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Abstract
Controlling foodborne diseases requires robust outbreak detection and a comprehensive understanding of outbreak
dynamics. Here, by integrating large-scale phylogenomic analysis of 3,642 isolates and epidemiological data, we performed
“data-driven” outbreak detection and described the long-term outbreak dynamics of the leading seafood-associated
bacterial pathogen, Vibrio parahaemolyticus, in a high-prevalence city, Shenzhen, China, over a 17-year period. Different
from the widely accepted notion that sporadic patients and independent point-source outbreaks dominated foodborne
infections, we found that 71% of isolates from patients grouped into within-1-month clusters that differed by ≤6 SNPs,
indicating putative outbreaks; 56% of these clusters contained isolates exclusively from previously de�ned “sporadic”
patients, representing unrecognized cryptic outbreaks. Furthermore, we showed that despite the long time spans between
clusters, 70% of them were genomically closely related and were inferred to arise from a small number of common sources,
which provides evidence that hidden persistent reservoirs generated most of the outbreaks, rather than independent point-
sources. Phylogeographical analysis further revealed the geographical heterogeneity of outbreaks and identi�ed a coastal
district as the potential hotspot of outbreaks and as the hub and major source of cross-district spread events. Our �ndings
provide a comprehensive picture of the long-term spatiotemporal dynamics of foodborne outbreaks for the �rst time and
present a novel perspective on the major source of foodborne infections, which will inform the design of future foodborne
disease control strategies.

Introduction
Foodborne diseases (FBDs) are major and enduring threats to public health with an estimated 600 million cases each year,
nearly one in ten people worldwide1. Because of the ubiquitous nature of foodborne pathogens in the natural environment
and their ability to contaminate the farm-to-fork continuum, FBDs were usually characterized by occasional outbreaks
caused by spillover of point-source contamination on the background of steady sporadic patients. Although outbreaks
catch more attention, sporadic patients are generally considered to be the main burden of FBDs2. Effective control requires
robust detection of outbreaks from baseline sporadic patients and a comprehensive understanding on the key properties of
outbreak dynamics such as the spatiotemporal distribution and common sources 2,3.

Traditional FBD outbreak surveillance was passive and triggered mainly by noti�cation of clustered cases, which made it
di�cult to detect and link small-scale, protracted, or cross-regional outbreaks. The establishment of molecular subtyping-
based networks substantially promoted FBD surveillance and enabled outbreaks to be detected in an active “data-driven”
way by identifying genetically related clusters of infections. For example, PulseNet, which is a molecular subtyping network
for FBD surveillance based on pulsed-�eld gel electrophoresis (PFGE), has enabled nationwide and international outbreaks
to be recognized through the investigation of clusters with indistinguishable PFGE patterns4. However, the resolutions of
PFGE and other conventional typing methods were rapidly proved inadequate for outbreak con�rmation, especially for
highly clonal pathogens5. Whole-genome sequencing (WGS) provides ultimate resolution to discriminate outbreak from
sporadic isolates and is becoming the reference method in FBD outbreak investigations. Moreover, WGS enables robust
phylogenetic reconstruction to reveal the evolutionary relationships between isolates and identify isolates arising from
common sources2,3. In practice, phylogenomic clusters have been demonstrated to have high concordance with
epidemiological links in outbreak investigations6,7, suggesting that these clusters can be good indicators to quantify and
characterize the dynamics of FBD outbreaks, as was found for other infectious pathogens that are transmitted person-to-
person8–10. Recent studies using phylogenomic clustering analysis to investigate FBD outbreaks showed its ability to detect
cryptic outbreaks that were neglected by traditional surveillance11,12 and to track and resolve international outbreaks13,14.
However, to our knowledge, there is currently no study to characterize the long-term dynamics of FBD outbreaks based on
large-scale WGS and epidemiological data from a population.



Page 4/18

Vibrio parahaemolyticus (VP) is the leading cause of seafood-associated bacterial gastroenteritis worldwide15. Most
pathogenic VP carry one or two well-known virulence genes, tdh and/or trh, that encode thermostable direct hemolysin (tdh)
and tdh-related hemolysin (trh), respectively. Notably, since the emergence and pandemic spread of the serotype O3:K6
clonal group, VP prevalence has increased globally over the last two decades, and its geographical range has extended to
high-latitude areas where it was previously unreported15. Given the increasing disease burden, current outbreak surveillance
of VP is based mainly on passive noti�cation, whereas WGS-based epidemiology studies have focused on characterizing a
small number of outbreaks16–20 and local epidemic dynamics in low-prevalence regions21,22.

China has a high prevalence of VP infections, especially in southern coastal regions such as Shenzhen23, a populous city
with approximately 13 million people. Since 2002, the Shenzhen Centers for Disease Control and Prevention (CDC) began to
establish an integrated laboratory-based surveillance network of FBDs, with VP as one of the target pathogens. This
network consisted of three systems: Foodborne Disease Outbreak Surveillance (FDOS), Infectious Diarrheal Diseases
Surveillance (IDDS), and Food Safety Surveillance (FSS), captured a dense collection of isolates from documented
outbreaks (FDOS), sporadic patients (IDDS), and the environment (FSS). In this study, we sequenced all the archived VP
isolates collected by the network between 2002 and 2018. By integrating large-scale phylogenomic analysis and
epidemiological data, we described the genomic baseline of pathogenic VP lineages, quanti�ed the magnitude of outbreaks
in a “data-driven” way, and characterized the spatiotemporal dynamics of VP outbreaks over a 17-year period with
unprecedented resolution.

Results
Dataset

A total of 3,713 archived VP isolates were successfully sequenced. After strict quality assessment (Extended Data Fig. 1),
3,642 high-quality genomes from 2,686 (74%) patients and 956 (26%) environmental isolates were obtained (Fig. 1A, Table
1, Supplementary Table 1). Among the patient isolates, 830 (31%) were from documented outbreaks captured by FDOS
(FDOS-outbreaks). The remaining 1,856 (69%) were from outpatients with diarrhea at 16 sentinel hospitals (IDDS patients),
which were previously considered as sporadic because there were no recognized epidemiological links. Therefore, according
to the traditional surveillance, sporadic patients from IDDS compose much of the disease burden. The VP-prevalence,
de�ned as the proportion of VP-associated outpatients to all outpatients was 4.2% (1,856/44,160). The patients had a
median age of 28 years (interquartile range [IQR]: 23–35), there were more males (58%), and the clinical symptoms included
diarrhea (100%), abdominal pain (78%), vomiting (39%), and fever (10%) (Table 1). Environmental isolates captured by FSS
were from food (mainly �sh and shell�sh) and the environments of aquatic markets.

Population structure and dynamics

To characterize the circulating VP lineages, we constructed a maximum-likelihood tree of 3,642 isolates based on 1,079,993
SNPs (Fig. 2A). The tree showed there were multiple clonal groups (CGs) of two or more closely related isolates. Based on
the pairwise SNP distances distribution between all the isolates (Extended Data Fig. 2), we selected ≤2,500 SNPs as the
cutoff and identi�ed a total of 176 CGs that contained 3,123 (86%) isolates. Each CG had isolates from one or more
serogroup (1–5) or sequence type (1–4) and was named after the main sequence type.

A total of 2,604 (97%) patient isolates were grouped into 23 pathogenic CGs (PCGs) each with 2 to 1,946 patients (Fig.
1B,2B), whereas only 20 (2%) of the 903 environmental isolates from FSS were assigned into PCGs. Two major PCGs,
pandemic PCG3 and PCG189, drove local epidemics that caused 72% (n=1,946) and 12% (n=324) of the cases, respectively.
The remaining 21 PCGs contained fewer isolates, together caused 12% (n=334) of the cases and were named as PCG-
others. Two well-known virulence genes, tdh and trh, were identi�ed in 99% and 3% of the PCG isolates, respectively (Fig.
2A).



Page 5/18

The number of PCGs �uctuated annually with a peak in 2009, then decreased and remained stable (Fig. 2C). This trend was
similar to that of the number of enrolled patients (Extended Data Fig. 3). At the end of sampling, seven PCGs persisted (Fig.
2C, Extended Data Fig. 4). Pandemic PCG3 was always dominant across the sampling period, accounting for 61%–88% of
the cases annually, followed by PCG189. PCG diversity varied among different districts and correlated with the VP-
prevalence in outpatients (Fig. 2D). The proportion of PCGs in different districts was generally similar, and six PCGs were
spread across most (≥8/10) of the districts (Fig. 2E, Extended Data Fig. 5). Additionally, there was no signi�cant difference
(p >0.05, Fisher’s exact test) in the demographic and clinical characteristics between different PCGs or between PCGs and
singletons (Table 1).

Clustering analysis and “data-driven” outbreak detection

The isolates from outbreaks are expected to be genetically closely related. To obtain the reference cutoff of genetic
similarity between outbreak isolates, we analyzed the pairwise SNP distances between 615 isolates from 126 FDOS-
outbreaks with known epidemiological links (Fig. 3A,B). As expected, most FDOS-outbreak isolates had few SNP differences
with a median of 1 (IQR: 0–6). In addition, 575 (93%) isolates of 119 (94%) FDOS-outbreaks had ≤6 SNPs before and after
removing SNPs caused by recombination (see methods), and few isolates were clustered with a higher SNP cutoff (Fig. 3B).
The SNP distance distribution between FDOS-outbreak isolates in different PCGs were similar to the overall distribution
(Extended Data Fig. 6), whereas the entire dataset had a discontinuous SNP distance distribution, with <1% pairs of isolates
having ≤6 SNPs. When SNP numbers were >6, the number of paired isolates increased substantially, indicating isolates
with no epidemiological links had been introduced (Fig. 3B). Therefore, we proposed ≤6 SNPs as the genetic similarity
cutoff between outbreak isolates. Furthermore, we analyzed external independent datasets of 34 isolates from four
outbreaks in different countries16–20 and identi�ed a maximum of six SNPs (Extended Data Fig. 7), showing the
generalizability of this cutoff.

Under the cutoff of ≤6 SNPs, a total of 2,237 (84%) patient isolates were grouped into 221 single-linkage phylogenomic
clusters (P-clusters). P-clusters represent isolates that arose from common sources, and each with 2–158 isolates from
patients (Fig. 1B,3A). The durations of 215 P-clusters with detailed time records varied between 0 and 70 months (Fig. 3C);
among them, 75 (35%) P-clusters with 274 patients (10% of total patients) had within-1-month durations indicating transient
outbreaks. The other 140 (67%) P-clusters with 1,951 patients (73% of total patients) lasted over 1 month (Fig. 3C),
indicating that persistent common sources were present and caused continuous infections. To compare these long-term P-
clusters with FDOS-outbreaks (transient point-source outbreaks), we further split them into within-1-month sub-P-clusters
and identi�ed a total of 370 within-1-month P-cluster/sub-P-clusters and de�ned them as outbreak clusters (Ob-clusters).
Taken together, Ob-clusters were genetically (≤6 SNPs), temporally (within 1-month), and spatially (citywide) closely related
patient isolates, indicating putative outbreaks (Fig. 1B). The sensitivity analysis showed that different SNP cutoffs (3, 6 or
10 SNPs) and time intervals (1-week or 1-month) had limited effects on the Ob-cluster de�nition, accounting for a maximum
of 5% reduction in number of Ob-clusters, and stricter cutoffs generally led to more Ob-clusters with smaller sizes (Extended
Data Fig. 8).

There were 1,897 patients (71% of total patients) grouped into 370 Ob-clusters. Most Ob-clusters were small, with a median
size of three patient isolates (IQR: 2–6; range: 2–53) (Fig. 3A). The Ob-clusters and associated patients were enriched in
PCG3; 1,524 (80%) of 1,897 Ob-cluster patients and 35 (88%) of 40 large Ob-clusters with >10 patients were from PCG3, with
these two proportions being signi�cantly larger (p <0.05, Fisher’s exact test) than the proportion of PCG3-associated
patients (72%).

There were no signi�cant differences (p >0.05, Fisher’s exact test) in demographic and clinical symptom characteristics
between Ob-cluster and non-Ob-cluster patients, except that there were signi�cantly more males (p=0.048, Fisher’s exact
test) among the Ob-cluster patients (60%) than in the non-Ob-cluster patients (54%) (Table 1).

Ob-clusters vs. documented outbreaks
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The numbers of Ob-clusters and associated patients were substantially larger than those of the FDOS-outbreaks (2.9-fold
and 3.1-fold, respectively) (Fig. 3A), indicating that the number and scale of outbreaks were likely to be previously largely
underestimated. Notably, a large proportion (1,259/1,856, 68%) of isolates from outpatients, which were previously
considered as sporadic because no recognized epidemiological links, were assigned into Ob-clusters. Speci�cally, 207 (56%)
of the 370 Ob-clusters contained exclusively 843 outpatient isolates, which were not captured by FDOS, that represent
unrecognized cryptic outbreaks. These Ob-clusters were characterized by their small scale; 197 (95%) of them each involved
≤10 patients (Extended Data Fig. 9). However, 582 (69%) and 634 (75%) of the 843 outpatients were identi�ed in the same
sentinel hospital and district, respectively, as another patient in an Ob-cluster; i.e., they were geographically close, indicating
possible epidemiological links among them. Moreover, 98 (26%) Ob-clusters contained patients from both FDOS-outbreaks
(n=615) and outpatients (n=416), with the latter representing missed outbreak patients. 362 (87%) of these 416 outpatients
were not identi�ed in the district where an FDOS-outbreak was reported, which may explain the unrecognized links between
them and FDOS-outbreak patients (FDOS investigations were usually limited to local districts). Taken together, if Ob-clusters
are taken as the gold standard of outbreak de�nition, then passive noti�cation-based FDOS had a sensitivity of 0.31 (95%
con�dence interval [CI]: 0.29–0.34) and speci�city of 0.93 (95% CI: 0.90–0.95) for discriminating outbreaks from sporadic
patients.

Genomic links between Ob-clusters over long-time spans

Despite the long-time spans (2–70 months) between Ob-clusters, 258 (70%) of 370 Ob-clusters were genomically linked,
which can be assigned into 61 P-clusters. Each of these P-clusters contained 2–20 Ob-clusters, indicating that persistent
common sources caused continuous outbreaks (Fig. 1B,3D). The minimum-spanning trees of some P-clusters (e.g., PC033
and PC202) were "star-like", indicating continuous outbreaks caused by a single lasting common source. The minimum-
spanning trees of other P-clusters (e.g., PC052 and PC176) had “multiple stars” topologies, which may indicate related
outbreaks caused by different but linked sources, or strains that colonized and evolved in a local niche and then led to
multiple waves of outbreaks (Fig. 3D).

The identi�cation of these long-term P-clusters indicated that the common sources had not been fully eliminated after the
initial outbreak, but persisted in some hidden reservoirs. To quantify preventable outbreaks/patients if the hidden persistent
reservoirs are eliminated, we de�ned continued Ob-clusters/patients (i.e., Ob-clusters/patients identi�ed after the initial
(earliest) Ob-cluster within a P-cluster) to represent preventable outbreaks/patients; the other Ob-clusters/patients were
de�ned as initial ones (Fig. 1B,3D). A total of 197 (53%) Ob-clusters and 1,308 patients (49% of all patients) were assigned
into continued Ob-clusters/patients.

Temporal dynamics of Ob-clusters

The number of Ob-clusters �uctuated annually, and initial and continued Ob-clusters became dominant alternatively, with
continued Ob-clusters lagging behind the initial Ob-clusters (Fig. 4A). Since 2006, the proportion of Ob-cluster patients was
stable, leading to 76%–91% patients each year, whereas the proportions of initial and continued Ob-clusters/patients were
variable, with continued exceeding initial in 10 of the 13 years.

Monthly, 251 (68%) Ob-clusters and 1,727 (67%) patients were concentrated at the peak of seasonal outbreaks (July to
September). The number of initial Ob-clusters showed a similar changing trend as the continued Ob-clusters, with the latter
lagging behind the former. Notably, from the start of the outbreak peak in June, the number of continued exceeded initial Ob-
clusters and accounted for 57% of the total patients during the 3-month peak period.

Geographical distribution and cross-district spread pattern of Ob-clusters

The geographical distribution of 370 Ob-clusters was uneven in ten districts (Fig. 4B,C). There were 311 (84%) Ob-clusters
that accumulated in four northern districts with high VP-prevalence (BA, GM, LoH, LG) (Fig. 4C), and there was a signi�cantly
higher proportion (p<0.001, Fisher’s exact tests) of continued patients (975/1,808, 54%) in these four northern districts
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compared to the other districts (327/886, 38%). A hotspot of Ob-clusters was identi�ed in the western coastal district, BA,
where 71% (262/370) Ob-clusters can be detected (Fig. 4B,C). Notably, this hotspot was not obvious based on the FDOS
results. Only 6 (5%) of the 126 FDOS-outbreaks were reported in BA district, and 181 (69%) of the 262 Ob-clusters in this
district were cryptic and were not captured by FDOS.

There were 236 (64%) cross-district Ob-clusters identi�ed in multiple (2–6) districts, accounting for 71%–100% of total Ob-
clusters in each district (Fig. 4B), suggesting extensive links among patients in different districts. In the hotspot district, 83%
of the total cross-district Ob-clusters and 41%–85% of the cross-district Ob-clusters in other districts were detected,
suggesting that the hotspot acted as the hub of cross-district spread. Cross-district Ob-clusters were most prevalent between
the hotspot district and the three other northern districts with high VP-prevalence, where 70%–85% cross-district Ob-clusters
were related to those of hotspot.

To further infer the geographical source of the 236 cross-district Ob-clusters, we �rstly analyzed the locations of the earliest
detected isolates from a cross-district Ob-cluster and found that 43% (101/236) cross-district Ob-clusters were detected
earliest in the hotspot (Fig. 3D). Furthermore, we performed phylogeographical analysis and identi�ed the likely source
district of 162 cross-district Ob-clusters and found that 79 (49%) were in the hotspot (Fig. 3D). Subsampling analysis of
cross-district Ob-clusters based on a balanced number of isolates (1–3) in each district gave similar results, with 77 (49%)
of 158 inferred source districts being from the hotspot (Extended Data Fig. 10). These results provide evidence that the
hotspot was also a major source of cross-district spread. Moreover, we found a correlation between geographical and
pairwise SNP distance between isolates from Ob-clusters sourced from the hotspot and isolates with greater geographical
distances to the hotspot had larger mean SNP distances (Extended Data Fig. 11), which may be associated with the extra
diversity accumulated during cross-district spread.

Discussion
In one of the largest bacterial WGS projects conducted so far, for the �rst time, we used an integrated surveillance
framework to characterize the long-term epidemic dynamics of the leading seafood-associated bacterial pathogen, VP, in
Shenzhen, a city with a high-prevalence of VP infections over the 17-year period. We showed that pathogenic lineages were
stable over a decade, with two major PCGs, PCG3 and PCG189, driving local epidemics, which may be related to their higher
virulence24 and/or adaptability. Our �ndings highlight the power of phylogenomic clustering analysis to quantify and
describe the dynamics of outbreaks, especially small-scale, extended time-period, and cross-regional outbreaks. Through
active “data-driven” analysis, we showed that 71% of isolates from patients can be grouped into Ob-clusters indicating
putative outbreaks, which is different from the observation of traditional surveillance that sporadic patients compose much
of the disease burden. More than half (56%) of these clusters contained isolates exclusively from previously de�ned
“sporadic” patients, representing unrecognized cryptic outbreaks, which lead to the number difference from documented
FDOS-outbreaks, and also suggest that the magnitude of outbreaks may have been substantially underestimated
previously. Furthermore, we showed that despite the long time spans (2-70 months) between clusters, 70% of them were can
be genomically linked and were inferred to arise from a small number of common sources, which provides evidence that
continuous outbreaks caused by hidden persistent reservoirs dominated local infections, rather than independent point-
source outbreaks. Finally, we identi�ed a potential coastal outbreak hotspot district, which also acted as the hub and a
major source of cross-district spread, providing a focus for future outbreak surveillance and control. Together, our �ndings
provide a comprehensive picture of the long-term spatiotemporal dynamics of FBDs for the �rst time and challenge the
widely accepted notion on the major source of foodborne infections, i.e., sporadic patients and independent point-source
outbreaks dominated foodborne infections, which have important implications for the design of future disease control
strategies.

Serotyping is still a widely used subtyping method for VP and other foodborne pathogens. However, we showed that
serotypes were not highly concordant with WGS-based CGs, which is consistent with previous studies25,26, indicating that
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serotyping does not accurately describe the VP population structure. For example, more than 20 serotypes were identi�ed in
pandemic PCG3 isolates25, and serotype O4:K12 was reported in multiple distinct lineages of VP26. Because WGS was
costly previously, serotyping was used to con�rm VP outbreaks in China, including in Shenzhen. Now that the cost has
decreased, WGS is becoming the new reference method for outbreak con�rmation, and genomic relatedness cutoffs to
de�ne outbreak clusters have been proposed for several foodborne pathogens27. However, there is currently no reference
cutoff for VP, and the cutoffs for other foodborne pathogens cannot be directly applied because characteristics such as
genetic diversity and mutation rate are different. The recently developed core-genome multi-locus sequence typing
(cgMLST) scheme was used to investigate four VP outbreaks and a maximum of three allele differences were identi�ed, but
no genomic relatedness cutoff was proposed20. We analyzed >100 FDOS-outbreaks and proposed a reference cutoff of ≤6
SNPs and showed its generalizability in external datasets. Furthermore, we found that removing SNPs caused by
homologous recombination had a limited impact on Ob-cluster de�nition, indicating that recombination analysis under the
outbreak scenario is optional, even for highly recombining bacteria like VP28,29. With the reference cutoff, 94% of the FDOS-
outbreaks can be captured; the large SNP distance between the remaining FDOS-outbreak isolates may result from strain
diversity in contaminated foods30.

Current outbreak surveillance in Shenzhen, as well as in China and many other counties, is mainly passive noti�cation
based, triggered by independent noti�cation of clustered patients from individual hospitals. If outbreak-associated patients
presented at different hospitals or even were treated by different clinical doctors, indicators of outbreak: clustered patients
may be neglected. Therefore, FDOS can detect large-scale outbreaks with large numbers of patients but is not sensitive to
small-scale outbreaks. The inherent limitation of FDOS makes it inevitable to underestimate the magnitude of outbreaks,
especially small-scale ones. WGS-based outbreak surveillance can detect and quantify the magnitude of outbreaks by
phylogenomic clustering analyses, which is active, and data driven. In this study, the numbers of Ob-clusters and associated
patients we detected were approximated to be 3-fold those of the FDOS-outbreaks, indicating a substantial underestimation
of outbreaks. Even using P-clusters (i.e., isolates from common sources) to quantify outbreaks, the numbers were still 1.8-
fold higher than those of the FDOS-outbreaks, whereas the scale of P-cluster-associated patients was similar to that of the
Ob-clusters.

Surprisingly, a high proportion (82%) of Ob-clusters contained exclusively (56%) or included (26%) outpatient isolates that
were not captured by FDOS, representing cryptic outbreaks or missed outbreak patients. Most of the cryptic Ob-clusters
(95%) were small scale (≤10 patients), and most of the missed outbreak patients (87%) appeared mainly in districts that
were different from the district where the FDOS-outbreaks were detected, which may explain why they were unrecognized by
traditional outbreak surveillance. These results highlight the advantages of centralized sequencing and analysis of data
from different districts to trace outbreaks. For example, in prospective studies of other foodborne pathogens such as
Salmonella and Listeria monocytogenes, centralized sequencing and analysis enabled the detection of multiple cryptic
outbreaks and additional outbreak-associated patients, and follow-up investigation established the epidemiological links
between patients11,12. However, despite the advantages of WGS-based surveillance, epidemiology and traceback evidence
are still needed to con�rm the links across the spread networks, and these will bene�t from more precise and timely
outbreak detection powered by WGS.

Transient point-source outbreaks have been considered as the common pattern of FBD outbreaks, although protracted
outbreaks caused by a persistent source have also been reported12,31. We linked 70% of the Ob-clusters to 61 P-clusters with
2–70 months duration, suggesting that most VP outbreaks in Shenzhen were likely related to a small number of hidden
persistent reservoirs. Because of its poor resolution, conventional subtyping-based surveillance cannot accurately link
extended time-period outbreaks, and therefore they were treated as independent events. Notably, there were more continued
Ob-clusters (n=197) and associated patients (n=1,308) than initial ones (173 Ob-clusters, 589 patients), and more than half
(57%) of the Ob-clusters and patients were continued ones during the peak seasonal outbreak period. These continued Ob-
clusters/patients would be preventable if the common sources were eliminated in time. These �ndings show the importance
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of eliminating the source to resolve outbreaks, and again highlight the advantage of WGS-based surveillance in detecting
extended time-period outbreaks.

Persistent reservoirs can be caused by repeated introduction from external sources and/or local colonized sources. VP
infections are commonly associated with consumption of raw or undercooked contaminated seafood, and most of the
seafood available in Shenzhen is imported from outside. Because the external seafood sources vary and can be affected by
many determinants, the scenario of repeated external introduction may not be the general cause. Instead, pathogenic VP
that have established local long-term stable environmental reservoirs in, for example, aquatic product containers and
aquaculture water of seafood markets, are more likely to be the general cause of continuous outbreaks through cross-
contaminated seafood. Further in-depth investigations to clarify the causes and geographical locations of the hidden
persistent reservoirs will inform the design of future control and prevention strategies.

There were obvious geographical differences of VP infections in the ten districts of Shenzhen. The westernmost coastal
district BA had much higher VP-prevalence (8.7%) and higher PCG diversity (21 PCGs) than the other districts (VP-
prevalence: <3.6%, PCGs: ≤15). We also showed that 71% of the total Ob-clusters, and 41–85% of the cross-district Ob-
clusters in other districts can be detected in BA, and nearly half of the Ob-cluster isolates were earliest detected or inferred to
BA sources, indicating that BA was the potential hotspot of outbreaks and that it acted as the hub of cross-district spread
and was a major source of outbreaks. The key role of BA may be related to its special geographical location on the western
coast, where many ports and aquatic markets are located, and a large amount of seafood is transferred from BA and
transported to other districts. Moreover, a recent metagenomics sequencing-based study showed that the abundance of
harmful Vibrio on the western coast of Shenzhen was signi�cantly higher than that on the eastern coast32. Together, these
results indicated the presence of extensive links across different districts, highlighting the necessity of centralized
surveillance rather than independent surveillance by ten district CDCs. Furthermore, the BA district, which was identi�ed as
the hotspot, hub, and major source of outbreaks, should be the focus of future outbreak surveillance and control.

The aim of establishing the FSS system was to prevent outbreaks and patients by actively detecting and eliminating
contaminated food. However, we found that the food isolates from FSS were distinct from the patient isolates; only 2% of
the FSS isolates were from PCGs and only one FSS isolate grouped into an Ob-cluster. The within-sample diversity of VP in
the FSS was not considered and only one isolate was selected and sequenced for each sample in this study. Therefore, the
failure to observe PCG isolates in FSS may be related to strain diversity in the sample and does not necessarily mean that
none of the PCG isolates were present. Although traditional Vibrio selective enrichment media was usually used to facilitate
the growth of VP, a recent study demonstrated that the relative abundance of pathogenic to non-pathogenic VP was
substantially reduced (20-fold) after enrichment30, thereby reducing the possibility of successfully isolating pathogenic
strains. We performed the enrichment before isolating the strains, which may have led to the isolation of few pathogenic
strains in FSS. This �nding highlights the importance of improving culture methods.

Our study has several limitations. First and most importantly, the retrospective study design made it impossible to
reinvestigate the epidemiological links among Ob-cluster patients. Although we combined genetic relatedness and
spatiotemporal data to de�ne Ob-clusters, further prospective studies are needed to better assess the concordance between
Ob-clusters and epidemiological de�ned outbreaks. Second, only outpatients from 16 sentinel hospitals were included in
this study, whereas outbreak-associated patients may go to other hospitals or not go to hospitals. Therefore, the number of
Ob-clusters/P-clusters represented only the minimum estimation of the magnitude of outbreaks. Finally, only one strain
from each patient/food sample was selected and sequenced, and strain diversity within a sample was not assessed. Further
strain diversity studies may provide clues for the large SNP distances observed between some FDOS-outbreak isolates and
the few PCG isolates from FSS.

The ultimate resolution that allows the discovery of tiny differences among isolates, and the sharp decrease in the cost of
sequencing, have made WGS a viable and powerful method in routine FBD surveillance2,3. In addition, standardized and
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digital WGS data make it possible to construct global surveillance networks, such as the SARS-CoV-2 genomic surveillance
network that is playing important roles in outbreak, transmission detection, and source tracking10,33. However,
comprehensively extracting the information from large-scale surveillance networks to facilitate the prevention and control of
FBDs is still challenging. In this study, we integrated citywide “big data” of genomes and epidemiological information, to
establish the model that mining previously neglected outbreaks, possible persistent common sources, the spread network
and its hub and source. Our results will help to not only improve the outbreak surveillance and investigation of VP but will
also provide a basis for the establishment of a “data-driven” strategy for the prevention and control of other FBDs.

Methods
Sampling framework and data collection

The Shenzhen CDC established a well-functioning FBD surveillance network consisting of three systems: Foodborne
Disease Outbreak Surveillance (FDOS), Infectious Diarrheal Diseases Surveillance (IDDS), and Food Safety Surveillance
(FSS). All hospitals in Shenzhen are required to report suspected outbreaks to district CDCs, followed by epidemiological
investigation and laboratory con�rmation. The FDOS was performed independently by ten district CDCs, then reported to the
city CDC. Documented FDOS outbreaks met the following criteria: (a) two or more clustered cases of diarrhea; (b) history of
dining together within 3 days of disease onset; (c) VP tested positive with the same serotype. Isolates from patients and
food associated with the suspected outbreaks were collected by the FDOS, and only VP isolates with the same serotype
were de�ned as FDOS-outbreak isolates. The IDDS routinely collected isolates from outpatients with diarrhea who presented
at 16 sentinel hospitals. IDDS outpatients were previously considered as sporadic because there were no recognized
epidemiological links. FSS strains were from food (mainly �sh and shell�sh) and the environments of aquatic markets. Only
one strain from a patient/environmental sample was archived and sequenced. Because data collection is part of the
infectious disease surveillance, individual informed consent was waived.

Whole genome sequencing

All the obtained VP isolates were stored in a −80°C freezer. For DNA extraction, the isolates were inoculated in thiosulfate-
citrate-bile-salts-sucrose (TCBS) agar plates at 37°C. Genomic DNA was extracted using the Sodium-Tris-EDTA (STE)
method. Pair-end libraries with a mean insert size of 350 bp were prepared using a NEBNext Ultra DNA Library Prep Kit
(NEB). Whole genome sequencing was performed on Illumina HiSeq X-Ten platforms; the average read length was 150 bp,
and an average of 1.5 Gb clean reads were generated for each strain. The genome quality assessment process was shown
in Extended Data Fig. 1.

Serotyping and multi-locus sequence typing

Serotyping was performed using traditional serum slide agglutination tests and commercial antisera (Denka Seiken, Tokyo,
Japan). Multi-locus sequence typing (MLST) was performed using mlst (https://github.com/tseemann/mlst) to scan the
assembled genome sequences against the VP PubMLST database (https://pubmlst.org/organisms/vibrio-
parahaemolyticus).

Single nucleotide polymorphisms (SNPs) calling and phylogeny

Core-genome (regions present in >99.5% strains) SNPs were identi�ed using the Snippy pipeline v4.6.0
(https://github.com/tseemann/snippy), with RIMD 2210633 as the reference genome. Repetitive regions in the reference
genome were identi�ed using Tandem Repeats Finder (TRF) v4.07b34 and self-aligning by BLASTN. Recombination regions
of FDOS-outbreak isolates were identi�ed using Gubbins v2.3.435. Non-repetitive core-SNPs were used to construct the
maximum-likelihood (ML) and minimum-spanning (MS) trees. The ML tree of 3,642 isolates was constructed using

https://github.com/tseemann/snippy
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FastTree v2.1.10,36 and the ML trees of cross-district Ob-cluster isolates were constructed using IQ-TREE v2.0.337 with the
auto-detected best-�tting substitution model. The MS trees of P-cluster isolates were constructed using GrapeTree v1.5.0.38

Phylogenomic clustering analysis

Two or more isolates were classi�ed into CGs, P-clusters, and Ob-clusters based on pairwise SNP distances and/or time
intervals (Fig. 1). First, CGs were de�ned to show the overall population structure as previously described28,29. We analyzed
the pairwise SNP distances between all the isolates (Extended Data Fig. 2) and grouped the isolates into CGs using a cutoff
of ≤2,500 SNPs. Second, P-clusters were de�ned to represent isolates that arose from common sources. Currently, there is
no de�nition standard for such clusters. We analyzed pairwise SNP distances between isolates from FDOS-outbreaks and
previously reported outbreaks16–20, and selected ≤6 SNPs as the cutoff of P-clusters. After taking recombination into
account, we detected 22 outlier FDOS-outbreak isolates that had >100 SNPs from any of the other isolates in the same
FDOS-outbreak, which were unlikely to be derived from a recent common ancestor, we excluded them from the analysis.
Finally, to compare with FDOS-outbreaks that taken time-intervals into account, we performed secondary clustering of P-
cluster isolates based on time intervals and de�ned within-1-month P-cluster/sub-P-cluster isolates as outbreak clusters (Ob-
clusters, Fig. 1). A 1-month window was selected because it is a common period for outbreak analysis39 and a practical
turnaround time for routine sequencing and analysis. Sensitivity analysis was performed to assess the effect of different
thresholds (SNPs ≤3 and ≤10; 1-week window) on Ob-cluster de�nition and interpretation.

Virulence factors

ABRicate (https://github.com/tseemann/abricate) was used to detect the presence/absence of two major virulence factor
genes, tdh and trh, which encode thermostable direct hemolysin and tdh-related hemolysin, respectively. The tdh or trh gene
was de�ned as present if the sequence coverage was >70%.

Phylogeographical analysis

The geographical sources of cross-district Ob-clusters were inferred using SIMMAP (stochastic character mapping of
discrete traits on phylogenies)40,41. Geographical districts were treated as discrete traits and mapped to the ML trees using
the all-rates-different (ARD) model with 100 replicates. The district of the root node with posterior probability >0.7 was
considered as the inferred source. Subsampling analysis was performed by selecting 1–3 isolates in each district next to
the root node.

Data availability

The sequencing data have been deposited in the NCBI Sequence Read Archive under study accessions PRJNA745505.
Background information of sequenced isolate is listed in Supplementary Table 1.
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Table
Table 1. Demographic and clinical symptom characteristics of Vibrio parahaemolyticus infections in Shenzhen, China, 2002-2018.

  Total 
 (n=3,642)

Clonal groups (CGs) Singleton 
 (non-
CGs, 

n=519)

P-
clusters

(n=2261)

Ob-
clusters

(n=1910)

Non-Ob-
clusters

(n=1732)
Pathogenic CGs (PCGs) Non-

PCGs
(n=483)

 PCG3
 (n=1,966)

PCG189
(n=326)

PCG-
others

(n=348)

Total 
 (n=2,640)

Type (no., frequency)             
Patient 2686

(74%)
1946
(99%)

324
(99%)

334
(96%)

2604
(99%)

21 (4%) 61 (12%) 2237
(99%)

1897
(99%)

789
(46%)

Environment  956 (26%) 20 (1%)   14 (4%) 36 (1%) 462
(96%)

458
(88%)

24 (1%) 13 (1%) 943
(54%)

Source                    
IDDS 1856

(51%)
1337
(68%)

220
(67%)

246
(71%)

1803
(68%)

10 (2%) 43 (8%) 1548
(68%)

1259
(66%)

597
(34%)

FDOS 883 (24%) 622 (32%) 105
(32%)

90
(26%)

817 (31%) 30 (6%) 36 (7%) 702
(31%)

650
(34%)

233
(13%)

FSS 903 (25%) 7 (0%)   12 (3%) 20 (1%) 443
(92%)

440
(85%)

11 (0%) 1 (0%) 902
(52%)

Age                    
Median 
 (IQR)

28 (23–
35),
n=1910

28 (23–
35),
n=1397

28 (23–
35),
n=226

27 (23–
36),
n=242

28 (23–
35),
n=1865

29 (20–
39),
n=11

27 (23–
37),
n=34

28 (23–
35),
n=1630

27 (23–
35),
n=1412

28 (24–
35),
n=498

Sex (no., frequency)                  
Female 827 (42%) 599 (41%) 98

(41%)
105
(43%)

802 (42%) 7 (58%) 18 (50%) 684
(40%)

593
(40%)

234
(46%)

Male 1152
(58%)

845 (59%) 142
(59%)

142
(57%)

1129
(58%)

5 (42%) 18 (50%) 1007
(60%)

872
(60%)

280
(54%)

Symptom (no., frequency)                  
Diarrhea 1747

(100%)
1264
(100%)

210
(100%)

231
(100%)

1705
(100%)

9
(100%)

33 (97%) 1473
(100%)

1259
(100%)

488
(99%)

Abdominal
pain

1369
(78%)

1001
(79%)

161
(77%)

173
(75%)

1335
(78%)

7 (78%) 27 (79%) 1159
(78%)

997
(79%)

372
(76%)

Vomiting 682 (39%) 508 (40%) 69
(33%)

87
(38%)

664 (39%) 5 (56%) 13 (38%) 586
(40%)

505
(40%)

177
(36%)

Fever 177 (10%) 140 (11%) 14 (7%) 19 (8%) 173 (10%) 0 (0%) 4 (12%) 148
(10%)

128
(10%)

49 (10%)

Figures
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Figure 1

Study design �owchart (A) and de�nitions of the different classi�cation concepts used in this study (B).
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Figure 2

Population structure and spatiotemporal distribution of Vibrio parahaemolyticus (VP) lineages in Shenzhen, China, 2002-
2018. (A) Maximum-likelihood phylogenic tree of 3,642 VP isolates. Colored branches and background indicate pathogenic
clonal groups (PCGs). Bars below the tree show the isolation time, source, type, and presence/absence of two key virulence
factors of the strains. (B) Size and duration distribution of PCGs. (C) Temporal dynamics of the number (line, left Y-axis)
and proportion (bars, right Y-axis) of PCGs in patient isolates. Years (2002–2005) had less than 50 patient isolates were
merged. (D) Correlations between VP-prevalence in outpatients with diarrhea and number of PCGs. The gray background is
the 95% con�dence interval. (E) Geographical distribution of PCGs in patient isolates from ten districts of Shenzhen. Pie
charts show the proportion of different PCGs in each district, and their size is scaled based on the number of patient
isolates.
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Figure 3

Phylogenomic clusters (P-clusters) and outbreak clusters (Ob-clusters). (A) Size distribution of Foodborne Disease Outbreak
Surveillance (FDOS)-outbreaks, P-clusters, and Ob-clusters. (B) Pairwise SNP distances distribution (bars, left Y-axis)
between FDOS-outbreaks (top) and all (bottom) isolates and the proportion of clustered FDOS-outbreak isolates under
different SNP cutoffs (lines and points, right Y-axis). Blue and red indicate all the SNPs and non-recombined SNPs (after
removing SNPs located in recombination regions), respectively. (C) Duration distribution of P-clusters. (D) Temporal
distributions (left) and minimum spanning trees (right) of the 61 P-clusters that contained two or more Ob-clusters. Left:
color and size of a point indicates the number of patients within-1-month, and bold and normal circles indicate initial and
continuous Ob-clusters, respectively. Right: point colors indicate different Ob-clusters or non-Ob-clusters within a P-cluster,
and point sizes are scaled based on the number of patients. The width and shape of the lines that link points indicate SNP
distance. 
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Figure 4

Spatiotemporal dynamics of outbreak clusters (Ob-clusters). (A) Temporal dynamics of the number (line, left Y-axis) and
proportion (bars, right Y-axis) of initial (blue), continued (red) Ob-clusters/patients and non-Ob-cluster patients (green).
Years/months with less than 50 patient isolates were merged. (B) Spatial distribution of Ob-clusters in ten districts.
Numbers in brackets next to the heatmap indicate the total number of Ob-clusters in a district. Numbers in the heatmap
indicate the number of local Ob-clusters or shared cross-district Ob-clusters between two districts, and colors indicate the
proportions of local/cross-district Ob-clusters to the total number of the upper and right districts. (C) Geographical
distribution of initial and continued Ob-cluster patients and non-Ob-cluster patients in ten districts. (D) Earliest detection
locations (red) and inferred source districts (blue) of cross-district Ob-clusters.
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