMS model parameter values for the Sedongpu Basin disaster chain of

October 17, 2018
Digital terrain model Simulation grid resolution (DEM) 12.5 m

Release area Area 0.33 km2

Block depth 30 m

Block density 2500 kg/m3

Erosion area Erosion material density 2000 kg/m3

Erosion rate 0.025 m/s

Max erosion depth 25 m

Friction parameters
friction coefficient (μ)

0.12

Viscous coefficient (ϵ)
1200 m/s2

4.3.1 Debris flow velocity
Figure 12 shows the simulation result of the debris flow velocity, and the total simulation time was 545 s.
At t= 50 s, the rock and glacier mass fell onto the gentle slope below, and the maximum velocity reached
34 m·s−1. At t= 100 s, the sliding body that impacted and entered the valley floor was transformed into
fragmented clasts, with a maximum velocity of ~33 m·s−1. The traveling direction changed by
approximately 90° due to blocking by the opposite mountain. At t= 200 s, the debris flow reached the
middle of the valley floor with a maximum velocity of ~38 m·s−1 and a movement distance of ~4 km. At
t= 300 s, the debris flow traveled to the Yarlung Zangbo River with a mean velocity of ~30 m·s−1. After t=
400 s, the debris flow accumulated on the downstream path and blocked the Yarlung Zangbo River. Then
the upper debris flow slowed down, as a result of blocking the front edge deposits. In terms of velocity
change, the debris flow experienced four stages: acceleration→collision deceleration→long-runout even
pace→accumulation deceleration.

4.3.2 Debris flow sediment depth
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Figure 13 shows the simulation results of the debris flow sediment depth, from which the rock and glacier
mass, sliding down the slope, impacted the valley floor below and the opposite mountain after t= 50 s.
Then, the motion direction changed from southwest to southeast, and the maximum accumulation
thickness was 35 m. At t= 100 s, the debris flow continuously scraped the glacial till, which was located
on the gentle slope below, along with old colluvium along the path, with a movement distance of ~2 km
and a maximum accumulation thickness of ~38 m. At t= 300 s, the front margins of the debris flow,
reaching the Yarlung Zangbo River, began to accumulate. After t= 400 s, debris flows accumulated on the
river and blocked the river, further forming a dammed lake upstream. Eventually, the total volume of the
debris flow reached ~22 million m3, and the average depth was 18 m, which was approximately 3 times
the original volume of the failed mass.

5. Discussions

5.1 Causes of rock and glacier avalanches
The distribution pattern, mechanism, and mode of geological disasters on the Tibetan Plateau are
obviously different. The Tibetan Plateau has become the area with the most widespread and severe high-
level and long-runout geological disasters in China and worldwide, with an extremely complex geological
structure, steep topographical height difference, strong seismic activity, and variable hydrometeorology.
Therefore, the causes of hazards that frequently occur in the Sedongpu Basin mainly involve three
aspects: earthquakes, weather changes, and rainfall.

(1) Earthquakes
Earthquakes play an important role in the deformation and failure of rock masses. Frequent and intensive
seismic activities generally lead to rocks loosening, during which many cracks are formed inside the
rocks. These cracks provide a good channel for rainfall and snowmelt infiltration, which leads to further
widening of cracks and accelerate slope failure. Simultaneously, earthquakes usually generate seismic
forces that can trigger landslides or rockfalls. When the seismic force is sufficiently large, it causes large
or oversized landslides, which are more destructive than ordinary disasters. According to records of
earthquake events that occurred in the study area and adjacent areas, the quantity of events with
magnitudes in the rangs of 4≤ Ms < 5 is approximately 264, the number of earthquakes with magnitudes
of 5≤ Ms < 6 is ~264, and the number of Ms༞6 earthquakes that have been recorded are more than 20.
An earthquake of Ms= 8.6 that occurred in Chayu town in Medog County in 1950 was the largest
earthquake in the region. In this earthquake, abundant landslides were triggered, and two snow peaks
produced large-scale avalanches, with damage to many houses. However, the spatial distribution of
earthquakes is a cluster, which is mainly located at the large bend of the Yarlung Zangbo River where
fragmenting mountains and high-level geological disasters occur (Fig. 14). According to the fifth-
generation peak seismic acceleration in China (GB18306-2015), the peak seismic acceleration in the
study area reaches 0.3 g, while the peak seismic acceleration in the surrounding areas is more than 0.1 g.
The peak ground motion acceleration in the Medog region, which approaches the Sedongpu Basin,
reaches 0.4 g. Based on the ground survey, a large amount of loose material is visible in the Sedongpu



Page 11/22

Basin, mainly resulting from chronic seismic activity. The internal structural planes controlling the sliding
mass gradually shift and extend because earthquakes, with the shear strength decreasing chronically.
Eventually, under the coupling of internal and external factors, a massive rock mass would failed, and a
secondary disaster chain was also induced.

(2) Weather changing
Figure 15 shows a temperature variation curve from October 1 to 30, 2018. The red and blue lines
represent the maximum and minimum temperatures, respectively, whereas the black lines show the
temperature difference. In the “10.17” disaster event, the temperature difference was 10 ℃, with a
maximum temperature of 15 ℃ and a minimum temperature of 5 ℃. However, the temperature
difference at the slope on the top of the mountain changed more, which caused fissure water to
frequently transform between solid and liquid states, thereby accelerating rock mass failure. The
temperature difference changed greatly after October 22, with a linear growth trend. Moreover, the
temperature difference on October 29 reached approximately 19 ℃, with a maximum temperature of 16
℃ and a minimum temperature of -2.4 ℃. As the temperature rose, the glacier and snow melted rapidly.
The friction resistance between the loose deposits and the ground decreased, as a result of mixing some
of meltwater. As the temperature rapidly decreased, the fissure water in the rock mass rapidly feezed and
led to volume expansion. As a result, this process produced a frost heaving force, which expedited the
expansion of cracks until the failure of the rock mass. Based on the above analysis, the temperature
changes, especially the greater temperature difference between day and night, accelerated the weathering
and freeze/thaw effect of the rock mass.

(3) Rainfall

Figure 16 shows the monthly mean rainfall and temperature in Milin County in 2018. The rainy season
mainly occurred from June to September, and the monthly average rainfall was more than 60 mm. In
addition, the monthly mean temperature in the three months was 15 ℃ ~ 16 ℃, the glacier melted
rapidly, and some glacial meltwater penetrated along rock cracks. The rainfall in September 2018
exceeded the multiyear mean rainfall (Fig. 17). Subsequently, abundant rainwater easily penetrated along
the cracks of the sliding body, producing dynamic and hydrostatic pressures that facilitated the
expansion of cracks. The shear strength of the sliding surface gradually decreased due to lubrication and
seepage pressure of pore water, resulting in creep displacement increasing in the sliding body. Massive
ice or snow existed in glacial till and began to melt under high temperature conditions. The glacial till
gradually changed from an unsaturated state to a saturated state and was easily scraped under the
impact of debris flows as a result of rainfall and glacial meltwater. Finally, the initial sliding mass
detached from the source area due to mixing a large amount of water and transformed into a debris flow,
which scraped loose deposits on the movement path and caused disaster magnification.

5.2 Analysis of disaster scenarios
The deformation and failure evolution of the hazard chain is shown in Fig. 18. Due to the steep slopes on
both sides of the valley and frequent seismicity, abundant colluvial slope deposits and moraines
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accumulated in the valley floor, which provided an abundant material basis for the volume increase in the
subsequent debris flow (Fig. 18a). Moreover, as creep displacement increased, with long-term seasonal
and cyclic day/night freezing and thawing, the fissure water in the rock mass continuously changed from
the solid to the liquid state, and further produced a frost heaving force, which accelerated the
deterioration of the rock mass and formed a potential sliding surface. At the same time, the rock mass
cracks widened and connected as a result of the hydrostatic pressure and hydrodynamic pressure
produced by rainfall and glacial meltwater. In particular, the rock deterioration of the mountain peaks was
much more serious than that at the foot of the mountains due to the seismic amplification effect. On
October 17 and 19, 2018, the glacier rapidly melted owing to the abrupt rise in temperature. Therefore,
some of glacier meltwater mixed with loose deposits after entering the valley, resulting in a decrease in
shear strength between the deposits and ground. When the potential sliding surface was connected, the
rock and glacier mass rapidly detached from the source area. During the disintegration process (Fig. 18b,
18c), the sliding body that resulted from fragmentation and impact was quickly transformed into a debris
flow. A large amount of heat, which was derived from friction and collision, melted the glacier and snow
inside the rock mass. Simultaneously, under the lubrication of meltwater, the friction resistance between
the sliding body and the ground decreased, resulting in movement along a long-runout distance. However,
the loose deposits that mixed with abundant meltwater were saturated or partly saturated along the travel
path. Then, under the impact of the debris flow, they were easily scraped and trapped, resulting in the
increase in the debris flow volume. Finally, the debris flow that blocked the river and formed a dammed
lake traveled to the Yarlung Zangbo River (Fig. 18d). When the dam burst, the flood disaster formed
downstream.

5.3 Tendency of the rock and glacier avalanches
The Himalayas are one of the largest glacierized areas outside the polar regions, with a total glacier
coverage of 22800 km2 (Bolch et al. 2012). Climate change poses a serious challenge to snow and
glacier coverage. With an increase in temperature in high mountainous regions, glacier and snow-covered
areas will diminish due to increased melting of snow and glacier as well as reduced accumulation of
snow (Khadka et al. 2014). Simultaneously, a series of problems, such as glacier shrinkage and snow line
rise, have begun to appear and have cause many disaster problems (Fujita et al. 2006; Rafiq and Mishra,
2016; Singh and Jain, 2002; Tawde et al. 2017). The rate of glacier retreat is believed to be approximately
10~15 m year−1 and is an increasing (Winiger et al. 2005). The glacier shrinkage rates in Himalayas are
regionally variable: ~0.2 to ~0.7% year−1 from 1960 to 2001-2004 in the Indian Himalayas (Kulkarni et al.
2011), 0.12± 0.07% year−1 from 1968 to 2007 in the Garhwal Himalayas (Bhambri et al.2011), and ~0.3
to ~0.6% year−1 from ~1970 to ~2005 in Tibet, China (Nie et al. 2010). An air temperature increase of 2
℃ reduced the annual snow water equivalent to 1–7% (Singh and Kumar, 1997). The Tibetan Plateau,
also known as the roof of the world due to its base height residing in the free troposphere, receives large
amounts of solar heat flux (Prasad et al. 2009). However, most of the Tibetan glaciers have shown signs
of accelerated retreat in recent decades under the trend of global warming (Yao et al. 2007).
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According to meteorological stations in Milin County (Fig. 19), the annual mean temperature is 8.9 ℃.
However, clearly, the temperature change curve from 1980 to 2019 shows that the temperature has risen
by approximately 1.8 ℃. Due to rising temperature, glaciers and snow will melt and further accelerate
rock weathering. Simultaneously, after mixing with accumulation materials in the gully, the meltwater
would easily trigger debris flows or debris avalanches. The annual average rainfall in Milin County from
March to October, which accounts for approximately 95%, is 731.2 mm. However, the rainfall from
November to February of the next year is relatively small, accounting for approximately 5% of the yearly
rainfall. Abundant rainfall accelerates the deformation and failure of slopes. Therefore, rock and glacier
avalanches frequently occur in the Sedongpu Basin, with river-blocking disaster chains. It is also
recommended that automatic water level and temperature monitoring stations be established in the
Sedongpu Basin for emergency monitoring and early warning work. From the perspective of long-term
monitoring, high-resolution satellites are available to recognize chronic deformation.

6. Conclusion
Based on the analysis of rock and glacier avalanches that occurred in Sedongpu Basin on 17 and 29
October 2018, we find significant amplification in long-runout disaster chain effects. A disaster-affected
body undergoing a rock and glacier avalanche travels, resulting in continuous damage in a short period
of time and transforming into debris flow or debris avalanche. Therefore, the ultimate damage far
exceeds the initial damage from the avalanche due to the amplification effect. Simultaneously, the
disaster chain is composed of avalanches, debris flows, landslide dams, and outburst floods. The most
prominent feature resulting from disaster amplification is that the disaster travels far. A debris flow
entered the Yarlung Zangbo River and formed a large dam. The dam that formed by abundant glacier and
meltwater was so unstable that it burst in a short time. However, the landslide dam volume was too large
to wash away by floods, which led to riverbed uplift and river channel narrowing. As a result, the two
small-scale debris flows that occurred in 2021 easily caused river blockage. Under the background of
global warming, similar rock and glacier avalanches will become more frequent in Sedongpu Basin,
small-scale debris flows blocked the river and flooding increased. Consequently, it is imperative that a
comprehensive assessment of risk be built. High-resolution remote sensing satellites play an important
role in recognizing and monitoring signs of deformation and failure in potential source areas.
Subsequently, we can analyze the disaster evolution tendency by multiperiod satellite images to achieve
early monitoring and warning. According to these analyses of satellite images, the relevant departments
also can set out scientific policies of disaster prevention and mitigation.
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Figures

Figure 1

Map of the study area terrain. In the remote sensing image, I and II represent the avalanche source on
October 17 and 29, 2018, respectively, delineated by the red dotted lines.

Figure 2

Geological map of the Sedongpu Basin rock and glacier avalanche and adjacent
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Figure 3

Movement of the rock and glacier avalanches disaster chain in the profile. I, source zone; II, dynamic
erosion zone; III, debris flow accumulation and damming zone.

Figure 4

Multitemporal high-resolution remote sensing images of the source zone of the October 17, 2018,
disaster. The purple dotted lines represent the source zone. The red arrows represent the movement
direction.

Figure 5

Multitemporal high-resolution remote sensing images of October 29, 2018, source zone. The red dotted
lines represent the source zone, the red arrows show the movement direction of the sliding body.

Figure 6

Satellite image of the dynamic erosion zone. Inset a is an overview photograph of the erosion zone. Inset
b shows the gigantic sediment deposits. Inset c shows the sediment deposits on both sides of the valley.

Figure 7
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Satellite remote sensing image of the debris flow accumulation and damming zone. Zones I and II
represent the accumulation zones of the disaster that occurred on October 17 and 29, 2018. The green
lines stand for the geophysical profile locations. Insect a is an aerial photograph showing the landslide
dam and breach. Insect b shows the sediment deposits piling up along the downstream valley.

Figure 8

Profile of the geophysical results. The purple dotted lines represent the boundary between bedrock and
sediment deposits.

Figure 9
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Landslide dam and dammed lake photographs from 2021. In a, the red arrows represent the water
movement direction in the river, the red dotted lines represent the “2021, 3” landslide dam, the purple
dotted lines represent the “2018, 10” landslide dam. b and c are aerial photographs of a disaster event
occurring on August 17, 2021. B shows the deposits located in the Yarlung Zangbo River. In c, the red box
shows the damaged bridge, and the blue arrows represent the submerged low terrain.

Figure 10

Map of the flood area in the disaster event of October 17, 2018. Inset a shows the flood flowing at the
breach of the dam. Inset b shows that the bridge was damaged by backwater. In inset c, the road was
submerged by flood.

Figure 11

Schematic diagram of the RAMMS numerical simulation process for the Sedongpu Basin disaster chain

Figure 12

Images of the simulated runout velocities of the mixed rock and glacier mass at various times.

Figure 13

Simulating images of the accumulating depth at various times

Figure 14

Seismic distribution map of the study area and adjacent regions (data source: data.earthquake.cn).

Figure 15

Daily temperature variation in October 2018.
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Figure 16

Monthly mean rainfall and temperature variation of Milin County in 2018.

Figure 17

Mean rainfall in September 1999 to 2018 in Milin County. The red dotted line shows the multiyear mean
rainfall.

Figure 18

Scenarios of the exit and run-out of rock and glacier avalanches. In a, the landslide mass deteriorated
after the temperature rose, showing the widening process of crack. In b, the initial rock and glacier mass
disintegrated after detaching. In c, the debris flow traveled and scoured on the path. In d, the dam formed
and blocked the Yarlung Zangbo River.

Figure 19

Annual mean temperature (lines) and precipitation (bars) from 1980 to 2019 in Milin County. The red
dotted line represents the temperature fitting curve (data source: China Meteorological Administration).


