1. Griffin, J. H., Fernandez, J. A., Gale, A. J. & Mosnier, L. O. Activated protein C. Journal of thrombosis and haemostasis : JTH 5 Suppl 1, 73–80; 10.1111/j.1538-7836.2007.02491.x (2007).
2. Gruber, A. & Griffin, J. H. Direct detection of activated protein C in blood from human subjects. Blood 79, 2340–2348 (1992).
3. Okajima, K. et al. Effect of protein C and activated protein C on coagulation and fibrinolysis in normal human subjects. Thrombosis and haemostasis 63, 48–53 (1990).
4. Griffin, J. H., Zlokovic, B. V. & Mosnier, L. O. Protein C anticoagulant and cytoprotective pathways. International journal of hematology 95, 333–345; 10.1007/s12185-012-1059-0 (2012).
5. Berg JM, Tymoczko JL, Stryer L. Biochemistry. Section 4.1, The Purification of Proteins Is an Essential First Step in Understanding Their Function. 5th ed. (W. H. Freeman and Company, New York, 2002).
6. Tan, S. C. & Yiap, B. C. DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol 2009, 574398; 10.1155/2009/574398 (2009).
7. Angela Boxi, Isha Parikh, Radhika B S, Shryli K S. Current trends in protein purification : A Review. International Journal of Scientific Research in Science and Technology 10, 279–310.
8. Scopes, R. K. Overview of Protein Purification and Characterization. Current Protocols in Protein Science 00, 1.1.1-1.1.6; 10.1002/0471140864.ps0101s00 (1995).
9. Labrou, N. E. Protein purification: an overview. Methods in molecular biology (Clifton, N.J.) 1129, 3–10; 10.1007/978-1-62703-977-2_1 (2014).
10. Kisiel, W. & Davie, E. W. [26] Protein C. In Methods in Enzymology : Proteolytic Enzymes, Part C (Academic Press1981), Vol. 80, pp. 320–332.
11. Esmon, C. T., Esmon, N. L., Le Bonniec, B. F. & Johnson, A. E. [21] Protein C activation. In Methods in Enzymology : Proteolytic Enzymes in Coagulation, Fibrinolysis, and Complement Activation Part A: Mammalian Blood Coagulation Factors and Inhibitors (Academic Press1993), Vol. 222, pp. 359–385.
12. Dong, W. et al. Activated Protein C Ameliorates Renal Ischemia-Reperfusion Injury by Restricting Y-Box Binding Protein-1 Ubiquitination. Journal of the American Society of Nephrology : JASN 26, 2789–2799; 10.1681/ASN.2014080846 (2015).
13. Ranjan, S. et al. Activated protein C protects from GvHD via PAR2/PAR3 signalling in regulatory T-cells. Nature communications 8, 311; 10.1038/s41467-017-00169-4 (2017).
14. Isermann, B. et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nature medicine 13, 1349–1358; 10.1038/nm1667 (2007).
15. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York, N.Y.) 249, 505–510; 10.1126/science.2200121 (1990).
16. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822; 10.1038/346818a0 (1990).
17. Hamedani, N. S. et al. Functional and Structural Characterization of Nucleic Acid Ligands That Bind to Activated Coagulation Factor XIII. Journal of clinical medicine 10; 10.3390/jcm10040677 (2021).
18. Hamedani, N. S. et al. Selective Modulation of the Protease Activated Protein C Using Exosite Inhibiting Aptamers. Nucleic acid therapeutics 30, 276–288; 10.1089/nat.2020.0844 (2020).
19. Forier, C. et al. DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources. Journal of chromatography. A 1489, 39–50; 10.1016/j.chroma.2017.01.031 (2017).
20. Johamnna-Gabriela Walter, Frank Stahl, Thomas Acheper. Aptmaer as affinity ligands for downstream processing. Eng. Life Sci. 12, 496–506 (2012).
21. Liu, H. et al. An oligosorbent-based aptamer affinity column for selective extraction of aflatoxin B(2) prior to HPLC with fluorometric detection. Mikrochimica acta 185, 71; 10.1007/s00604-017-2591-7 (2017).
22. Chapuis-Hugon, F., Du Boisbaudry, A., Madru, B. & Pichon, V. New extraction sorbent based on aptamers for the determination of ochratoxin A in red wine. Analytical and bioanalytical chemistry 400, 1199–1207; 10.1007/s00216-010-4574-y (2011).
23. Safarik, I. & Safarikova, M. Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol 2, 7; 10.1186/1477-044X-2-7 (2004).
24. Lönne, M. et al. Development of an aptamer-based affinity purification method for vascular endothelial growth factor. Biotechnology reports (Amsterdam, Netherlands) 8, 16–23; 10.1016/j.btre.2015.08.006 (2015).
25. Çimen, D., Bereli, N. & Denizli, A. Metal-chelated magnetic nanoparticles for protein C purification. Separation Science and Technology 55, 2259–2268; 10.1080/01496395.2019.1618327 (2020).
26. Muller, J. et al. An exosite-specific ssDNA aptamer inhibits the anticoagulant functions of activated protein C and enhances inhibition by protein C inhibitor. Chemistry & biology 16, 442–451; 10.1016/j.chembiol.2009.03.007 (2009).
27. Esmon, C. T. The protein C pathway. Chest 124, 26S-32S; 10.1378/chest.124.3_suppl.26s (2003).
28. Ye, J., Esmon, N. L., Esmon, C. T. & Johnson, A. E. The active site of thrombin is altered upon binding to thrombomodulin. Two distinct structural changes are detected by fluorescence, but only one correlates with protein C activation. The Journal of biological chemistry 266, 23016–23021 (1991).
29. Rezaie, A. R. & Yang, L. Thrombomodulin allosterically modulates the activity of the anticoagulant thrombin. Proceedings of the National Academy of Sciences of the United States of America 100, 12051–12056; 10.1073/pnas.2135346100 (2003).
30. Yang, L., Manithody, C. & Rezaie, A. R. Activation of protein C by the thrombin-thrombomodulin complex: cooperative roles of Arg-35 of thrombin and Arg-67 of protein C. Proceedings of the National Academy of Sciences of the United States of America 103, 879–884; 10.1073/pnas.0507700103 (2006).
31. Fenton, J. W. 2., Villanueva, G. B., Ofosu, F. A. & Maraganore, J. M. Thrombin inhibition by hirudin: how hirudin inhibits thrombin. Haemostasis 21 Suppl 1, 27–31; 10.1159/000216259 (1991).
32. Cai, S. et al. Investigations on the interface of nucleic acid aptamers and binding targets. The Analyst 143, 5317–5338; 10.1039/c8an01467a (2018).
33. Hianik, T., Ostatna, V., Sonlajtnerova, M. & Grman, I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry (Amsterdam, Netherlands) 70, 127–133; 10.1016/j.bioelechem.2006.03.012 (2007).
34. Zhu, G. & Walter, J.-G. Aptamer-modified magnetic beads in affinity separation of proteins. Methods in molecular biology (Clifton, N.J.) 1286, 67–82; 10.1007/978-1-4939-2447-9_7 (2015).
35. Hamedani, N. S. et al. Capture and Release (CaR): a simplified procedure for one-tube isolation and concentration of single-stranded DNA during SELEX. Chemical communications (Cambridge, England) 51, 1135–1138; 10.1039/c4cc08233h (2015).
36. Hamedani, N. S. et al. In Vitro Evaluation of Aptamer-Based Reversible Inhibition of Anticoagulant Activated Protein C as a Novel Supportive Hemostatic Approach. Nucleic acid therapeutics 26, 355–362; 10.1089/nat.2016.0645 (2016).
37. Walter, J.-G., Kökpinar, O., Friehs, K., Stahl, F. & Scheper, T. Systematic investigation of optimal aptamer immobilization for protein-microarray applications. Analytical chemistry 80, 7372–7378; 10.1021/ac801081v (2008).
38. Hyun Kyung Lim a , Il-Hyun Kim, Hye Yeon Nam , Seonmi Shin, Sang Soo Hah. Aptamer-Based Alternatives to the Conventional Immobilized Metal Affinity Chromatography for Purification of His-Tagged Proteins 46, 407–415; 10.1080/00032719.2012.721105 (2013).
39. Perret, G. & Boschetti, E. Aptamer affinity ligands in protein chromatography. Biochimie 145, 98–112; 10.1016/j.biochi.2017.10.008 (2018).
40. Kinghorn, A. B., Fraser, L. A., Lang, S., Shiu, S. C.-C. & Tanner, J. A. Aptamer Bioinformatics. International journal of molecular sciences 18; 10.3390/ijms18122516 (2017).
41. Goujon, M. et al. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic acids research 38, W695-9; 10.1093/nar/gkq313 (2010).