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Abstract
Prostate cancer (PC) is heterogeneous in the tumor immune microenvironment (TIME). Subtyping of PC
based on the TIME could provide new insights into intratumor heterogeneity and its correlates of clinical
features. Based on the enrichment scores of 28 immune cell types in the TIME, we performed
unsupervised clustering to identify immune-speci�c subtypes of PC. The clustering analysis was
performed in ten different bulk tumor transcriptomic datasets and in a single cell RNA-Seq (scRNA-seq)
dataset, respectively. We identi�ed two PC subtypes: PC immunity high (PC-ImH) and PC immunity low
(PC-ImL), consistently in these datasets. Compared to PC-ImL, PC-ImH displayed stronger immune
signatures, worse clinical outcomes, higher epithelial-mesenchymal transition (EMT) signature, tumor
stemness, intratumor heterogeneity (ITH) and genomic instability, and lower incidence of TMPRSS2-ERG
fusion. Tumor mutation burden (TMB) showed no signi�cant difference between PC-ImH and PC-ImL,
while copy number alteration (CNA) was more signi�cant in PC-ImL than in PC-ImH. PC-ImH could be
further divided into two subgroups, which had signi�cantly different immune in�ltration levels and
clinical features. In conclusion, “hot” PCs have stronger anti-tumor immune response while worse clinical
outcomes versus “cold” PCs. CNA instead of TMB plays a crucial role in the regulation of TIME in PC.
TMPRSS2-ERG fusion correlates with decreased anti-tumor immune response while better disease-free
survival in PC. The identi�cation of immune-speci�c subtypes has potential clinical implications for PC
immunotherapy.

Background
Prostate cancer (PC) is the second most common cancer in men worldwide, with more than 1,275,000
new diagnoses and 350,000 deaths annually. Abundant evidence has shown that PC is highly
heterogeneous in genomic and phenotypic characteristics [1]. By analyzing 333 primary PCs, The Cancer
Genome Atlas (TCGA) revealed that more than 70% of PCs belonged to one of seven subtypes in terms of
speci�c gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1) [2]. Salami et al.
demonstrated transcriptomic heterogeneity in PC by analyzing 156 multifocal, low-grade, and high-grade
PC samples [3]. Wilkinson et al. showed that speci�c molecular features, e.g., loss of chromosome 10q
and TP53 alterations, correlated with poor response to neoadjuvant androgen deprivation therapy [4].

PC treatments include two categories: local treatments and systemic treatments. Local treatments refer
to surgery and radiation therapy, while systemic treatments include hormonal therapy, targeted therapy,
chemotherapy, and immunotherapy. In particular, immunotherapies, such as immune checkpoint
inhibitors (ICIs), have recently achieved success in treating various malignancies, including refractory and
metastatic tumors [5]. Currently, several ICIs, included sipuleucel-T [6], abiraterone acetate [7],
enzalutamide [8], cabazitaxel [9], radium-223 [10], and apalutamide [11], have been approved by the Food
and Drug Administration (FDA) to treat androgen depletion therapy-resistant PCs.

Nevertheless, current immunotherapeutic strategies are bene�cial to only a subset of cancer patients.
Thus, discovery of effective markers for immunotherapeutic responses is urgently in need. Several such
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markers have been identi�ed and are being used in clinical practice, including PD-L1 expression [12], DNA
mismatch repair de�ciency [13], and tumor mutation burden (TMB) [14]. Besides, the tumor immune
microenvironment (TIME) plays a crucial role in immunotherapeutic responses [15]. Overall, the “hot”
tumors with dense T cell in�ltration are more likely to respond to immunotherapy, compared to the “cold”
tumors with sparse T cell in�ltration [16]. Thus, identi�cation of “hot” and “cold” tumors may aid
strati�cation of cancer patients responsive to immunotherapy. In a previous study [17], we have
developed an unsupervised machine learning method to identify “hot” and “cold” tumor subtypes based
on immune signature scores.

In this study, we performed unsupervised clustering based on the enrichment scores of 28 immune cell
types in the TIME to identify immune-speci�c subtypes of PC. To demonstrate the reproducibility of this
method, we performed the clustering analysis in ten different transcriptomic datasets for PC bulk tumors.
Consistently, we identi�ed two PC subtypes which exhibited signi�cantly different molecular and clinical
features. Finally, we validated our method and results in a single cell RNA-Seq (scRNA-seq) dataset. Our
identi�cation of immune-speci�c subtypes may provide new insights into associations between the TIME
and molecular and clinical features in PC as well as potential clinical implications for the immunotherapy
of this disease.

Methods

Datasets
We downloaded ten gene expression pro�ling datasets for PC, including TCGA-PRAD, DKFZ2018,
GSE21034, GSE46602, GSE54460, GSE70770, GSE107299, GSE116918, GSE141551, and GSE157547.
The TCGA-PRAD data were downloaded from the genomic data commons (GDC) data portal
(https://portal.gdc.cancer.gov/). The DKFZ2018 data were obtained from cBioPortal
(http://www.cbioportal.org/). The other data were downloaded from the NCBI gene expression omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/). From GDC, we also downloaded pro�les of somatic
mutations (“maf” �le), somatic copy number alterations (SCNAs) (“SNP6” �les), and protein expression
(normalized) in TCGA-PRAD. In addition, we downloaded a single-cell RNA sequencing (scRNA-seq)
dataset (GSE141445) for PC [18] from the NCBI GEO. A summary of these datasets is presented in
Supplementary Table S1.

Calculation of enrichment scores of immune signatures,
pathways, and phenotypic features
We calculated the enrichment score of an immune signature, pathway, or phenotypic feature in a tumor
sample by the single-sample gene-set enrichment analysis (ssGSEA) [19] of the expression pro�les of its
gene set. We collected the gene sets representing immune signatures, pathways, or phenotypic features
from KEGG [20] or related publications, as shown in Supplementary Table S2.

Identi�cation of PC subtypes
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We identi�ed PC subtypes based on the enrichment scores (ssGSEA scores) of 28 immune cell types by
hierarchical clustering. The 28 immune cell types included CD56-bright natural killer (NK) cells, effector
memory CD4 T cells, eosinophil, CD56-dim NK cells, type 17 T helper cells, activated B cells, monocytes,
memory B cells, activated CD4 T cells, type 2 T helper cells, plasmacytoid dendritic cells, neutrophils,
macrophages, effector memory CD8 T cells, myeloid-derived suppressor cell (MDSC), immature B cells, T
follicular helper cells, NK cells, immature dendritic cells, mast cells, type 1 T helper cells, activated
dendritic cells, central memory CD4 T cells, gamma delta T cells, central memory CD8 T cells, regulatory T
cells, activated CD8 T cells, and natural killer T cells [21].

Calculation of tumor immune scores
We calculated immune scores of tumors by ESTIMATE [22] with the input of the expression pro�les of
immune genes. The immune score re�ects the tumor immune in�ltration level.

Survival analysis
We compared disease-free survival (DFS) rates between PC subtypes using the Kaplan-Meier (K-M) model
[23]. K-M curves were used to show the survival time differences, and log-rank tests were utilized to
evaluate the signi�cance of survival time differences.

Pathway analysis
We �rst identi�ed differentially expressed genes (DEGs) between PC subtypes using Student’s t test with
a threshold of adjusted P-value < 0.05 and fold change of mean expression levels > 1.5. By input of the
upregulated DEGs in a PC subtype into GSEA [24], we obtained the KEGG pathways highly enriched in the
subtype with a threshold of adjusted P-value < 0.05.

Calculation of TMB and SCNAs
We determined a tumor sample’s TMB as the total count of its somatic mutations. We calculated G-
scores in tumors by GISTIC2 [25] with the input of “SNP6” �les.

Class prediction
We �rst normalized attribute values (ssGSEA scores of immune cells) by Z score and transformed all
attribute values into the range between -3 and 3 by setting an attribute value as 3 if it was greater than 3
and setting an attribute value as -3 if it was less than -3. We used the Random Forest (RF) algorithm [26]
to predict PC subtypes. In the RF model, the number of trees was set to 500, and the features were the 28
immune cells. We reported prediction accuracies, sensitivities, and speci�cities. The class prediction was
performed using the R package “randomForest”.

Statistical analysis
We used the Mann–Whitney U test to compare two classes of non-normally distributed data and
Student’s t test for normally distributed data. We used the Spearman method to correlate immune scores
and other variables. The Fisher’s exact test was utilized to evaluate the association between two
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categorical variables. To adjust for P-values in multiple tests, we used the Benjamini-Hochberg method
[27] to calculated the false discovery rate (FDR). We performed all statistical analyses in the R
programming environment (version 4.0.3).

Results

Identi�cation of PC subtypes based on immune cell
enrichment scores
Based on the enrichment scores of 28 immune cell types [28], we identi�ed PC subtypes by hierarchical
clustering. We performed the clustering analysis in ten PC datasets (TCGA-PRAD, DKFZ2018, GSE21034,
GSE46602, GSE54460, GSE70770, GSE107299, GSE116918, GSE141551, and GSE157547), respectively.
The clustering analysis identi�ed two PC subtypes: PC immunity high (PC-ImH) and PC immunity low
(PC-ImL), consistently in the ten datasets (Fig. 1A). To verify the signi�cantly higher immunity in PC-ImH
versus PC-ImL, we compared the enrichment scores of both immunostimulatory signatures (CD8+ T cells,
immune cytolytic activity, and interferon (IFN) response) and immunosuppressive signatures (CD4+
regulatory T cells, M2 macrophages, T cell exhaustion, and myeloid-derived suppressor cells (MDSCs))
between PC-ImH and PC-ImL. Interestingly, all these immune signatures displayed signi�cantly higher
enrichment scores in PC-ImH than in PC-ImL (one-tailed Mann–Whitney U test, P < 0.01) in the ten
datasets (Fig. 1B). Also, the ratios of immunostimulatory to immunosuppressive signatures (CD8+/CD4+
regulatory T cells), which were the base-2 log-transformed values of the geometric mean expression
levels of all marker genes of CD8+ T cells divided by those of CD4+ regulatory T cells, were signi�cantly
higher in PC-ImH than in PC-ImL (two-tailed Student’s t test, P < 0.05) in most of these datasets (Fig. 1B).
These results con�rmed that PC-ImH had signi�cantly stronger immune signatures than PC-ImL.

Clinical and phenotypic features of the PC subtypes
We compared disease-free survival (DFS) time between PC-ImH and PC-ImL in three datasets (TCGA-
PRAD, GSE116918, and GSE46602) with survival data available. In these datasets, PC-ImL were likely to
show better DFS than PC-ImH (log-rank test, P = 0.014, 0.078, and 0.117, respectively) (Fig. 2A). To
support that the survival difference between both subtypes has an association with their different
immune in�ltration levels, we compared DFS between high-immune-score (> mean) and low-immune-
score (< mean) PC patients. The immune score represents the immune in�ltration level in the tumor,
which was calculated by the ESTIMATE algorithm [22]. We observed that low-immune-score patients
tended to have a better DFS than high-immune-score patients (Fig. 2B). It supports that the survival
difference between both PC subtypes correlates with their different tumor immune microenvironment.

In TCGA-PRAD, we compared several clinical features between both subtypes, including blood level of
prostate-speci�c antigen (PSA), Gleason score, pathological stage, lymph node staging, and metastasis.
The elevated level of prostate-speci�c antigen (PSA) is often associated with PC. We found that PSA
levels were signi�cantly higher in PC-ImH than in PC-ImL (one-tailed Mann–Whitney U test, P = 0.009)
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(Fig. 2C). Tumor grade indicates how abnormal the tumor cells and the tumor tissue look under a
microscope compared to normal cells and how quickly a tumor is likely to grow and spread. The Gleason
score, ranging from 6 to 10, is the classical grading system for PC. We found that PC-ImH harbored a
signi�cantly higher proportion of high-grade (Gleason score of 9 to 10) tumors than PC-ImL (Fisher’s
exact test, P = 0.013; odds ratio (OR) = 1.68) (Fig. 2D). The pathological stage assesses how pervasive
the cancer cells are within and around the prostate. We found that PC-ImH harbored a higher proportion
of late-stage (T3-4) tumors than PC-ImL (P = 0.063; OR = 1.43) (Fig. 2D). Lymph node staging indicates
whether cancer cells are present in nearby lymph nodes. We observed that PC-ImH harbored a
signi�cantly higher proportion of patients whose cancer cells present in nearby lymph nodes than PC-ImL
(P = 0.030; OR = 1.78) (Fig. 2D). Finally, we found that PC-ImH involved a signi�cantly higher proportion
of patients with metastasis than PC-ImL (P = 0.015; OR = 3.52) (Fig. 2D). Similar results were also
observed in the other datasets. For example, in DKFZ2018, high-grade tumors had a signi�cantly higher
proportion in PC-ImH than in PC-ImL (P = 0.009; OR = 5.65).

We further compared two tumor phenotypes between PC-ImH and PC-ImL, including epithelial-
mesenchymal transition (EMT) signature and intratumor heterogeneity (ITH). These phenotypes are
associated with tumor progression, metastasis, and drug resistance [29–31]. We found that EMT
signature scores were signi�cantly higher in PC-ImH than in PC-ImL in the ten datasets (P < 0.01)
(Fig. 2E); ITH scores, which were evaluated by the DEPTH algorithm [30], were also signi�cantly higher in
PC-ImH than in PC-ImL in two datasets (P < 0.05) (Fig. 2F).

To investigate whether the worse DFS in PC-ImH versus PC-ImL was in�uenced by other confounding
variables, we performed multivariate survival analysis with the multivariate Cox proportional hazards
model. In the model, the response variable was DFS time, and the predictor variables included age, PSA
level, Gleason score, and subtype. We found that the subtype PC-ImH was still a risk factor (P = 0.049;
hazard ratio (HR) = 1.603 and 95% con�dence interval (CI): [1.002, 2.560]) (Fig. 2G). As expected, both
Gleason score (P < 0.001; HR = 2.261 and 95% CI: [1.773, 2.884]) and PSA level (P < 0.001; HR = 1.065
and 95% CI: [1.036, 1.094]) were also signi�cant risk factors for DFS in PC. However, age showed no
signi�cant correlation with DFS time in PC (P = 0.506).

Taken together, these results suggest a worse prognosis in PC-ImH versus PC-ImL.

Genomic features of the PC subtypes
Tumor genomic features, such as TMB and CNA, have been associated with anti-tumor immune response
in cancer [32]. However, TMB showed no signi�cant difference between PC-ImH and PC-ImL (two-tailed
Mann–Whitney U test, P = 0.98) (Fig. 3A). In contrast, CNA were signi�cantly different between both
subtypes. For example, homologous recombination de�ciency (HRD) may contribute to aneuploidy (i.e.,
CNA) in cancer [33]. The HRD scores [33] were signi�cantly higher in PC-ImH than in PC-ImL (one-tailed
Mann–Whitney U test, P = 0.04) (Fig. 3B). The G-score calculated by GISTIC2 [34] represents the
amplitude of the CNA and the frequency of its occurrence across a group of samples. We found that the
G-scores of copy number ampli�cations and deletions were signi�cantly higher in PC-ImL than in PC-ImH
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(Fig. 3C). Altogether, these results suggest: (1) PC-ImH has a higher level of genomic instability than PC-
ImL; and (2) CNA rather than TMB has a signi�cant impact on the TIME in PC.

We further compared activities (enrichment scores) of nine DNA damage repair (DDR) pathways between
PC-ImH and PC-ImL. The nine pathways included mismatch repair, base excision repair, nucleotide
excision repair, the Fanconi anemia (FA) pathway, homology-dependent recombination, non-homologous
DNA end joining, direct damage reversal/repair, translesion DNA synthesis, and damage sensor. Notably,
the enrichment scores of these pathways tended to be higher in PC-ImL and PC-ImH (Fig. 3D). It could
explain why PC-ImL is more genomically stable than PC-ImH in terms of DNA repair de�ciencies being a
primary factor responsible for genomic instability in cancer [35].

Pathways highly enriched in the PC subtypes
We identi�ed KEGG pathways highly enriched in PC-ImH and PC-ImL by GSEA [24]. The pathways highly
enriched in PC-ImH and PC-ImL were obtained by gene set enrichment analysis of signi�cantly
upregulated genes in PC-ImH and PC-ImL, respectively. Using a threshold of adjusted P-value < 0.05, we
identi�ed 67 pathways upregulated in PC-ImH and zero in PC-ImL. The pathways highly enriched in PC-
ImH were mainly involved in to immune, stromal and oncogenic signatures (Fig. 4A). The immune-related
pathways included chemokine signaling, cytokine-cytokine receptor interactions, Toll-like receptor
signaling, natural killer cell-mediated cytotoxicity, leukocyte transendothelial migration, antigen
processing and presentation, complement and coagulation cascades, NOD-like receptor signaling, Jak-
STAT signaling, Fc epsilon RI signaling, Fc gamma R-mediated phagocytosis, cytosolic DNA-sensing, T
cell receptor, B cell receptor, and TGF-β signaling. The stromal signature-related pathways included cell
adhesion molecules, regulation of actin cytoskeleton, focal adhesion, ECM-receptor interaction, adherens
junction, and gap junction. The oncogenic pathways MAPK signaling, apoptosis, VEGF signaling, p53,
and Wnt signaling. In addition, several pathways involved in neural regulation were also highly enriched
in PC-ImH, including axon guidance, neuroactive ligand receptor interaction, and neurotrophin signaling.
The upregulation of numerous immune-rated pathways in PC-ImH con�rmed the stronger immune
signatures in this subtype versus PC-ImL. Furthermore, we observed that the enrichment scores of the
oncogenic pathways enriched in PC-ImH tended to have positive correlations with immune scores in the
ten datasets (Spearman correlation, P < 0.05) (Fig. 4B). It indicates that the upregulation of these
pathways may activate the in�ammatory TME in PC.

Mutation pro�les in the PC subtypes
We found eight genes showing signi�cantly lower mutation frequencies in PC-ImH than in PC-ImL in
TCGA-PRAD (Fisher’s exact test, P < 0.05; OR < 0.14) (Fig. 5A). The eight genes included KIAA0907, PIPSL,
DUS3L, SH3TC2, SRGAP1, TRAV9-2, AGAP10, and CDH12. Notably, the mutations of these genes
correlated with lower immune scores in PC (P < 0.05) (Fig. 5B). In contrast, 25 genes displayed
signi�cantly higher mutation frequencies in PC-ImH than in PC-ImL in TCGA-PRAD (Fisher’s exact test, P <
0.05; OR > 3.46) (Fig. 5A). These genes included FOXP2, MALAT1, PCDHB7, HLA-A, LYST, MYH13,
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PCDHA6, DIDO1, SCN10A, STAB2, HECTD4, MAP1A, MYO18B, TBC1D2, MN1, MUC2, PIWIL1, ZNF423,
ZNF733P, ANKRD26, BCL11A, HSPD1P6, KIAA1462, LRRC66, and XKR4. As expected, the mutations of
these genes were likely to correlated with higher immune scores in PC (P < 0.05) (Supplementary Fig. S1).

Protein expression pro�les of the PC subtypes
We found 17 proteins differentially expressed between PC-ImH and PC-ImL in TCGA-PRAD (two-tailed
Student’s t test, FDR < 0.05) (Fig. 6A). Among these proteins, six displayed signi�cant higher expression
levels in PC-ImH than in PC-ImL, including Stathmin, PREX1, Cyclin_D1, HSP70, Lck, and Syk. In fact,
many of these proteins have been associated with PC. For example, Stathmin, a member of microtubule-
destabilizing protein family, plays a critical role in the regulation of mitosis and is overexpressed in
various cancers [36]. This protein has been suggested as a target for the treatment of PC [36]. PREX1, a
guanine nucleotide exchange factor for the RHO family of small GTP-binding proteins, is overexpressed
in various cancers and its overexpression promotes PC metastasis [37]. Cyclin_D1 is a key regulator of
cell cycle and its overexpression is associated with PC metastasis [38]. Hsp70, a stress-inducible protein,
has been indicated as a potential biomarker and therapeutic target in PC [39, 40]. SYK, a member of the
Syk family of tyrosine kinases, has been implicated as a candidate therapeutic target for the therapy of
advanced PC [41]. Overall, previous studies have indicated that overexpression of these proteins is
associated with PC advancement or metastasis, consistent with their upregulation in the subtype with
worse prognosis. Notably, most of these proteins displayed positive expression correlations with immune
scores (Spearman correlation, P < 0.05) (Fig. 6B), consistently with their upregulation in PC-ImH.

The 11 proteins having higher expression levels in PC-ImL than in PC-ImH included FASN, Claudin-7,
ACC1, E-Cadherin, ACC_pS79, β-Catenin, VEGFR2, p70S6K, mTOR, SCD1, and Bak. In contrast with the
proteins upregulated in PC-ImH, downregulation of many of these proteins is associated with PC
progression, such as E-Cadherin [42], mTOR [43], and Bak [44]. As expected, most of these proteins
showed negative expression correlations with immune scores (Spearman correlation, P < 0.05) (Fig. 6B),
consistently with their upregulation in PC-ImL.

Prediction of the PC subtypes
To demonstrate the predictability of the immune signature scores-based classi�cation method, we
performed the class prediction of the PC subtypes based on the enrichment scores of the 28 immune cell
types by the Random Forest (RF) algorithm [26]. We used a dataset as the training set and the other nine
datasets as test sets by turns. When TCGA-PRAD was the training set, its 10-fold cross-validation (CV)
accuracy, sensitivity, and speci�city was 91.8%, 92.6%, and 92.2%, respectively. In seven of the nine test
sets, the prediction accuracies were higher than 80% (higher than 90% in two test sets); in all the nine test
sets, the sensitivities were higher than 80% (higher than 90% in six test sets); in �ve test sets, the
speci�cities were higher than 80% (higher than 90% in three test sets) (Fig. 7). We obtained similar results
when the other datasets were the training set (Fig. 7). These results indicate the predictability of the
immune signature scores-based classi�cation method.
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Validation of the subtyping method in scRNA-seq data
Using the immune signature scores-based clustering method, we analyzed a scRNA-seq dataset
(GSE141445) [18]. By the t-distributed stochastic neighbor embedding (tSNE) algorithm [45], we clustered
36424 single cells (Fig. 8A). The malignant and non-malignant cells were clearly separated. Moreover, the
malignant cells were clearly separated based on different patients. For each PC patient, we hierarchically
clustered its tumor cells based on their enrichment scores of four immune-rated pathways, including
antigen processing and presentation, PD-L1 expression pathway in cancer, apoptosis, and JAK-STAT
signaling. We used the four immune signatures instead of the 28 immune cell types for clustering bulk
tumors because these immune signatures are expressed in tumor cells themselves. Consistently, we
classi�ed all tumor cells in a patient into two subgroups, also termed PC-ImH and PC-ImL (Fig. 8B).
Interestingly, we found that PC-ImH tumor cells were obviously closer to T cells than PC-ImL tumor cells
(Fig. 8C).

Based on the single cell clustering results, we de�ned a PC patient as PC-ImH if most (> 50%) of its tumor
cells belonged to the immunity-high group (PC-ImH), otherwise as PC-ImL. According to this rule, seven
and six PC patients were classi�ed into PC-ImH and PC-ImL, respectively (Fig. 8D). Likewise, we
compared clinical, phenotypic, and molecular features between both subtypes in this dataset. Consistent
with previous results, PSA levels were signi�cantly higher in PC-ImH than in PC-ImL (P = 0.009) (Fig. 8E).
The stemness scores, and cell cycle activity (ssGSEA scores of the cell cycle pathway) were also
signi�cantly higher in PC-ImH than in PC-ImL (P < 0.05) (Fig. 8E). These results supported that PC-ImH
had a worse prognosis than PC-ImL.

Identi�cation of two subgroups in PC-ImH
In TCGA-PRAD and GSE116918, there were signi�cantly different survival prognosis between PC-ImH and
PC-ImL (Fig. 2A). We further analyzed both datasets by the graph learning-based dimensionality
reduction analysis [46]. We found that PC-ImH could be further divided into two subgroups, termed PC-
ImH-A and PC-ImH-B (Fig. 9A). Compared to PC-ImH-B, PC-ImH-A showed stronger immune signatures
(Fig. 9B) but worse DFS (Fig. 9C); PC-ImH-A harbored a higher proportion of late-stage (T3-4) tumors than
PC-ImH-B (P < 0.001; OR = 2.48) (Fig. 9D). Moreover, PC-ImH-A had higher stemness scores, ITH levels
and MKI67 expression levels than PC-ImH-B (Fig. 9E). Overall, these results are consistent with the
previous results of the comparisons between PC-ImH and PC-ImL, supporting the negative association
between immune activities and clinical outcomes in PC.

Association between TMPRSS2-ERG fusion and immune
signatures in PC
TMPRSS2-ERG fusion has been indicated as a biomarker for PC [47]. Interestingly, in two datasets (TCGA-
PRAD and DKFZ2018) with TMPRSS2-ERG fusion data available, TMPRSS2-ERG fusion was consistently
more frequent in PC-ImL than in PC-ImH (Fisher’s exact test, P < 0.05; OR > 1.5) (Fig. 10A). It indicates a
negative association between TMPRSS2-ERG fusion and anti-tumor immune response. Indeed, in both
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datasets, the tumors with TMPRSS2-ERG fusion displayed signi�cantly lower immune signature scores
than those without TMPRSS2-ERG fusion (Fig. 10B). Moreover, the tumors with TMPRSS2-ERG fusion
showed better DFS than those without TMPRSS2-ERG fusion (Fig. 10C). It suggests that TMPRSS2-ERG
fusion could be a positive prognostic factor for PC patients, while it is a biomarker for PC tumorigenesis.

Discussion
We identi�ed two immune-speci�c subtypes of PC based on the enrichment scores of 28 immune cell
types. Compared to PC-ImL, PC-ImH displayed higher levels of immune in�ltration and stromal contents,
worse prognosis and tumor progression, higher scores of EMT signature, tumor stemness, and ITH, and
higher level of genomic instability. Our data suggest that “hot” PCs have stronger anti-tumor immune
response while worse clinical outcomes compared to “cold” PCs. This �nding is consistent with that from
a previous study [48]. The main reason could be that the strong anti-tumor immune response is in fact the
tumor progression-promoting in�ammation in PC [49]. The negative association between anti-tumor
immune response and clinical outcomes have also been indicated in some cancer types, such as gliomas
[50]. However, in many other cancer types, such as head and neck squamous cell cancer [51], gastric
cancer [52], and triple-negative breast cancer [53], elevated anti-tumor immune response is associated
with better clinical outcomes. Thus, the association between anti-tumor immune response and clinical
outcomes is cancer type dependent.

Interestingly, although high TMB is a predictive biomarker for the active response to immunotherapy for
its increased production of neoantigens to incite anti-tumor immune response, TMB showed no
signi�cant difference between PC-ImH and PC-ImL. However, CNA, an immunosuppressive marker [32], is
more signi�cant in PC-ImL than in PC-ImH. It suggests that CNA instead of TMB plays a crucial role in the
regulation of TIME in PC.

Interestingly, PD-L1, an immunosuppressive signature, also showed higher mRNA expression levels in PC-
ImH than in PC-ImL in eight of the ten datasets (two-tailed Student’s t test, P < 0.05). The possible reason
could be that PD-L1 is also expressed on immune cells, which are more abundant in PC-ImH. Indeed, by
analyzing the scRNA-seq dataset (GSE141445) [18], we found that PD-L1 was more highly expressed in
immune cells than in tumor cells (P < 0.001). Because both PD-L1 expression [54] and high level of
immune in�ltration [16] are indicators of an active response to ICIs, PC-ImH would respond better to ICIs
than PC-ImL. This hypothesis needs to be approved by clinical data, whereas they are not currently
publicly available.

In conclusion, the identi�cation of immune-speci�c subtypes has potential clinical implications for the
prognosis and immunotherapy of PC.

Abbreviations
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PC
prostate cancer
TIME
tumor immune microenvironment
scRNA-seq
single cell RNA-Seq
PC-ImH
PC immunity high
PC-ImL
PC immunity low
EMT
epithelial-mesenchymal transition
ITH
intratumor heterogeneity
TMB
Tumor mutation burden
CNA
copy number alteration
TCGA
The Cancer Genome Atlas
ICIs
immune checkpoint inhibitors
FDA
Food and Drug Administration
GDC
genomic data commons
GEO
gene expression omnibus
SCNAs
somatic copy number alterations
ssGSEA
single-sample gene-set enrichment analysis
NK
natural killer
MDSC
myeloid-derived suppressor cell
DFS
disease-free survival
K-M
Kaplan-Meier
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DEGs
differentially expressed genes
RF
Random Forest
FDR
false discovery rate
IFN
interferon
PSA
prostate-speci�c antigen
OR
odds ratio
HR
hazard ratio
CI
con�dence interval
HRD
homologous recombination de�ciency
CV
cross-validation
CAFs
cancer-associated �broblasts
tSNE
t-distributed stochastic neighbor embedding.
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Figure 1

Hierarchical clustering of prostate cancer (PC) in ten transcriptomic datasets based on the enrichment
scores of 28 immune cell types. (A) There are two PC subtypes identi�ed: PC immunity high (PC-ImH) and
PC immunity low (PC-ImL). The enrichment score of an immune cell type in a tumor sample was
calculated by the single-sample gene-set enrichment analysis (ssGSEA) [19] of the expression pro�les of
its marker gene set. (B) Comparisons of the enrichment scores of immunostimulatory signatures (CD8+ T
cells, immune cytolytic activity, and interferon (IFN) response), immunosuppressive signatures (CD4+
regulatory T cells, M2 macrophages, T cell exhaustion, and myeloid-derived suppressor cells (MDSCs)),
and the ratios of immunostimulatory to immunosuppressive signatures (CD8+/CD4+ regulatory T cells),
between PC-ImH and PC-ImL in TCGA-PRAD.

Figure 2

Comparisons of clinical and phenotypic features between the PC subtypes. Kaplan–Meier curves to
compare DFS time between the PC subtypes (A) and between high-immune-score (> mean) and low-
immune-score (< mean) PC patients (B). The log-rank test P-values are shown in (A, B). Comparisons of
PSA levels (C), proportion of high-grade (Gleason score of 9 to 10) tumors, proportion of late-stage (T3-4)
tumors proportion of patients with cancer cells present in nearby lymph nodes, and proportion of patients
with metastasis (D), scores of EMT signature (E), and ITH (F) between the PC subtypes. The one-tailed
Mann–Whitney U test P values are shown in (C, E, F), and the Fisher’s exact test P values and odds ratios
are shown in (D). (G) Cox proportional hazards regression analysis with the response variable “DFS time”
and the predictor variables “age”, “PSA level”, “Gleason score” and “subtype PC-ImH”. The scores of EMT
signature and stemness were the ssGSEA scores of their marker gene sets, and ITH scores were
calculated by the DEPTH algorithm {Li, 2020 #770}. The immune scores calculated by ESTIMATE [19]
represent immune in�ltration levels in tumors. DFS: disease-free survival. PSA: prostate-speci�c antigen.
EMT: epithelial-mesenchymal transition. ITH: intratumor heterogeneity. HR: hazard ratio. CI: con�dence
interval. * P < 0.05, ** P < 0.01, *** P < 0.001, ns P ≥ 0.05. It also applies to the following �gures.

Figure 3

Comparisons of genomic features between the PC subtypes in TCGA-PRAD. Comparisons of TMB (A),
HRD scores (B), G-scores of copy number ampli�cations and deletions (C), and enrichment scores of nine
DNA damage repair pathways ((D) between the PC subtypes. The one-tailed Mann–Whitney U test P
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values are shown in (A, B, D). TMB is the total number of somatic mutations. The G-scores were
calculated by GISTIC2 [34]. TMB: tumor mutation burden. HRD: homologous recombination de�ciency.
CNA: copy number alteration.

Figure 4

Pathways enriched in the PC subtypes. (A) The KEGG pathways involved in immune, stromal, and
oncogenic signatures highly enriched in PC-ImH relative to PC-ImL in TCGA-PRAD. These pathways were
identi�ed by GSEA [24]. (B) Spearman correlations between the oncogenic pathways’ scores and immune
scores. FDR: false discovery rate. The Spearman correlation coe�cients (ρ) and P-values are shown.

Figure 5

Genes differentially mutated between the PC subtypes in TCGA-PRAD. (A) 8 and 25 genes with
signi�cantly lower and higher mutation frequencies in PC-ImH than in PC-ImL, respectively (Fisher’s exact
test, P < 0.05). (B) The mutations of the 8 genes with lower mutation frequencies in PC-ImH correlate with
lower immune scores in PC. The one-tailed Mann–Whitney U test P values are shown.

Figure 6

Proteins differentially expressed between the PC subtypes in TCGA-PRAD. (A) Heatmap showing 6 and 11
proteins with signi�cant higher and lower expression levels in PC-ImH than in PC-ImL, respectively (two-
tailed Student’s t test, FDR < 0.05). (B) Spearman correlations between the expression levels of these
proteins and immune scores in PC. The Spearman correlation coe�cients (ρ) and P-values are shown.

Figure 7

Prediction performance for the PC subtypes based on the enrichment scores of 28 immune cells by the
Random Forest algorithm. TCGA-PRAD was the training set and the other nine datasets were the test sets.
For TCGA-PRAD, the 10-fold cross-validation results are shown.

Figure 8
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Validation of the subtyping method in a scRNA-seq dataset. (A) Clustering of 18792 malignant (tumor)
cells and 17632 non-malignant cells by the tSNE algorithm [45]. (B) Hierarchical clustering of tumor cells
based on the enrichment scores of 4 immune-related signatures identi�es two subgroups in each of 13
PC patients. (C) Mapping 18792 tumor cells into immunity-high (PC-ImH) and immunity-low (PC-ImL)
subgroups based on the hierarchical clustering of tumor cells in each patient. (D) Proportions of tumor
cells classi�ed into PC-ImH and PC-ImL in each of 13 PC patients. (E) PSA levels, stemness scores, ITH
levels, and cell cycle activity (ssGSEA scores of the cell cycle pathway) were signi�cantly higher in PC-
ImH than in PC-ImL in the scRNA-seq dataset. The one-tailed Mann–Whitney U test or two-tailed Student’s
t test P-values are shown. 

Figure 9

Identi�cation of two subgroups in PC-ImH. (A) PC-ImH can be further divided into two subgroups: PC-ImH-
A and PC-ImH-B, by the graph learning-based dimensionality reduction analysis (Trapnell et al., 2014) of
PC-ImH in TCGA-PRAD and GSE116918. Comparisons of immune signatures (B), DFS (C), proportion of
late-stage (T3-4) tumors (D), and stemness scores, ITH levels and MKI67 expression levels (E) between
PC-ImH-A and PC-ImH-B.

Figure 10

Association between TMPRSS2-ERG fusion and immune signatures in PC.

(A) More frequent incidence of TMPRSS2-ERG fusion in PC-ImL than in PC-ImH in TCGA-PRAD and
DKFZ2018, which have TMPRSS2-ERG fusion data available.   The Fisher’s exact test P-values and odds
ratios are shown. (B) The tumors with TMPRSS2-ERG fusion showing signi�cantly lower immune
signature scores than those without TMPRSS2-ERG fusion. (C) Kaplan–Meier curves showing that the
tumors with TMPRSS2-ERG fusion have better DFS than those without TMPRSS2-ERG fusion.
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