
Spatial Coherence Patterns of Extreme Winter
Precipitation In The United States
Abhirup Banerjee  (  abhirup.banerjee@pik-potsdam.de )

Potsdam Institute for Climate Impact Research https://orcid.org/0000-0002-7101-0914
Matthias Kemter 

University of Potsdam
Bedartha Goswami 

University of Tübingen
Bruno Merz 

Helmholtz Centre Potsdam
Jürgen Kurths 

Potsdam Institute for Climate Impact Research
Norbert Marwan 

Potsdam Institute for Climate Impact Research

Research Article

Keywords:

Posted Date: January 17th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1243541/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1243541/v1
mailto:abhirup.banerjee@pik-potsdam.de
https://orcid.org/0000-0002-7101-0914
https://doi.org/10.21203/rs.3.rs-1243541/v1
https://creativecommons.org/licenses/by/4.0/


Noname manuscript No.
(will be inserted by the editor)

Spatial coherence patterns of extreme winter precipitation in

the United States

Abhirup Banerjee · Matthias Kemter · Bedartha Goswami · Bruno

Merz · Jürgen Kurths · Norbert Marwan

Received: date / Accepted: date

Abstract Extreme precipitation events have a signif-
icant impact on life and property. The United States

experiences huge economic losses due to severe floods
caused by extreme precipitation. With the varied ter-
rain, it becomes increasingly important to understand5

the spatial variability of extreme precipitation to con-
duct a proper risk assessment of natural hazards such
as floods. In this work, we use a complex network based
approach to identify distinct regions exhibiting spa-
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tially coherent precipitation patterns due to various un- 10

derlying climate mechanisms. To quantify interactions

between event series of different locations, we use a

nonlinear similarity measure, called the edit-distance

method, which considers not only the occurrence of the

extreme events but also their intensity while measuring 15

similarity. Using network measures, namely, degree and

betweenness centrality, we are able to identify the spe-

cific regions affected by landfall of atmospheric rivers

in addition to those regions where the extreme precipi-

tation due to storm track activity is modulated by dif- 20

ferent mountain ranges such as the Rockies and the

Appalachians. Our approach provides a comprehensive

picture of the spatial patterns of extreme winter pre-

cipitation in the United States due to various climate

processes despite its vast complex topography. 25

1 Introduction

Extreme precipitation poses a serious threat to lives

and livelihood of people all around the world. With

the intensification of extreme precipitation and flood

events over most climate regions (Tabari, 2020; East- 30

erling et al, 2017; Janssen et al, 2014; Vu and Mishra,

2019; Kunkel et al, 2012) due to climate change, under-

standing the spatial variability of extreme precipitation

is crucial to manage the big socioeconomic losses often

associated with them (Merz et al, 2021). Previous stud- 35

ies have shown that extreme precipitation connectivity

in the US is highest during the winter months (Touma

et al, 2018), while river flood connectivity is higher in
spring in the Rocky mountains and central US due to
snow melt (Brunner et al, 2020). As reported in the 40

billion-dollar weather and climate disasters catalog re-
leased by the NOAA/National Centers for Environmen-
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tal Information (NCEI), in the period 2010-2020, 328

people were killed due to flooding and winter storms

in the U.S., and more than $77 billion (U.S. dollars)45

worth of economic damages were caused (Weather and

for Environmental Information , NCEI). This included,

for instance, the above-average precipitation leading to

severe flooding in the Mississippi and Missouri Rivers

and their tributaries during the winter season of 201950

(December 2018 – February 2019) (Hoell et al, 2021;

Flanagan et al, 2020). Thus our study focuses on ex-

treme precipitation in the winter months (DJF), dur-

ing which rainfall can cause floods directly and snowfall

leads to the accumulation of snow packs for the melting55

season.

Numerous studies have analyzed extreme precipi-
tation events across the United States (Mondal et al,

2020; Najibi et al, 2020), meteorological causes of secu-
lar variations (Kunkel et al, 2012), spatiotemporal vari-60

ability (Kursinski and Mullen, 2008), and their rela-

tion to large-scale meteorological patterns (Agel et al,

2019). Here, we focus on the spatial connectivity of ex-

treme precipitation events, which is relevant for river

flood generation and the spatial extent of simultane-65

ous flooding (Brunner et al, 2020; Kemter et al, 2020).

Understanding the spatial dependence of extreme pre-

cipitation and its underlying mechanism is important to

assess risk from natural hazards. Simultaneous extreme

precipitation across large scales can lead to synchronous70

flooding in multiple states, which has a greater societal

and financial impact than independent, localized flood

events due to regional interdependencies in risk man-

agement, infrastructure, and insurance (Jongman et al,

2014).75

We use a complex network based approach to study

spatial patterns of extreme winter precipitation in the

United States. Climate network analysis can help to

identify the regions which are most likely to experience

concurrent precipitation extremes and which climatic80

conditions are responsible for their generation. The cli-

mate network belongs to the category of functional net-
work, i.e., in which pairwise dependency of station or

grid data is computed, and the network topology is rep-

resented by different network measures (Donges et al,85

2009; Fan et al, 2021; Tsonis and Roebber, 2004). The

network representation of climate data allows us to study

pairwise interactions between climate variables of differ-

ent locations. However, standard similarity measures,

such as Pearson or Spearman correlation coefficients90

are not suitable to evaluate the relationship within ex-

treme precipitation data which are event-like time se-

ries. In the past decade, a specific and nonlinear syn-

chronization measure, in particular event synchroniza-

tion (ES) (Quian Quiroga et al, 2002) have been used95

extensively to construct climate networks for event-like

data such as extreme precipitation (Malik et al, 2011;

Stolbova et al, 2014; Ozturk et al, 2019), heat wave pat-

tern (Mondal and Mishra, 2021) etc. Boers et al (2013,

2014a,b) used complex networks constructed based on 100

ES to study the South American Monsoon and reveal

the global extreme precipitation pattern (Boers et al,

2019). Konapala and Mishra (2017) used the same cli-

mate network framework to study hydroclimatic ex-
treme events. Agarwal et al (2017) introduced multi- 105

scale event synchronization by combining wavelet trans-

form and ES.

However, ES only considers the time of occurrence

of events to identify the events coincidence and use this

as a measure for similarity, but not the difference in 110

strength or amplitude of the events. While very few pre-

vious works (Ciemer et al, 2018) have proposed some

modified correlation measures to investigate spatial co-

variability pattern of general precipitation (also con-

sidering the amplitude variability), these methods are 115

linear and, thus, not suitable to study extreme precip-

itation behaviour.

In our study, we use a special distance metric, par-

ticularly designed to study the similarity between spike

trains, called edit distance (ED), first proposed by Vic- 120

tor and Purpura (1997) and later extended by Hirata

and Aihara (2009). This metric has been used in com-

bination with recurrence plot to analyze the recurrence

property of marked point process data (Suzuki et al,

2010), paleoclimate data (Ozken et al, 2015, 2018), and 125

extreme event-like hydrological data (Banerjee et al,
2021). Recently, Agarwal et al., (accepted) also applied
this measure to study the extreme rainfall pattern in

the Ganga River basin. Under this framework, we con-

sider here each event series as a marked point process 130

and measure the similarity between two such event se-

ries by optimizing the cost of transformation associ-

ated with transforming one event series to another one

through elementary operations, such as shifting, addi-

tion or deletion of events. 135

Spatial patterns of different network measures, namely

degree and betweenness centrality are used to study

the spatial connectivity of extreme winter (December–

January–February (DJF)) precipitation events. While

the degree field is based on local topological informa- 140

tion, the path-based betweenness centrality field includes

global topological information (Donges et al, 2009). Through

our approach, we are not only able to identify regions

with distinct extreme precipitation patterns, but also

delineate the regions affected by atmospheric rivers and 145

tornadoes. The patterns of Sec. 2, we describe in detail,

the data and the methodology. In Sec. 3, we draw an in-
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terpretation based on our network analysis and discuss

the results from a climatological point of view.

2 Data and Methodology150

2.1 Data source and data pre-processing

In this study, we use daily averaged precipitation, geopo-

tential height, wind at different pressure levels, and

vertically integrated water vapour (IVT) flux data de-

rived from ERA5 reanalysis (Hersbach et al, 2020) for155

the period 1980 – 2020. The spatial resolution used is
0.5◦ × 0.5◦. It is worth mentioning here that although

reanalysis precipitation data do show biases compared

to the observations, observational datasets typically ei-

ther have a limited spatial coverage (GPCC, TRMM,160

etc.), lower resolution (GPCP) or a limited temporal

coverage (TRMM). The ERA5 shows in most cases,
smaller biases than other reanalysis datasets (JRA-55,
MERAA-2)(Hassler and Lauer, 2021). However, we ver-
ify the robustness of our results by comparing them165

with those obtained using JRA-55 (Japan Meteorologi-
cal Agency, Japan, 2013) (see figures in the Supporting
information).

2.2 Network construction

A network or graph comprises two main components: a170

set of nodes V and a collection of edges E. Mathemati-

cally, a network is expressed as G = {V,E} (Sivakumar
and Woldemeskel, 2014; Donges et al, 2009). In case

of climate network, each geographical grid point of the

climate dataset is considered as a node and an edge is175

placed when there is statistically significant association

or functional dependency between two nodes. To con-

struct the climate network for extreme precipitation,
first we transform the precipitation time series data at
each grid point into an extreme precipitation event se-180

ries by considering those days as events for which pre-
cipitation is among the highest 5% of all values, in-
cluding dry days without precipitation, in a particular

season at that location, resulting in 4 to 5 events for

each season (Malik et al, 2011; Boers et al, 2013; Stol-185

bova et al, 2014). Here, we construct the network for

extreme precipitation events to study its pattern of spa-

tial variability.

In this study, we use the edit distance (ED) method,

which takes into account both the sequence and ampli-190

tude of events. In general, ED is a distance measure

to quantify the similarity/ dissimilarity between two

spike trains (Victor and Purpura, 1997; Banerjee et al,

2021). Additionally, ED considers each event series as a

marked point process (Suzuki et al, 2010; Ozken et al, 195

2015, 2018). The idea is to transform an event series

into another series by performing some elementary op-

erations: shifting in time, amplitude modulation, and

deletion/insertion of events (Fig. 1). A specific cost is

assigned to each operation. The total cost of transfor- 200

mation from one event series to the other is computed

by tracing the minimal-cost path.

Sa

S1

S2

S3

Sb

shift+amplitude modulation

shift+amplitude modulation

deletion

X

Fig. 1 Schematic of the transformation of segment Sa to Sb

through four steps numbered as steps S1, . . . , S3. The path
shown is a minimal-cost path and all steps are elementary
steps, i.e., shifting an event, amplitude modulation, delet-
ing/inserting.

The mathematical formulation of the distance mea-

sure is described as follows. Consider two given seg-

ments Sa and Sb, the minimum cost of transformation 205

is defined as

D(Sa, Sb) = min
C

{{

∑

(α,β)∈C

Λ0∥ta(α)− tb(β)∥

+Λ1∥La(α)− Lb(β)∥
}

+Λs(| I | + | J | −2 | C |)
}

.

(1)

The time and amplitude of events are denoted as ta(α),

tb(β), and La(α), Lb(β), Λ0 and Λ1 are the coefficient

of cost of shifting in time and amplitude change. The

first term of Eq. (1) sums the cost of shifting in time 210

and amplitude change between the αth event in Sa and
βth event in Sb, C contains all the pairs associated in

this operation. The second term in Eq. (1) denotes the

deletion/ insertion operation, | I |, | J | are the sets

indices of events in Sa and Sb, Λs is the coefficient of 215

cost of deletion.
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The minimum cost implies the highest similarity

and vice-versa. We then calculate the transformation
cost for every pair of event series i and j of the grid-

ded extreme event dataset using the above method,220

which gives us the similarity matrix Qij (here, cost ma-

trix). Thereafter, we obtain the adjacency matrix Aij

by thresholding the similarity matrix Qij with a suit-

able threshold, which gives the edges of our network.
Mathematically, Aij = Θ(ϵ−Qij)− δij , where Θ is the225

Heaviside function, i.e., we assign 1 when the cost is

below a certain threshold, otherwise 0. ϵ is the thresh-

old, and δij is the Kronecker delta to remove self loops.

In the case of ED, lower transformation cost between
two event series implies higher similarity. For all pairs230

of grid cells whose value of the transformation cost is
below the threshold ϵ will be connected by an edge.

In this study, to find the significant edges, we fix the

edge density of the network at ρ = 2E
N(N−1) = 5% and

choose the corresponding threshold ϵ(ρ) (Malik et al,235

2011; Stolbova et al, 2014; Wiedermann et al, 2017).

2.3 Network measures

Various network measures are used to quantify the net-
work topology which provide novel insights into the un-
derlying dynamics of the system over different spatial
scales (Donges et al, 2009). We use two network mea-

sures to quantify and characterize the spatial pattern

of extreme precipitation. One of the simplest local net-

work measure is the degree which measures the central-

ity of a node based on how well-connected it is. The

Degree ki of a node i is defined as

ki =
N
∑

j=1

Aij (2)

where N is the total number of grid points (nodes).

It quantifies the number of direct connections node i

has with other nodes in the network (Fig.2a). In cli-240

mate networks, nodes with higher degree values ki in-

dicate the spatial distribution of similar variability, re-

lated to linked processes (Boers et al, 2014b), such as

large-scale atmospheric circulation (Malik et al, 2011;

Boers et al, 2013, 2014b). It has been used to identify245

the highly connected geographical sites (super-nodes)

and their association with atmospheric teleconnection

pattern (Tsonis et al, 2008; Radebach et al, 2013; Agar-

wal et al, 2019).

The second network measure we use is the between-

ness centrality, which provides information about the

global topology on the basis of shortest paths between

pairs of nodes (Donges et al, 2009). Betweenness cen-

trality BCi measures how much a node i falls ‘in be-
tween’ two nodes in the network, i.e., acts as a bridge

connecting two other nodes (Newman, 2010; Freeman,

1978). A node may not be well-connected (i.e., has low

degree) but can be crucial to connect different parts of

the network (Golbeck, 2015) (Fig. 2b). Betweenness is

quantified by measuring the percentage of the shortest

paths that must go through this specific node i and is

defined as

BCi =

N
∑

j,k ̸=i

σjk(i)

σjk

(3)

where σjk is the total number of shortest path between 250

node j and k and σjk(i) is the number of shortest paths

that go via node i. In case of social network, BC indi-

cates the importance of a node in controlling the flow of

information in the network. However, for functional net-

works, such as climate networks, it represent boundaries 255

between highly connected regions (Molkenthin et al,

2014; Tupikina et al, 2016). BC has been used to un-
cover energy flow patterns in the atmosphere (Donges
et al, 2009) and has also been successfully applied to

study the extreme precipitation patterns of different 260

monsoon systems (Boers et al, 2013; Stolbova et al,

2014).

Correction for spatial embedding: When we choose a

particular study area, we impose an artificial bound-
ary in space. These boundaries influence the climate 265

network (Rheinwalt et al, 2012; Boers et al, 2013) by
cutting links that actually connect nodes with outer re-
gions, hence affecting the network measures. Here we

adopt the boundary correction procedure suggested by

(Rheinwalt et al, 2012) as follows: We first generate 500 270

spatially embedded random networks (Barnett et al,

2007) (SERN) which preserve both the node position

and the distribution of the spatial link lengths of the
original network. After that, we compute the network
measures for all SERN surrogates. The boundary-corrected275

network measure is obtained by dividing the original
measure with the average of the SERN surrogates mea-
sure.

3 Results and discussion

3.1 Calculation and network interpretation 280

In this section, we analyze the winter extreme precipi-

tation pattern using the above introduced complex net-

work measures. Our climate network, constructed using

the ED metric (mentioned in 2.2), considers both the
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v

(a) (b) A B
k1=1

k2=3

k3=3

k5=2

k4=1

Fig. 2 Network measures: (a) Degree ki of the network nodes, based on the number of connections of node i with other nodes.
Degree measures how well-connected a node is in the network. (b) Betweenness centrality BCi of network nodes. Node v has
low degree but high betweenness because it acts as a bridge joining two groups of nodes A ans B.

(a) (b)

Fig. 3 (a) Mean daily winter precipitation from 1980 – 2020 (b) Mean winter precipitation anomaly as the fraction of mean
annual precipitation falling in winter (same period) for ERA5 reanalysis data. Anomalies are highly positive along the West
Coast and slightly positive along the southern flank of the Appalachians. Highly negative anomalies exist in the central north.

sequence and the amplitude of events when quantifying285

similarity. High degree values (Eq. 2) represent high
connectivity of extreme precipitation events, i.e., grid

cells having similar variation in extreme precipitation

occurrence and intensity. We find in the correspond-

ing network a relatively low degree in the northwestern290

part of the U.S. (Fig. 4a), suggesting less similarity of

extreme precipitation behaviour with any other regions.

A high degree is observed in the eastern Pacific Ocean

and southwestern part of the U.S. To understand the

connectivity pattern for these regions, we choose really295

small boxes A (low degree) and B (high degree), in the

northwestern part of the U.S. and in the eastern Pacific

Ocean respectively, and determine the number of links

connecting these boxes with other nodes in the net-
work (Figs. 5a,b). We find that connections with the300

region A are confined to a very small region centred

more towards the coast, indicating a quite narrow cor-
ridor of moisture transport as typical for atmospheric
rivers (Dettinger, 2013; Xiong and Ren, 2021; Hu et al,

2017; Gonzales et al, 2019). On the other hand, the305

connectivity of region B spans over a larger area in the
Pacific Ocean and extending up to some parts of the

southwestern coast. Such extended connectivity repre-

sents the impact region of a larger atmospheric pattern,

such as tropical cyclones which are typical in this region310

to bring enhanced rainfall (Woodruff et al, 2013). We

also observe high degree values in the Great Plains and

northeastern parts of the U.S. Here, we choose another

small box C which lies roughly in the Mississippi river

watershed where a relatively high degree is observed 315

(Fig. 5c). The connectivity pattern of this region shows

a similar behaviour in extreme precipitation along the

southwest-northeast direction. It should be noted that

high elevation regions such as the Cascades, some parts

of the Rockies and the Appalachians show relatively 320

lower degree than low elevation region which was also

observed by Agarwal et al. (2021) (accepted) in case of

extreme precipitation networks constructed using edit-

distance. Similar observations are made in the results

obtained using JRA-55 dataset (see Fig. S2a). Next we 325

study the spatial patterns of BC (Fig. 4b), representing
some striking structures revealing the transition zones

between different atmospheric flows (Molkenthin et al,
2014; Tupikina et al, 2016) during winter in the U.S.
Along the northwestern coast of the U.S., we find high 330

betweenness but low degree. This implies that although

these are relatively small regions of similar precipitation

dynamics, they are transition zones of different atmo-

spheric flow directions (Molkenthin et al, 2014), possi-

bly because of spatial confinement and orographic lift 335

due to the presence of topographical features such as
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(a) (b)

Fig. 4 (a) Degree, and (b) betweenness centrality for extreme winter (DJF) precipitation from 1980 to 2020.

mountains. The BC values are seen to continue down-

wards along the entire western coast, lining the land-sea

boundary. The results obtained from ERA5 which is in

contrast to those obtained from JRA-55, where they de-340

crease substantially beyond 30◦N southwards. We ob-

serve high BC values in the central U.S., i.e., from Texas

towards the Midwest area, and in the northeastern re-

gion, which are also regions of high degree. This im-

plies that while the lower elevation regions, east of the345

Rocky mountains (Great Plains) and the Appalachians

(Coastal Plains), are large regions of spatially coherent

extreme precipitation dynamics, big rivers and moun-

tain features cause diversification of atmospheric flow
leading to different and strongly fragmented precipi-350

tation patterns. These observations are mostly similar

with those seen in the network constructed using the

JRA-55 dataset (Fig. S2b) except for the small dispar-

ity in BC values seen along the southwest coast. This

may be due to the relatively high bias in JRA-55 pre-355

cipitation data in the Pacific ocean close to the trop-

ics (Hassler and Lauer, 2021).

3.2 Climatological interpretation

The low connectivity in the northwestern part of the

U.S. (Fig.4a) is caused by the effects of the Cascade360

and Rocky Mountains on precipitation. Precipitation

gets “trapped” west of these ranges, and, thus, uncon-

nected to the rest of the country, lowering the over-

all degree. In the high elevations, extreme precipita-
tion requires different conditions than at the coast, so365

the northwest coast and the mountain ranges are also

not connected. However, as the rainstorms can travel

more freely through the plains on the eastern side of the

mountains, it leads to a higher regional similarity. The

presence of the western Cascades results into an oro-370

graphic lift, effectively transforming the water vapour

to extreme precipitation resulting in high BC values

little inland up the northwest coast (Fig. 4b).

The southwestern part of the U.S. along with adja-

cent regions of the eastern Pacific Ocean exhibit a high 375

connectivity due to a high fraction of winter precipita-

tion despite a low mean winter precipitation (Fig. 3).
This effect can be explained by the finding that this part
of the eastern Pacific is a separate, relatively small and

well-organized precipitation system (Zhang and Wang, 380

2021) as also seen from Fig. 5b. Elevation and slopes

are much lower here than further north, so rainstorms

can penetrate further into the land and cause near-

simultaneous precipitation along the land terrain.

The southwestern coast has high BC values similar 385

to the northwestern coast indicating that they may be
related to transition in opposing atmospheric flow direc-
tion. The western coast of the U.S. experiences heavy
precipitation, and hence extreme streamflows, due to

the ARs which contribute 30% to 45% of total winter 390

precipitation (Dettinger, 2013; Xiong and Ren, 2021;
Hu et al, 2017). ARs are relatively narrow filament-

shaped conduits of moisture in the atmosphere trans-

ported from the lower latitudes to the mid and high

latitudes (Gimeno et al, 2016; Guan and Waliser, 2015; 395

Ralph et al, 2019). The activity of ARs starts dur-

ing autumn and tends to shift southward along the
Pacific coast later during the winter (Gonzales et al,
2019). However, these ARs may be associated to differ-

ent regimes of large-scale Rossby wave breaking (RWB) 400

– anticyclonic wave breaking (AWB) in the northwest

and cyclonic wave breaking (CWB) in the southwest(Hu

et al, 2017)(Fig. 6a,b). High BC values penetrate far-

ther inland (Fig. 4b), in the northwest U.S., close to the

western slope of the Cascades. This may be related to 405

the AWB-ARs which arrive more orthogonally to the

western Cascades due to their westerly impinging an-

gle transforming moisture to precipitation due to oro-

graphic lift. On the other hand, the CWB-ARs have im-

pinging angles which is more southwesterly, and there- 410
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(a) (b) (c)

A

B

C

Fig. 5 Partial degree, i.e., the number links connected to the selected regions in the north-western United States (Box A),
eastern Pacific Ocean (Box B), and in the central United States (Box C).

fore arrive more orthogonally to the east-west oriented

Olympics in the northwest U.S. and the

northwest-southeast oriented Sierra Nevada along the

southwest coast. Consequently, they causing intense pre-

cipitation along the western coast. The transformation415

of water vapour to extreme precipitation through the

orographic lift (Barlow et al, 2019) albeit due to dif-

ferent regimes of RWB explains the high BC along the

western coast. The relatively high degree in the south-

western region may be related to the high density of the420

shorter track ARs close to central and southern Cali-

fornia. The seasonal progression of the mean latitude
position of the AR tracks southwards could also possi-
bly explain the high BC values in this region (Gonzales
et al, 2019).425

The southwest-northeast (SW-NE) inclination in con-

nectivity of the high degree regions in the northeast
U.S. and the Great Plains is in agreement with Najibi

et al (2020) who found high similarity in anomalous ex-

treme precipitation in winter in these regions. The east-430

ern side of the Rockies also have high BC values which

may be attributed to the pressure gradient seen in the

atmosphere (Figs. 6a,b,c) (Molkenthin et al, 2014). The

area roughly coincides with the loosely-defined region

called the Tornado Alley, where tornadoes occur very435

frequently (Concannon et al, 2000; Bluestein, 2006). We

also see a propagation of wind in the southwesterly di-

rection in all atmospheric levels (Figs. 6a,b,c). The IVT

seasonal composite anomalies (Fig. 6d) also show an

anomalously high moisture transport in this direction.440

This flow pattern is modulated by the presence of the

Rocky mountains (Lukens et al, 2018) which suppress

the storm-track activity by deflecting the westerly flow

over land (Chang, 2009). This leads to a SW-NE tilt

in the upper tropospheric jet (Fig. 6a) subsequently445

causing a downstream flow and hence high betweenness

along those nodes.

High BC values along the northeast coast of U.S.

may also be associated with high baroclinic instability

formed due to the large land-sea temperature gradi-450

ent in winter over northeastern U.S.(Brayshaw et al,

2009) which leads to an intensification of extratropical

storms on the leeward side of the Appalachian moun-

tains (Colucci, 1976; Lukens et al, 2018). Extreme pre-

cipitation in this region is mainly related to an anoma- 455

lously high upward lift of air along the coast due to

high vorticity advection, frequent warm conveyor belts
and diabatic heating (Agel et al, 2019). The wind flow
(Figs. 6a,b,c) and high anomalous IVT (Fig. 6d) along

the northeast coast, leads to synchronous extreme pre- 460

cipitation in the region and hence high degree.

4 Conclusions

The climate network approach has been proven to be
a robust and promising framework for studying vari-
ous climate extremes such as extreme monsoon precip- 465

itation (Malik et al, 2011; Boers et al, 2013, 2014b),
the influence of El Niño (Boers et al, 2014a), cyclone
tracks (Gupta et al, 2021) etc. In this work, we stud-
ied the the spatial variability of extreme precipitation

during winter for the United States, which has a very 470

complex topography. For this, we employ the edit dis-

tance metric to measure pairwise similarity between ex-

treme precipitation time series of different locations.

Most of the earlier developed methods (Malik et al,

2011; Stolbova et al, 2014; Boers et al, 2013, 2014a; 475

Wolf et al, 2020) consider only the timing of events

when studying the similarities in event-like data. How-

ever, the edit distance emerges as a powerful alterna-

tive measure because it considers amplitude or strength

of extreme events along with their time of occurrences 480

when calculating the similarity.

Extension of the coherent regions depend on the

orography, climatological season and the atmospheric

circulations. An understanding of the spatial extent of

regions of coherent extreme precipitation is necessary 485

for risk assessment of natural hazards. Through a com-

bination of network measures, viz., degree and between-

ness centrality, we were able to identify the different

regions of the U.S.which exhibit distinctly different ex-

treme precipitation dynamics. While analyzing spatial 490
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(a) (b)

(c) (d)

Fig. 6 (a)-(c) Geopotential height and wind in 250hPa, 500hPa, and 850hPa atmospheric level, (d) vertically integrated water
vapour flux anomaly during winter season (DJF).

patterns of degree differentiated between the northwest

and the southwest coast on the basis of associated large-

scale atmospheric circulation, the high betweenness along

the entire western coast brought to light the role of ARs

and that of topographic barriers in causing extreme pre-495

cipitation. The network measures also roughly identify

the “Tornado Alley”(Concannon et al, 2000; Bluestein,

2006) region in the Great Plains where tornadoes are

more frequent. The high degree pattern captured the

southwest-northeast (SW-NE) inclination (Najibi et al,500

2020; Lukens et al, 2018) of extreme precipitation due

to modulation of storms by the Rocky mountains. Sim-

ilarly, a modulation of extreme precipitation due to

other high ranges, such as the western Cascades and

the Appalachians in the east of the country, were also505

reflected in the network connectivity.

Our complex network based approach provides a

comprehensive overview of the distinct regions which

experience spatially coherent extreme winter precipita-

tion in the United States albeit due to various climate510

processes. The similarity measure used in this study, the

edit distance, comes out as a very promising alternative

to study extreme precipitation patterns in regions ex-

hibiting very intricate climate variability such as the

US. Future work may include further refinement of the515

method by incorporating more sophisticated statistical

significance tests. The method can also be applied to

study the effects of increasing intensity of extreme pre-

cipitation for different large-scale monsoon systems and

to possibly identify teleconnections. 520
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RJ, Hólm E, Janisková M, Keeley S, Laloyaux P,

Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum

I, Vamborg F, Villaume S, Thépaut JN (2020) The

era5 global reanalysis. Quarterly Journal of the810

Royal Meteorological Society 146(730):1999–2049,

DOI https://doi.org/10.1002/qj.3803, URL https:

//rmets.onlinelibrary.wiley.com/doi/abs/10.

1002/qj.3803, https://rmets.onlinelibrary.

wiley.com/doi/pdf/10.1002/qj.3803815

Hassler B, Lauer A (2021) Comparison of reanaly-

sis and observational precipitation datasets includ-

ing era5 and wfde5. Atmosphere 12(11), DOI

10.3390/atmos12111462, URL https://www.mdpi.

com/2073-4433/12/11/1462820

Japan Meteorological Agency, Japan (2013) Jra-55:
Japanese 55-year reanalysis, daily 3-hourly and

6-hourly data. URL https://doi.org/10.5065/

D6HH6H41

Sivakumar B, Woldemeskel FM (2014) Complex net-825

works for streamflow dynamics. Hydrology and

Earth System Sciences 18(11):4565–4578, DOI

10.5194/hess-18-4565-2014, URL https://hess.

copernicus.org/articles/18/4565/2014/

Wiedermann M, Donges JF, Kurths J, Donner RV830

(2017) Mapping and discrimination of networks

in the complexity-entropy plane. Phys Rev E

96:042,304, DOI 10.1103/PhysRevE.96.042304, URL

https://link.aps.org/doi/10.1103/PhysRevE.

96.042304835

Donges JF, Zou Y, Marwan N, Kurths J (2009) Com-

plex networks in climate dynamics. The European

Physical Journal Special Topics 174(1):157–179

Tsonis AA, Swanson KL, Wang G (2008) On

the role of atmospheric teleconnections in840

climate. Journal of Climate 21(12):2990 –

3001, DOI 10.1175/2007JCLI1907.1, URL

https://journals.ametsoc.org/view/journals/

clim/21/12/2007jcli1907.1.xml

Radebach A, Donner RV, Runge J, Donges JF, Kurths845

J (2013) Disentangling different types of el niño

episodes by evolving climate network analysis. Phys-

ical Review E 88(5):052,807
Agarwal A, Caesar L, Marwan N, Maheswaran R,

Merz B, Kurths J (2019) Network-based identifica- 850

tion and characterization of teleconnections on dif-

ferent scales. Scientific Reports 9
Newman MEJ (2010) Networks: An Introduction. Ox-

ford University Press, DOI 10.1093/ACPROF:OSO/

9780199206650.001.0001, URL https://doi.org/ 855

10.1093/ACPROF:OSO/9780199206650.001.0001

Freeman LC (1978) Centrality in social networks con-

ceptual clarification. Social Networks 1(3):215–239,

DOI https://doi.org/10.1016/0378-8733(78)90021-7,

URL https://www.sciencedirect.com/science/ 860

article/pii/0378873378900217

Golbeck J (2015) Chapter 21 - analyzing networks. In:

Golbeck J (ed) Introduction to Social Media Inves-

tigation, Syngress, Boston, pp 221–235, DOI https:

//doi.org/10.1016/B978-0-12-801656-5.00021-4, 865

URL https://www.sciencedirect.com/science/

article/pii/B9780128016565000214

Molkenthin N, Rehfeld K, Marwan N, Kurths J (2014)

Networks from flows - from dynamics to topology.

Scientific Reports 4(4119), DOI 10.1038/srep04119, 870

URL http://www.nature.com/srep/2014/140218/

srep04119/full/srep04119.html

Tupikina L, Molkenthin N, López C, Hernández-
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