ABNT (Associação Brasileira de Normas Técnicas) (2017) Ecotoxicologia aquática- Toxicidade crônica-método de ensaio com Ceriodaphnia spp (Crustacea, Cladocera). ABNT NBR13373, Rio de Janeiro
ABNT (Associação Brasileira de Normas Técnicas). (2011) Toxicidade crônica. Método de ensaio com algas (Chlorophyceae). ABNT NBR12648, Rio de Janeiro.
Afkar E, Ababna H, Fathi AA (2010) Toxicological response of the green alga Chlorella vulgaris, to some heavy metals. Am J Environ Sci 6:230-237. https://doi.org/10.3844/ajessp.2010.230.237
Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. https://doi.org/10.1155/2019/6730305
American Public Health Association; American Water Work Association; Water Control Federation (APHA/AWWA/WCPF) (1995) Standard methods for examination of water and wastewater (20th ed.). American Public Health Association, Washington, DC
Arzate-Cárdenas MA, Martínez-Jerónimo F (2012) Energy resource reallocation in Daphnia schodleri (Anomopoda: Daphniidae) reproduction induced by exposure to hexavalent chromium. Chemosphere 87:326-32. https://doi.org/10.1016/j.chemosphere.2011.12.014
Arzate-Cárdenas MA, Martínez-Jerónimo F (2011) Age-altered susceptibility in hexavalent chromium-exposed Daphnia schodleri (Anomopoda: Daphniidae): integrated biomarker response implementation. Aquat Toxicol 105:528-34. https://doi.org/10.1016/j.aquatox.2011.08.006
Bakshi A, Panigrahi AK (2018) A comprehensive review on chromium induced alterations in 42 freshwater fishes. Toxicol Rep 5:440-447. https://doi.org/10.1016/j.toxrep.2018.03.007
Barata C, Markich SJ, Baird DJ, Soares AMVM (2002) The relative importance of water and food as cadmium sources to Daphnia magna Straus. Aquat Toxicol 61:143-154. https://doi.org/10.1016/S0166-445X(02)00052-8
Baudin JP, Fritsch AF (1989) Relative contributions of food and water in the accumulation of 60Co by freshwater fish. Water Res 23:817-823. doi:10.1016/0043-1354(89)90004-3
Becker C, Boersma M (2005) Differential effects of phosphorus and fatty acids on Daphnia magna growth and reproduction. Limnol Oceanogr 50:388–397. https://doi.org/10.4319/lo.2005.50.1.0388
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Bradley MC, Baird DJ, Calow P (1991) Mechanisms of energy allocation to reproduction in the cladoceran Daphnia magna Straus Biol J Linn Soc 44:325–333. https://doi.org/10.1111/j.1095-8312.1991.tb00623.x
Bricelj VM, Bass AE, Lopez GR (1984) Absorption and gut passage time of microalgae in a suspension feeder: an evaluation of the 51Cr: 14C twin tracer technique. Mar Ecol Prog Ser 17:57-63. DOI:10.3354/meps017057
Brown MR, Miller KA (1992) The ascorbic acid content of eleven species of microalgae used in marine culture. J Appl Phycol 4:205-215. https://doi.org/10.1007/BF02161206
Casali-Pereira MP, Daam MA, Resende JC, Vasconcelos AM, Espíndola ELG, Botta CMR (2015) Toxicity of Vertimec 18 EC (active ingredient abamectin) to the neotropical cladoceran Ceriodaphnia silvestrii. Chemosphere 139:558–564. http://dx.doi.org/10.1016/j.chemosphere.2015.08.006
Chia MA, Lombardi AT, Melão MGG, Parrish CC (2017) Phosphorus levels determine changes in growth and biochemical composition of Chlorella vulgaris during cadmium stress. J Appl Phycol 29:1883–1891. https://doi-org.ez87.periodicos.capes.gov.br/10.1007/s10811-017-1111-9
Chia MA, Lombardi AT, Melão MGG, Parrish CC (2013) Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations. Aquat Toxicol 128–129:171-182. https://doi.org/10.1016/j.aquatox.2012.12.004
Choi J-Y et al (2014) Population growth of the cladoceran, Daphnia magna: a quantitative analysis of the effects of different algal food. PLoS one 9(4):e95591. https://doi.org/10.1371/journal.pone.0095591
Coetzee JJ, Bansal N, Chirwa EMN (2020) Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Expo Health 12:51–
- https://doi.org/10.1007/s12403-018-0284-z
CONAMA Resolução nº 357, de 17 de março de 2005 (2005) “Resolução do CONAMA para a classificação dos corpos de água para o seu enquadramento, bem como estabelecimento das condições e padrões de lançamento de efluentes,” seção I, pp. 58–63. Brasília
Czerpak R, PIotrowska A, Szulecka K (2006) Jasmonic acid affects changes in the growth and some components content in Chlorella vulgaris. Acta Physiol Plant 28:195-203. doi:10.1007/BF02706531
Daam MA, Rico A (2016) Freshwater shrimps as sensitive test species for the risk assessment of pesticides in the tropics. Environ Sci Pollut Res 25:13235-13243. https://doi.org/10.1007/s11356-016-7451-1
Damasceno de Oliveira LL, Nunes B, Antunes SC, Campitelli-Ramos R, Rocha O (2018) Acute and chronic effects of three pharmaceutical drugs on the tropical freshwater cladoceran Ceriodaphnia silvestrii. Water Air Soil Pollut 229:116. https://doi.org/10.1007/s11270-018-3765-6
De Azevedo FA, Chasin AAM (2003) Metais. Gerenciamento da Toxicidade. Atheneu InterTox, Rio de Janeiro
De Schamphelaere KAC, Canli M, Lierde VV, Forrez I, Vanhaecke F, Janssen CR (2004) Reproductive toxicity of dietary zinc to Daphnia magna. Aquat Toxicol 70:233–244. https://doi.org/10.1016/j.aquatox.2004.09.008
Elahi A, Arooj I, Bukhari DA, Rehman A (2020) Successive use of microorganisms to remove chromium from wastewater. Appl Microbiol Biotechnol 104:3729-3743. https://doi.org/10.1007/s00253-020-10533-y
Evens R, De Schamphelaere K, De Laender F, Janssen C (2012) The effects of Zn-contaminated diets on Daphnia magna reproduction may be related to Zn-induced changes of the dietary P content rather than to the dietary Zn content itself, Aquat Toxicol 110–111: 9-16. https://doi.org/10.1016/j.aquatox.2011.11.018
Expósito N, Carafa R, Kumar V, Sierra J, Schuhmacher M, Papiol G (2021) Performance of Chlorella vulgaris exposed to heavy metal mixtures: linking measured endpoints and mechanisms. Int J Environ Res Public Health 18:1037. https://doi.org/10.3390/ijerph18031037
Ferain A, De Saeyer N, Larondelle Y, Rees JF, Debier C, De Schamphelaere KAC (2018) Body lipid composition modulates acute cadmium toxicity in Daphnia magna adults and juveniles. Chemosphere 205:328-338. https://doi.org/10.1016/j.chemosphere.2018.04.091
Freitas EC, Rocha O (2014) Acute and chronic toxicity of chromium and cadmium to the tropical cladoceran Pseudosida ramosa and the implications for ecotoxicological studies. Environ Toxicol 29:176–186. https://doi.org/10.1002/tox.20784
Gauld DT (1951) The grazing rate of planktonic copepods. J Mar Biol Assoc UK 29:695–706. https://doi.org/10.1017/S0025315400052875
Geffard O, Geffard A, Chaumot A, Vollat B, Alvarez C, Tusseau-Vuillemin MH, Garric J (2008) Effects of chronic dietary and waterborne cadmium exposures on the contamination level and reproduction of Daphnia magna. Environ Toxicol Chem 27:1128-34. https://doi.org/10.1897/07-431.1
Gorbi G, Corradi MG, Invidia M, Rivara L, Bassi M (2002) Is Cr(VI) toxicity to Daphnia magna modified by food availability or algal exudates? The hypothesis of a specific chromium/algae/exudates interaction. Water Res 36:1917-1926. https://doi.org/10.1016/S0043-1354(01)00403-1
Gorbi G Corradi MG, Torelli A, Bassi M (1996). Comparison between a normal and a Cr-tolerant strain of Scenedesmus acutus as a food source to Daphnia magna. Ecotoxicol Environ Saf 35:109-11. https://doi.org/10.1006/eesa.1996.0089
Gorbi G, Corradi MG (1993) Chromium toxicity on two linked trophic levels. I. Effects of contaminated algae on Daphnia magna. Ecotoxicol Environ Saf 25:64-71. https://doi.org/10.1006/eesa.1993.1007
Goulden CE, Place, AR (1993) Lipid accumulation and allocation in Daphniid Cladocera. Bull Mar Sci 53:106-114
Gunnarsson JS, Castillo LE (2018) Ecotoxicology in tropical regions. Environ Sci Pollut Res 25:13203–13206. https://doi.org/10.1007/s11356-018-1887-4
Guschina IA, Harwood JL (2006) Lead and copper effects on lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry 67:1731-1739. https://doi.org/10.1016/j.phytochem.2006.01.023
Gusso-Choueri PK, Choueri RB, Lombardi AT, Melão MGG (2012) Effects of dietary copper on life-history traits of a tropical freshwater cladoceran. Arch Environ Contam Toxicol 62:589–598. https://doi-org.ez87.periodicos.capes.gov.br/10.1007/s00244-011-9725-4
Gutierrez MF, Gagneten AM, Paggi JC (2012) Exposure to sublethal chromium and endosulfan alter the diel vertical migration (DVM) in freshwater zooplankton crustaceans. Ecotoxicology 21:37–47. https://doi.org/10.1007/s10646-011-0761-7
Gutierrez MF, Gagneten AM, Paggi JC (2010) Copper and chromium alter life cycle variables and the equiproportional development of the freshwater copepod Notodiaptomus conifer (SARS). Water Air Soil Pollut 213:275–286. https://doi.org/10.1007/s11270-010-0383-3
Hammer O, Harper D, Ryan P (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1-9.
Hörcsik ZT et al (2006) Effect of Chromium(VI) on growth, element and photosynthetic pigment composition of Chlorella pyrenoidosa. Acta Biol Szeged 50:19-23.
Ismaiel MMS, Said AA (2018) Tolerance of Pseudochlorella pringsheimii to Cd and Pb stress: role of antioxidants and biochemical contents in metal detoxification. Ecotoxicol Environ Saf 30:704-712. https://doi.org/10.1016/j.ecoenv.2018.08.088
Ismail H, Mills S, Recknagel F (2019) Feeding evaluation of microcrustacea (Cladocera): responses to variations in cell volume of green and blue-green algae. Appl Ecol Environ Sci 17:7715-7725. http://dx.doi.org/10.15666/aeer/1704_77157725
Jouany JM, Vasseur P, Ferard JF (1982) Ecotoxicité directe et intégrée du chrome hexavalent sur deux niveaux trophiques associés: Chlorella vulgaris et Daphnia magna. Environ Pollut 27:207-221. https://doi.org/10.1016/0143-1471(82)90026-5
Kilham SS, Kreeger DA, Goulden CE, Lynn SG (1997) Effects of algal food quality on fecundity and population growth rates of Daphnia. Freshwater Biol 38:639–647. https://doi.org/10.1046/j.1365-2427.1997.00232.x
Koch U, von Elert E, Straile D (2009) Food quality triggers the reproductive mode in the cyclical parthenogen Daphnia (Cladocera). Oecologia 159:317-24. https://doi.org/10.1007/s00442-008-1216-6
Kunz PY, Kienle C, Gerhardt A (2010) Gammarus spp. in aquatic ecotoxicology and water quality assessment: toward integrated multilevel tests. Rev Environ Contam Toxicol 205:1-76. doi: 10.1007/978-1-4419-5623-1_1
Lasheen MR, Shehata SA, Ali GH (1990) Effect of cadmium, copper and chromium (VI) on the growth of Nile water algae. Water Air Soil Pollut 50:19-30. https://doi.org/ 10.1007/bf00284780
Latib NL, Yusoff FMd, Nagao N, Nizar H (2020) Growth of tropical cladocerans Ceriodaphnia cornuta G.O. Sars, 1885 and Moina micrura Kurz, 1875 fed with different diets. J Environ Biol 41:1224-1229. http://doi.org/10.22438/jeb/41/5(SI)/MS_14
Liu D, Wong PTS, Dutra BJ (1973) Determination of carbohydrate in Lake sediment by a modified phenol-sulfuric acid method. Water Res 7:741-746. https://doi.org/10.1016/0043-1354(73)90090-0
Mansano AS et al (2018) Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques. Environ Pollut 243:723e733 https://doi.org/10.1016/j.envpol.2018.09.020
Miller PA, Lanno RP, McMaster ME, Dixon DG (1993) Relative contributions of dietary and waterborne copper to tissue copper burdens and waterborne-copper tolerance in rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 50:1683-1689. https://doi.org/10.1139/f93-189
Moreira RA, Mansano AS, Silva LC, Rocha O (2014) A comparative study of the acute toxicity of the herbicide atrazine to cladocerans Daphnia magna, Ceriodaphnia silvestrii and Macrothrix flabelligera. Acta Limnol Bras 26:1-8. http://dx.doi.org/10.1590/S2179-975X2014000100002
Nacorda JOO, Martinez-Goss MR, Torreta NK, Merca FE (2007) Metal resistance and removal by two strains of the green alga, Chlorella vulgaris Beijerinck, isolated from Laguna de Bay, Philippines. J Appl Phycol 19:701-710. doi:10.1007/s10811-007-9216-1
Nainggolan E, Aryandari R, Fadholi H, Nugroho A, Suyono E (2015) Effects of chromium on chlorophyll-a, carbohydrate and protein contents in Tetraselmis sp. (Butcher 1959). KnE life sci. 2:556. doi:10.18502/kls.v2i1.216
Nandini SS, Sarma SSS (2003) Population growth of some genera of cladocerans (Cladocera) in relation to algal food (Chlorella vulgaris) levels: Hydrobiologia 491:211-219. https://doi.org/10.1023/A:1024410314313
Ni IH, Wang WX, Tarn YK (2000) Transfer of Cd, Cr and Zn from zooplankton prey to mudskipper Periophthalmus cantonensis and glassy Ambassis urotaenia fishes. Mar Ecol Prog Ser 194:203-210. https://www.jstor.org/stable/24855664
Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigments determination. Archiv für Hydrobiologie, 14:14-36
Oliveira-Neto AL (2000) Toxicidade de alguns metais pesados (Cd, Cr, Pb) em organismos planctônicos lacustres de região subtropical. Ph.D. thesis. Universidade de São Paulo, São Carlos, Brazil
Parrish CC (1999) Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Arts MT, Wainman BC (eds). Lipids in freshwater ecosystems. Springer- Verlag, New York, pp. 4-20
Pérez-Legaspi IA, Garatachia-Vargas M, Garcia-Villar AM, Rubio-Franchini I (2017) Sensitivity of the tropical cladoceran Ceriodaphnia cornuta to heavy metals. Rev Int Contam Ambient 33:49-56. https://doi.org/10.20937/rica.2017.33.01.04
Pinto E et al (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39: 1008-1018. doi:10.1111/j.0022-3646.2003.02-193.x
Pradhan D, Sukla LB, Sawyer M, Rahman PKSM (2017) Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem 55:1-20. https://doi.org/10.1016/j.jiec.2017.06.040
Rai UN, Singh NK, Upadhyay AK, Verma S (2013) Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresour Technol 136:604-9. https://doi.org/10.1016/j.biortech.2013.03.043
Rand GM (1995) Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment. Taylor Francis, Washington
Raymundo LB, Rocha O, Moreira RA, Miguel M, Daam MA (2019) Sensitivity of tropical cladocerans to chlorpyrifos and other insecticides as compared to their temperate counterparts. Chemosphere 220:937e942. https://doi.org/10.1016/j.chemosphere.2019.01.005
Regaldo L, Reno U, Gervasio S, Troiani H, Gagneten AM (2014) Effect of metals on Daphnia magna and cladocerans representatives of the Argentinean fluvial littoral. J. Environ Biol:689-697
Reis LL, Alho LOG, Abreu CB, Melão MGG (2021) Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata. Ecotoxicol Environ Saf 208:111628. https://doi.org/10.1016/j.ecoenv.2020.111628
Rocha GS, Lombardi AT, Melão MGG (2016b) Effect of copper contaminated food on the life cycle and secondary production of Daphnia laevis. Ecotoxicol Environ Saf 133:235–242. https://doi.org/10.1016/j.ecoenv.2016.07.011
Rodgher S, De Paulo FC, Costa MG, Contador TM, Rocha GS, Espíndola ELG (2020) Effects of phosphorus and zinc on the neotropical cladoceran Ceriodaphnia silvestrii by dietary routes. Water Air Soil Pollut 231:9. https://doi-org.ez87.periodicos.capes.gov.br/10.1007/s11270-019-4370-z
Rodgher S, Lombardi AT, Melão MGG (2009) Evaluation onto life cycle parameters of Ceriodaphnia silvestrii submitted to 36 days dietary copper exposure. Ecotoxicol Environ Saf 72:1748-53. https://doi.org/10.1016/j.ecoenv.2009.03.009
Rodgher S, Espíndola ELG (2008a). Effects of interactions between algal densities and cadmium concentrations on Ceriodaphnia dubia fecundity and survival. Ecotoxicol Environ Saf 71:765-773. https://doi.org/10.1016/j.ecoenv.2007.08.012
Rodgher S, Espíndola EL (2008b). The influence of algal densities on the toxicity of chromium for Ceriodaphnia dubia Richard (Cladocera, Crustacea). Braz J Biol 68:341-8. https://doi.org/10.1590/S1519-69842008000200015
Rodríguez, MC, Barsanti L, Passarelli V, Evangelista V, Conforti V, Gualtieri P (2007) Effects of chromium on photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii. Environ Res 105:234-239. https://doi.org/10.1016/j.envres.2007.01.011
Sadeq SA, Beckerman AP (2019) The chronic effects of copper and cadmium on life history traits across cladocera species: a meta-analysis. Arch Environ Contam Toxicol 76:1-16. doi: 10.1007/s00244-018-0555-5
Sarma SS, Nandini S (2006) Review of recent ecotoxicological studies on cladocerans. J Environ Sci Health B. 41:1417-30. doi: 10.1080/03601230600964316
Silva JC, Echeveste P, Lombardi AT (2018) Higher biomolecules yield in phytoplankton under copper exposure. Ecotoxicol Environ Saf 161:57-63. https://doi.org/10.1016/j.ecoenv.2018.05.059
Silva LCM et al (2020) Acute and chronic toxicity of 2,4-D and fipronil formulations (individually and in mixture) to the Neotropical cladoceran Ceriodaphnia silvestrii. Ecotoxicology 29:1462–1475. https://doi.org/10.1007/s10646-020-02275-4
Sodré EdO, Bozelli RL (2019) How planktonic microcrustaceans respond to environment and affect ecosystem: a functional trait perspective. Int Aquat Res 11:207–223. https://doi.org/10.1007/s40071-019-0233-x
Sofyan A, Shaw, JR., Birge, WJ (2006) Metal transfer from algae to cladocerans and the relative importance of dietary metal exposure. Environ Toxicol Chem 25:1034-1041. https://doi.org/10.1016/j.scitotenv.2006.07.003
Souza JP, Melo DC, Lombardi AT, Melão MGG (2014) Effects of dietborne cadmium on life history and secondary production of a tropical freshwater cladoceran. Ecotoxicology 23:1764–1773.
https://doi.org/10.1007/s10646-014-1341-4
Taipale SJ, Aalto SL, Galloway AWE, Kuoppamäki K, Nzobeuh P, Peltomaa E (2019). Eutrophication and browning influence Daphnia nutritional ecology. Inland Waters 9:374-394. https://doi.org/10.1080/20442041.2019.1574177
Tan Q-G, Wang W-X (2011) Contrasting patterns of cadmium bioaccumulation in freshwater cladocerans. Limnol Oceanogr 56:257–267. doi: 10.4319/lo.2011.56.1.0257
Tessier AJ, Goulden CE (1982) Estimating food limitation in cladoceran populations. Limnol. Oceanogr 27:707-717. http://doi.wiley.com/10.4319/lo.1982.27.4.0707
Thompson PA, Couture P (1993) Physiology of carbon assimilation in a green alga during exposure to and recovery from cadmium. Ecotoxicol Environ Saf 26:205-15. https://doi.org/10.1006/eesa.1993.1050
USEPA (U.S. Environmental Protection Agency) (2002) Method 1002.0: Daphnid, Ceriodaphnia dubia, survival and reproduction test; chronic toxicity. 4th edition
USGS (U.S. Geological Survey) (2021). Mineral commodity summaries 2021 U.S. Geological Survey, 200 p. https://doi.org/10.3133/mcs2021
Wang WX (2013) Dietary toxicity of metals in aquatic animals: recent studies and perspectives. Chin. Sci. Bull 58: 203–213. https://doi.org/10.1007/s11434-012-5413-7
Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13-20. https://doi.org/10.1016/j.jtice.2008.07.007
Wilding J, Maltby L (2006) Relative toxicological importance of aqueous and dietary metal exposure to a freshwater crustacean: implications for risk assessment. Environ Toxicol Chem 25:1795-801. doi: 10.1897/05-316r1.1.
World Health Organization (WHO) (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization. CC BY-NC-SA 3.0 IGO
Zaynab M, Al-Yahyai R, Ameen A, Sharif Y, Ali L, Fatima M, Khan K A, Li S (2022) Health and environmental effects of heavy metals. J. King Saud Univ Sci 34:101653. https://doi.org/10.1016/j.jksus.2021.101653
Zhou J, Du N, Li D, Qin J, Li H, Chen G (2021). Combined effects of perchlorate and hexavalent chromium on the survival, growth and reproduction of Daphnia carinata. Sci Total Environ 769:144676. https://doi.org/10.1016/j.scitotenv.2020.144676.