[1] Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008. 49(3): 480-508.
[2] Baraille F, Planchais J, Dentin R, Guilmeau S, Postic C. Integration of ChREBP-Mediated Glucose Sensing into Whole Body Metabolism. Physiology (Bethesda). 2015. 30(6): 428-37.
[3] Jang C, Hui S, Zeng X, et al. Metabolite Exchange between Mammalian Organs Quantified in Pigs. Cell Metab. 2019. 30(3): 594-606.e3.
[4] Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: Transforming the role of positron emission tomography. Sci Transl Med. 2017. 9(381).
[5] Lee MS, Lee AR, Jung MA, et al. Characterization of physiologic 18F-FDG uptake with PET-CT in dogs. Vet Radiol Ultrasound. 2010. 51(6): 670-3.
[6] Min W, Fang P, Huang G, Shi M, Zhang Z. The decline of whole-body glucose metabolism in ovariectomized rats. Exp Gerontol. 2018. 113: 106-112.
[7] Alstrup AK, Smith DF. Anaesthesia for positron emission tomography scanning of animal brains. Lab Anim. 2013. 47(1): 12-8.
[8] Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009. 29(5): 1467-86.
[9] Amin A, Rosenbaum SJ, Bockisch A. Physiological ¹⁸F-FDG uptake by the spinal cord: is it a point of consideration for cancer patients. J Neurooncol. 2012. 107(3): 609-15.
[10] Taralli S, Leccisotti L, Mattoli MV, et al. Physiological Activity of Spinal Cord in Children: An 18F-FDG PET-CT Study. Spine (Phila Pa 1976). 2015. 40(11): E647-52.
[11] Aiello M, Alfano V, Salvatore E, et al. [(18)F]FDG uptake of the normal spinal cord in PET/MR imaging: comparison with PET/CT imaging. EJNMMI Res. 2020. 10(1): 91.
[12] Keiding S, Sørensen M, Frisch K, Gormsen LC, Munk OL. Quantitative PET of liver functions. Am J Nucl Med Mol Imaging. 2018. 8(2): 73-85.
[13] Keiding S. Bringing physiology into PET of the liver. J Nucl Med. 2012. 53(3): 425-33.
[14] Brix G, Ziegler SI, Bellemann ME, et al. Quantification of [(18)F]FDG uptake in the normal liver using dynamic PET: impact and modeling of the dual hepatic blood supply. J Nucl Med. 2001. 42(8): 1265-73.
[15] Cussó L, Desco M. Suppression of 18F-FDG signal in the bladder on small animal PET-CT. PLoS One. 2018. 13(10): e0205610.
[16] Capitanio S, Nordin AJ, Noraini AR, Rossetti C. PET/CT in nononcological lung diseases: current applications and future perspectives. Eur Respir Rev. 2016. 25(141): 247-58.
[17] Vansteenkiste JF, Stroobants SG, Dupont PJ, et al. Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol. 1999. 17(10): 3201-6.
[18] Engel H, Steinert H, Buck A, Berthold T, Huch Böni RA, von Schulthess GK. Whole-body PET: physiological and artifactual fluorodeoxyglucose accumulations. J Nucl Med. 1996. 37(3): 441-6.
[19] Ramos CD, Erdi YE, Gonen M, et al. FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection. Eur J Nucl Med. 2001. 28(2): 155-64.
[20] Tan LT, Ong KL. Semi-quantitative measurements of normal organs with variable metabolic activity on FDG PET imaging. Ann Acad Med Singap. 2004. 33(2): 183-5.
[21] Kosuda S, Fisher S, Wahl RL. Animal studies on the reduction and/or dilution of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) activity in the urinary system. Ann Nucl Med. 1997. 11(3): 213-8.