[1] N. Jeliazkova et al., “How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity,” NanoImpact, vol. 25, p. 100366, Jan. 2022, doi: 10.1016/J.IMPACT.2021.100366.
[2] L. Traas and R. Vanhauten, “GRACIOUS framework blueprint,” Oct. 2021, doi: 10.5281/ZENODO.5497615.
[3] M. Germain et al., “Delivering the power of nanomedicine to patients today,” J. Control. Release, vol. 326, pp. 164–171, Oct. 2020, doi: 10.1016/J.JCONREL.2020.07.007.
[4] R. M. Crist et al., “Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory,” Integr. Biol., vol. 5, no. 1, pp. 66–73, Jan. 2013, doi: 10.1039/C2IB20117H.
[5] F. Caputo, J. Clogston, L. Calzolai, M. Rösslein, and A. Prina-Mello, “Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity,” J. Control. Release, vol. 299, pp. 31–43, Apr. 2019, doi: 10.1016/J.JCONREL.2019.02.030.
[6] B. Halamoda-Kenzaoui et al., “Methodological needs in the quality and safety characterisation of nanotechnology-based health products: Priorities for method development and standardisation,” J. Control. Release, vol. 336, pp. 192–206, Aug. 2021, doi: 10.1016/J.JCONREL.2021.06.016.
[7] J. P. Shim, M. Warkentin, J. F. Courtney, D. J. Power, R. Sharda, and C. Carlsson, “Past, present, and future of decision support technology,” Decision Support Systems. 2002, doi: 10.1016/S0167-9236(01)00139-7.
[8] V. Cazzagon et al., “Occupational risk of nano-biomaterials: Assessment of nano-enabled magnetite contrast agent using the BIORIMA Decision Support System,” NanoImpact, vol. 25, p. 100373, Jan. 2022, doi: 10.1016/J.IMPACT.2021.100373.
[9] V. Subramanian et al., “Sustainable nanotechnology decision support system: bridging risk management, sustainable innovation and risk governance,” J. Nanoparticle Res., vol. 18, no. 4, Apr. 2016, doi: 10.1007/s11051-016-3375-4.
[10] L. Pizzol et al., “SUNDS probabilistic human health risk assessment methodology and its application to organic pigment used in the automotive industry,” NanoImpact, vol. 13, pp. 26–36, Jan. 2019, doi: 10.1016/j.impact.2018.12.001.
[11] D. Hristozov et al., “Quantitative human health risk assessment along the lifecycle of nano-scale copper-based wood preservatives,” Nanotoxicology, vol. 12, no. 7, pp. 747–765, Aug. 2018, doi: 10.1080/17435390.2018.1472314.
[12] C. F. Rousseau et al., “A regulatory landscape shift for in silico clinical trials,” Regulatory Rapporteur, vol. 16, no. 11, pp. 18–21, 2019.
[13] J. Horsky, G. D. Schiff, D. Johnston, L. Mercincavage, D. Bell, and B. Middleton, “Interface design principles for usable decision support: A targeted review of best practices for clinical prescribing interventions,” J. Biomed. Inform., vol. 45, no. 6, pp. 1202–1216, Dec. 2012, doi: 10.1016/J.JBI.2012.09.002.
[14] Williams M, Wu F, Kazanzides P, and B. K. Fackler, “A Modular Framework for Clinical Decision Support Systems: Medical Device Plug-and-Play is Critical.”
[15] A. Mendyk and R. Jachowicz, “Decision Support Systems for Pharmaceutical Formulation Development Based on Artificial Neural Networks,” Decis. Support Syst., Jan. 2010, doi: 10.5772/39468.
[16] C. A. Naranjo et al., “A method for estimating the probability of adverse drug reactions,” Clin. Pharmacol. Ther., vol. 30, no. 2, pp. 239–245, 1981, doi: 10.1038/CLPT.1981.154.
[17] R. T. Cullen et al., “Toxicity of volcanic ash from Montserrat,” Edinburgh, 2002.
[18] L. Kuepfer, J. Lippert, and T. Eissing, “Multiscale mechanistic modeling in pharmaceutical research and development,” Adv. Exp. Med. Biol., vol. 736, pp. 543–561, 2012, doi: 10.1007/978-1-4419-7210-1_32.
[19] K. Huysentruyt et al., “Validating Intelligent Automation Systems in Pharmacovigilance: Insights from Good Manufacturing Practices,” Drug Saf., vol. 44, no. 3, pp. 261–272, Mar. 2021, doi: 10.1007/S40264-020-01030-2/TABLES/3.
[20] A. S. Rathore, O. F. Garcia-Aponte, A. Golabgir, B. M. Vallejo-Diaz, and C. Herwig, “Role of Knowledge Management in Development and Lifecycle Management of Biopharmaceuticals,” Pharm. Res., vol. 34, no. 2, p. 243, Feb. 2017, doi: 10.1007/S11095-016-2043-9.
[21] C. Giannakou et al., “Nonclinical regulatory immunotoxicity testing of nanomedicinal products: Proposed strategy and possible pitfalls,” WIREs Nanomedicine and Nanobiotechnology, vol. 12, no. 5, Sep. 2020, doi: 10.1002/wnan.1633.
[22] T. Krasia-Christoforou, V. Socoliuc, K. D. Knudsen, E. Tombácz, R. Turcu, and L. Vékás, “From single-core nanoparticles in ferrofluids to multi-core magnetic nanocomposites: Assembly strategies, structure, and magnetic behavior,” Nanomaterials, vol. 10, no. 11, pp. 1–67, Nov. 2020, doi: 10.3390/NANO10112178.
[23] Y. Barenholz, “Doxil® — The first FDA-approved nano-drug: Lessons learned,” J. Control. Release, vol. 160, no. 2, pp. 117–134, Jun. 2012, doi: 10.1016/J.JCONREL.2012.03.020.
[24] “Iron Deficiency Anemia Treatment | FERAHEME® HCP,” 2022. https://www.feraheme.com/ (accessed Jan. 03, 2022).
[25] V. S. Balakrishnan et al., “Physicochemical properties of ferumoxytol, a new intravenous iron preparation,” Eur. J. Clin. Invest., vol. 39, no. 6, pp. 489–496, Jun. 2009, doi: 10.1111/J.1365-2362.2009.02130.X.
[26] J. P. Bullivant, S. Zhao, B. J. Willenberg, B. Kozissnik, C. D. Batich, and J. Dobson, “Materials Characterization of Feraheme/Ferumoxytol and Preliminary Evaluation of Its Potential for Magnetic Fluid Hyperthermia,” Int. J. Mol. Sci. 2013, Vol. 14, Pages 17501-17510, vol. 14, no. 9, pp. 17501–17510, Aug. 2013, doi: 10.3390/IJMS140917501.