1. Pan Y, Gao F, Zhao S, Han J, Chen F. Role of the SphK- S1P- S1PRs pathway in invasion of the nervous system by SARS- CoV- 2 infection. Clin Exp Pharmacol Physiol. 2021;48(5) May:637–50.
2. Kumar A, Nagar S. Regulation of Immune Cell Migration by Sphingosine-1- Phosphate. Cell Mol Biol. 2018;61:121.
3. Dai L, Liu Y, Xie L, Wu X, Qiu L, Di W. Sphingosine kinase 1/sphingosine-1-phosphate (S1P)/S1P receptor axis is involved in ovarian cancer angiogenesis. Oncotarget. 2017;8:74947–61.
4. Kim E, Kim J, Kim SG, Hwang S, Lee CH, Moon A. Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Gαq coupling. J Cell Sci. 2011;124 Pt 13:2220–30.
5. Magrassi L, Marziliano N, Inzani F, Cassini P, Chiaranda I, Skrap M, et al. EDG3 and SHC3 on chromosome 9q22 are co-amplified in human ependymomas. Cancer Lett. 2010;290:36–42.
6. Lee HM, Lo K, Wei W, Tsao SW, Tin G, Chung Y, et al. Oncogenic S1P signalling in EBV-associated nasopharyngeal carcinoma activates AKT and promotes cell migration through S1P receptor 3. J Pathol. 2017;242:62–72.
7. Fan X, Zhong D, Li G. Recent advances of the function odatf sphingosine 1 ‐ phosphate ( S1P ) receptor S1P3. J Cell Physiol. 2020;236:1564–78.
8. Wang TJC, Mehta MP. Low-Grade Glioma Radiotherapy Treatment and Trials. Neurosurg Clin NA. 2019;30:111–8.
9. Yu Y, Yang B, Yu J, Zhao G, Chen F. Dequalinium chloride inhibits the growth of human glioma cells in vitro and vivo: a study on molecular mechanism and potential targeted agents. Acta Neurochir (Wien). 2020;162:1683–90.
10. Pan Y, Zhao S, Chen F. The potential value of dequalinium chloride in the treatment of cancer: Focus on malignant glioma. Clin Exp Pharmacol Physiol. 2021;48:445–54.
11. Weller M, Wick W, Aldape K, Brada M, Berger M, Nishikawa R, et al. Glioma. Nat Rev Dis Prim. 2015;16;1 July:15017.
12. Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15:422–42.
13. Shen Y, Zhao S, Wang S, Pan X, Zhang Y, Xu J, et al. S1P/S1PR3 axis promotes aerobic glycolysis by YAP/c-MYC/PGAM1 axis in osteosarcoma. EBioMedicine. 2019;40:210–23.
14. Toyomoto M, Inoue A, Iida K, Denawa M, Kii I, Marie F, et al. Article S1PR3 – G 12 -biased agonist ALESIA targets cancer metabolism and promotes glucose starvation Article S1PR3 – G 12 -biased agonist ALESIA targets cancer metabolism and promotes glucose starvation. Cell Chem Biol. 2021;:1–13.
15. Physiology C. Intracellular Sphingosine-1-Phosphate Receptor 3 Contributes to Lung Tumor Cell Proliferation. 2021;:539–52.
16. Tate K, Chase Cornelison R, Bhargava S MJ. TMIC-33. INVESTIGATING S1PR3-MEDIATED GLIOBLASTOMA INVASION MECHANISMS USING 3D HYDROGEL - TISSUE CULTURE INSERT MODEL. Neuro Oncol. 2019;21:254–5.
17. Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma : Current management and future application. Cancer Lett. 2020;476 February:1–12.
18. Chen S, Ahn Y, Lonardo F, Lee M. TGF-β/SMAD3 Pathway Stimulates Sphingosine-1 Phosphate Receptor 3 Expression: IMPLICATION OF SPHINGOSINE-1 PHOSPHATE RECEPTOR 3 IN LUNG ADENOCARCINOMA PROGRESSION. J Biol Chem. 2016;3:27343–53.
19. Sun X, Dong B, Yin L, Zhang R, Du W, Liu D, et al. PMTED : a plant microRNA target expression database. BMC Bioinformatics. 2013;3:174.
20. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.
21. Charoentong P, Angelova M, Charoentong P, Finotello F, Angelova M, Mayer C, et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade Graphical. CellReports. 2017;18:248–62.
22. He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers based on Immunogenomic profiling. J Exp Clin Cancer Res. 2018;37:1–13.
23. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.
24. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nat Publ Gr. 2018;22 554(7693):544–8.
25. Yasin Ş, Gejman RS, Winer AG, Liu M, Allen EM Van, Velasco G De, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17:1–25.
26. Sanchez-Vega F, Mina M, Armenia. Pathways, Oncogenic Signaling Cancer, The Atlas, Genome. 2019;173:321–37.
27. Karpel G, Trang M, Enyuan TTN, Markus S. Novel IDH1 ‑ Targeted Glioma Therapies. CNS Drugs. 2019;33:1155–66.
28. Zhang Y, Dube C, Jr MG, Cruickshanks N, Wang B, Coughlan M, et al. The p53 Pathway in Glioblastoma. Cancers (Basel). 2019;10:297.
29. Bryan AM, Del Poeta M. Sphingosine‐1‐phosphate receptors and innate immunity. Cell Microbiol. 2018;20:e12836.
30. Razvan C, Robin M, Mark A, Andrew A, Erin M, Jennifer Y, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science (80- ). 2018;362:6411.
31. James Ross, Monica Chau, Brandon Miller, Subhas Mukherjee, Changming Zhang, Jun Kong, Emily Kaissi, Austin Newsam, Darius Mahboubi, Jameson Berry, Carol Tucker-Burden, Daniel BratJames Ross, Monica Chau, Brandon Miller, Subhas Mukherjee, Changming Zhang, DB. TMIC-14. HYPOXIA INDUCIBLE OLIG2 MEDIATES GLIOMA STEM CELL MIGRATION. Neuro Oncol. 2018;19 suppl_6:246.
32. Li Q, Li Y, Lei C, Tan Y, Yi G. Sphingosine-1-phosphate receptor 3 signaling. Clin Chim Acta. 2021;519 November 2020:32–9.
33. Arita H, Narita Y, Yoshida A, Hashimoto N, Yoshimine T IK. IDH1/2 mutation detection in gliomas. Brain Tumor Pathol. 2014;32:79–89.
34. Cancer Genome Atlas Research Network, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, Rheinbay E, Miller CR, Vitucci M, Morozova O, Robertson AG, Noushmehr H, Laird PW, Cherniack AD, Akbani R, Huse JT, Ciriello G, Poisson LM, Barnholtz-Sloa ZJ. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med. 2015;372:2481–98.
35. Ciechomska I, Jayaprakash C, Maleszewska M, Kaminska B. Histone Modifying Enzymes and Chromatin Modifiers in Glioma Pathobiology and Therapy Responses. 2020.
36. Perreault S, Larouche V, Tabori U, Hawkin C, Lippé S, Ellezam B, et al. A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer. 2019;19:1250.
37. Li X, Wu C, Chen N, Gu H, Yen A, Cao L. PI3K / Akt / mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. 2016;7:33440–50.
38. Sheng J, He X, Yu W, Chen Y, Long Y, Wang K, et al. p53-targeted lncRNA ST7-AS1 acts as a tumour suppressor by interacting with PTBP1 to suppress the Wnt / β -catenin signalling pathway in glioma. Cancer Lett. 2021;503 November 2020:54–68.
39. Zhang C, Zhang X, Xu R, Huang B, Chen A, Li C, et al. TGF- β 2 initiates autophagy via Smad and non-Smad pathway to promote glioma cells ’ invasion. J Exp Clin Cancer Res. 2017;36:162.
40. Xuan Z, Wang Y. ANO6 promotes cell proliferation and invasion in glioma through regulating the ERK signaling pathway. Onco Targets Ther. 2019;20:6721–31.
41. Bernstock JD, Mooney JH, Ilyas A, Chagoya G, Estevez-Ordonez D, Ibrahim A NI. Molecular and cellular intratumoral heterogeneity in primary glioblastoma: clinical and translational implications. J Neurosurg. 2019;23 August:1–9.
42. Gong R, Li Z, Fu K, Ma C, Wang W, Chen J. Long Noncoding RNA PVT1 Promotes Stemness and Temozolomide Resistance through miR-365 / ELF4 / SOX2 Axis in Glioma. Exp Neurobiol. 2021;30:244–55.
43. Gao C, Liang C, Nie Z, Liu Y, Wang J, Zhang D. Alkannin inhibits growth and invasion of glioma cells C6 through IQGAP / mTOR signal pathway. 2015;8:5287–94.
44. Herrera-oropeza GE, Herrera-oropeza GE, Angulo-rojo C, Hernández-rosales M, Aviña-padilla K, Hernández-rosales M. Glioblastoma multiforme: a multi-omics analysis of driver genes and tumour heterogeneity. Interface Focus. 2021;11:20200072.
45. Kim JM CD. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol. 2016;27:1492–504.
46. Gajewski TF. The next hurdle in cancer immunotherapy: overcoming the non–T-cell–inflamed tumor microenvironment. In: Seminars in oncology. Elsevier; 2015. p. 663–71.
47. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean M-C, Validire P, Trautmann A, et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest. 2012;122:899–910.
48. Du B, Shim JS. Targeting Epithelial–Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules. 2016;21:965.
49. Dituri F, Mancarella S, Giannelli G, Chieti A. TGF- β as Multifaceted Orchestrator in HCC Progression : Signaling , EMT , Immune Microenvironment , and Novel Therapeutic Perspectives. Semin Liver Dis. 2019;39:53–69.