1. Jung, K., Kim, I.-H. & Han, D. Effect of medicinal plant extracts on forced swimming capacity in mice. Journal of Ethnopharmacology 93, 75–81 (2004).
2. Solowey, E. et al. Evaluating Medicinal Plants for Anticancer Activity. The Scientific World Journal 2014, e721402 (2014).
3. Kauroo, S. et al. Extracts of select endemic plants from the Republic of Mauritius exhibiting anti-cancer and immunomodulatory properties. Sci Rep 11, 4272 (2021).
4. Yang, X. et al. High-Throughput Transcriptome Profiling in Drug and Biomarker Discovery. Frontiers in Genetics 11, 19 (2020).
5. Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. & Hermoso, M. A. Chronic Inflammation and Cytokines in the Tumor Microenvironment. J Immunol Res 2014, 149185 (2014).
6. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, Inflammation, and Cancer. Cell 140, 883–899 (2010).
7. McCarthy, P. L. Down-regulation of cytokine action. Baillieres Clin Haematol 7, 153–177 (1994).
8. Braicu, C. et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel) 11, 1618 (2019).
9. Dhillon, A. S., Hagan, S., Rath, O. & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007).
10. Al-Qura’n, S. Ethnopharmacological survey of wild medicinal plants in Showbak, Jordan. J Ethnopharmacol 123, 45–50 (2009).
11. Elyasiyan, U. et al. Anti-diabetic activity of aerial parts of Sarcopoterium spinosum. BMC Complement Altern Med 17, 356 (2017).
12. Ali-shtayeh, M. saleem, Yaniv, Z. & Mahajna, J. Ethnobotanical survey in the Palestinian area: A classification of the healing potential of medicinal plants. Journal of ethnopharmacology 73, 221–32 (2000).
13. Yaniv, Z. Ethnobotanical studies of Sarcopoterium spinosum in Israel. Israel Journal of Plant Sciences - ISRAEL J PLANT SCI 55, 111–114 (2007).
14. Said, O., Khalil, K., Fulder, S. & Azaizeh, H. Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. Journal of ethnopharmacology 83, 251–65 (2003).
15. Hudec, J. et al. In Vitro Cytotoxic Effects of Secondary Metabolites Present in Sarcopoterium Spinosum L. Applied Sciences 11, 5300 (2021).
16. Rozenberg, K., Wollman, A., Ben-Shachar, M., Argaev-Frenkel, L. & Rosenzweig, T. Anti-inflammatory effects of Sarcopoterium spinosum extract. Journal of Ethnopharmacology 249, 112391 (2020).
17. Aburjai, T., Hudaib, M., Tayyem, R., Yousef, M. & Qishawi, M. Ethnopharmacological survey of medicinal herbs in Jordan, the Ajloun Heights region. J Ethnopharmacol 110, 294–304 (2007).
18. Schmidt, E. V. The role of c-myc in cellular growth control. Oncogene 18, 2988–2996 (1999).
19. Obaya, A. J., Mateyak, M. K. & Sedivy, J. M. Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene 18, 2934–2941 (1999).
20. Bretones, G., Delgado, M. D. & León, J. Myc and cell cycle control. Biochim Biophys Acta 1849, 506–516 (2015).
21. Barnaba, N. & LaRocque, J. R. Targeting cell cycle regulation via the G2-M checkpoint for synthetic lethality in melanoma. Cell Cycle 20, 1041–1051 (2021).
22. Zhang, Y., Qian, J., Gu, C. & Yang, Y. Alternative splicing and cancer: a systematic review. Signal Transduction and Targeted Therapy vol. 6 1–14 (2021).
23. Anczukow, O. & Krainer, A. R. Splicing-factor alterations in cancers. RNA vol. 22 1285–1301 (2016).
24. Kalev, P. et al. MAT2A Inhibition Blocks the Growth of MTAP-Deleted Cancer Cells by Reducing PRMT5-Dependent mRNA Splicing and Inducing DNA Damage. Cancer Cell 39, 209-224.e11 (2021).
25. Park, J.-S., Davis, R. L. & Sue, C. M. Mitochondrial Dysfunction in Parkinson’s Disease: New Mechanistic Insights and Therapeutic Perspectives. Curr Neurol Neurosci Rep 18, 21 (2018).
26. Prasuhn, J., Davis, R. L. & Kumar, K. R. Targeting Mitochondrial Impairment in Parkinson’s Disease: Challenges and Opportunities. Frontiers in Cell and Developmental Biology 8, 1704 (2021).
27. Kaplan, J. Friedreich’s ataxia is a mitochondrial disorder. Proc Natl Acad Sci U S A 96, 10948–10949 (1999).
28. Lynch, D. R. & Farmer, G. Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signaling 5, NS20200093 (2021).
29. Zorova, L. D. et al. Mitochondrial membrane potential. Anal Biochem 552, 50–59 (2018).
30. Liu, W. J. et al. p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cellular & Molecular Biology Letters 21, 29 (2016).
31. Marinković, M., Šprung, M., Buljubašić, M. & Novak, I. Autophagy Modulation in Cancer: Current Knowledge on Action and Therapy. Oxidative Medicine and Cellular Longevity 2018, e8023821 (2018).
32. Chen, C., Turnbull, D. M. & Reeve, A. K. Mitochondrial Dysfunction in Parkinson’s Disease—Cause or Consequence? Biology (Basel) 8, 38 (2019).
33. Wang, Y. et al. Centrosome-associated regulators of the G2/M checkpoint as targets for cancer therapy. Molecular Cancer vol. 8 8 (2009).
34. Miller, D. M., Thomas, S. D., Islam, A., Muench, D. & Sedoris, K. c-Myc and cancer metabolism. Clinical Cancer Research vol. 18 5546–5553 (2012).
35. Fabregat, I., Fernando, J., Mainez, J. & Sancho, P. TGF-beta Signaling in Cancer Treatment IT-Liver View project Hepatocellular carcinoma View project. (2014) doi:10.2174/13816128113199990591.
36. Krishnamurthy, N. & Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treatment Reviews vol. 62 50–60 (2018).
37. Bai, X., Yi, M., Jiao, Y., Chu, Q. & Wu, K. Blocking TGF-β Signaling To Enhance The Efficacy Of Immune Checkpoint Inhibitor. Onco Targets Ther 12, 9527–9538 (2019).
38. Krishnamurthy, N. & Kurzrock, R. Targeting the Wnt/beta-catenin Pathway in Cancer: Update on Effectors and Inhibitors. Cancer Treat Rev 62, 50–60 (2018).
39. Dang, C. V. MYC on the Path to Cancer. Cell 149, 22–35 (2012).
40. Loizzo, M. R. et al. Antiproliferative activities on renal, prostate and melanoma cancer cell lines of Sarcopoterium spinosum aerial parts and its major constituent tormentic acid. Anticancer Agents Med Chem 13, 768–776 (2013).
41. Ramirez, H., Patel, S. B. & Pastar, I. The Role of TGFβ Signaling in Wound Epithelialization. Adv Wound Care (New Rochelle) 3, 482–491 (2014).
42. Penn, J. W., Grobbelaar, A. O. & Rolfe, K. J. The role of the TGF-β family in wound healing, burns and scarring: a review. Int J Burns Trauma 2, 18–28 (2012).
43. Wu, C. et al. IFN-γ primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b. J Immunol 193, 3036–3044 (2014).
44. Hu, X., Chakravarty, S. D. & Ivashkiv, L. B. Regulation of IFN and TLR Signaling During Macrophage Activation by Opposing Feedforward and Feedback Inhibition Mechanisms. Immunol Rev 226, 41–56 (2008).
45. Welsh, R. M. Natural killer cells and interferon. Crit Rev Immunol 5, 55–93 (1984).
46. Müller, L., Aigner, P. & Stoiber, D. Type I Interferons and Natural Killer Cell Regulation in Cancer. Front Immunol 8, 304 (2017).
47. Mantlo, E., Bukreyeva, N., Maruyama, J., Paessler, S. & Huang, C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res 179, 104811 (2020).
48. Sainz, B., Mossel, E. C., Peters, C. J. & Garry, R. F. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 329, 11–17 (2004).
49. Slomski, A. Trials Test Mushrooms and Herbs as Anti–COVID-19 Agents. JAMA 326, 1997–1999 (2021).
50. Shahzad, F., Anderson, D. & Najafzadeh, M. The Antiviral, Anti-Inflammatory Effects of Natural Medicinal Herbs and Mushrooms and SARS-CoV-2 Infection. Nutrients 12, 2573 (2020).
51. Lin, L.-T., Hsu, W.-C. & Lin, C.-C. Antiviral Natural Products and Herbal Medicines. Journal of Traditional and Complementary Medicine 4, 24–35 (2014).
52. Kong, Q. et al. Analysis of the molecular mechanism of Pudilan (PDL) treatment for COVID-19 by network pharmacology tools. Biomed Pharmacother 128, 110316 (2020).
53. Rozenberg, K., Smirin, P., Sampson, S. R. & Rosenzweig, T. Insulin-sensitizing and insulin-mimetic activities of Sarcopoterium spinosum extract. Journal of Ethnopharmacology 155, 362–372 (2014).
54. Rozenberg, K. & Rosenzweig, T. Sarcopoterium spinosum extract improved insulin sensitivity in mice models of glucose intolerance and diabetes. PLOS ONE 13, e0196736 (2018).
55. Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16, 495–501 (2014).
56. Bjørkøy, G. et al. Chapter 12 Monitoring Autophagic Degradation of p62/SQSTM1. in Methods in Enzymology vol. 452 181–197 (Academic Press, 2009).
57. Masoudi-Sobhanzadeh, Y., Omidi, Y., Amanlou, M. & Masoudi-Nejad, A. Drug databases and their contributions to drug repurposing. Genomics vol. 112 1087–1095 (2020).
58. Choi, W. & Lee, H. Inference of Biomedical Relations among Chemicals, Genes, Diseases, and Symptoms Using Knowledge Representation Learning. IEEE Access 7, 179373–179384 (2019).
59. Hebels, D. G. et al. Evaluation of database-derived pathway development for enabling biomarker discovery for hepatotoxicity. Biomarkers in Medicine vol. 8 185–200 (2014).
60. Rappaport, N. et al. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Research 45, D877–D887 (2017).
61. Dafni, A., Yaniv, Z. & Palevitch, D. Ethnobotanical survey of medicinal plants in northern Israel. Journal of Ethnopharmacology 10, 295–310 (1984).
62. Scudiero, D. A. et al. Evaluation of a Soluble Tetrazolium/Formazan Assay for Cell Growth and Drug Sensitivity in Culture Using Human and Other Tumor Cell Lines. Cancer Res 48, 4827–4833 (1988).
63. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8, 175–185 (1998).
64. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
65. HISAT2. HISAT2 http://DaehwanKimLab.github.io/hisat2/.
66. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
67. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
68. Zhang, Z. et al. Novel Data Transformations for RNA-seq Differential Expression Analysis. Sci Rep 9, 4820 (2019).
69. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47 (2015).
70. Szklarczyk, D. et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49, D605–D612 (2021).
71. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504 (2003).
72. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102, 15545–15550 (2005).