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Abstract

Quadrilateral meshes offer certain advantages compared to triangu-
lar ones, such as reduced number of elements and alignment with
problem-specific directions. We present a pipeline for the generation of
quadrilateral meshes on complex geometries. It is based on two key
components: robust surface meshing and efficient indirect conversion of
a triangular mesh to an all-quad one. The input is a valid geomet-
ric surface mesh, i.e., a triangulation that accurately represents the
geometry of the model. A right-angled triangular surface mesh is ini-
tially created by continuously modifying the input mesh while always
preserving its topological validity. The main advantages of our local
mesh modification based approach are to (i) allow the generation of
meshes that are globally aligned with a given direction field and (ii)
to reliably handle non-manifold feature edges (in multi-volume models)
and small features. The final quadrilateral mesh is obtained by merg-
ing pairs of triangles into quadrilaterals. We develop a novel bipartite
labeling scheme in order to identify and correct inconsistent pairings.
The procedure is based on local operations and is much more efficient
than previous global strategies for tri-to-quad conversion. The whole
pipeline is tested on a large number of models with diverse characteristics.

Keywords: surface meshing, quadrilateral meshing, bipartite labeling, cross
fields
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1 Introduction

Quadrilateral meshes are often preferable to triangular ones for numerical sim-
ulations. They have fewer elements for the same number of vertices, they are
ideally capable of providing a block-structure and they can provide better
alignment to geometric features, as well as to problem-specific features, pro-
viding better numerical behavior for specific physical phenomena (a typical
example is the demand for structured and aligned boundary layers in Computa-
tional Fluid Dynamics). Yet, the automatic generation of quadrilateral meshes
is still regarded as a challenging problem in mesh generation. Even though a
lot of different approaches exist, there is not to date a conclusive method, anal-
ogous to triangular meshing which is considered highly mature and for which
there exist robust algorithms based on strong mathematical foundations.

The purpose of this work is to address the problem of generating quadrilat-
eral meshes for complex 3D models. We strive for generality in our approach;
our input is simply a triangulation of the model. The triangulation can be an
STL representation of the geometry, triangulation of scanned data or a mesh
generated from a CAD model with standard meshing techniques. The input
meshes may be of bad quality and contain non-manifold feature edges. Our
goal is to design a pipeline satisfying the following design goals: (i) robustness,
i.e., guarantee of termination regardless of the complexity/bad quality of input
data, (ii) feature preservation, i.e., the persistence of user-defined internal and
boundary curves, (iii) high element quality, and (iv) efficiency, i.e., providing
a quad meshing algorithm with a running time comparable to or faster than
conventional tri-to-quad technologies.

Fig. 1: Quadrilateral meshes produced by our algorithm with input a CAD
model (left) and an STL triangulation (right).
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To generate a high-quality unstructured quadrilateral mesh that preserves
user-defined features, we develop three independent steps: (i) we sample points
on the model curves and surfaces, guided from a metric field (cross-field and
an associated size-map), (ii) we use local-mesh modifications to continuously
remove points of the initial triangulation and add the new ones, leading to a
right-angled triangular mesh and (iii) we convert the triangular mesh into an
all-quad mesh using a novel approach based on a topological labeling scheme.

When it comes to mesh generation, the expected reliability rate of
industrial-grade algorithms is essentially 100%. The input data supplied to our
meshing algorithms are often noisy. Inputs may be huge, with a wide range of
scales. It is not surprising that the most complex/tricky part of our work is
related to robustness. We have given special attention to ensure that this mesh
generator provides results regardless of the complexity of the input data, as
long as it is correct (i.e., a watertight but possibly non-manifold triangulation,
in the sense that no folded elements and edge intersections may be present).
In order to ensure reproducibility of this work, the whole implementation will
be available in Gmsh, the open-source mesh generator [1]. To demonstrate the
robustness of our algorithm, we applied it to a large number of models found
in various datasets.

1.1 Related Work

Surface Meshing

Surface mesh generation poses various difficulties related to robustness and
efficiency. Of the several methods proposed in the bibliography, we can identify
two main categories [2, 3]: i) Parametric approaches, where the surface mesh is
generated in the parametric space, and ii) Non-parametric (direct) approaches,
where the surface mesh is generated directly in the 3D space.

In parametric approaches, the 3D surface is mapped to a 2D paramet-
ric space [2, 4–7]. Since the CAD surfaces (typically NURBS patches) have
underlying u, v representation, it can be efficient to generate a mesh in the
plane with standard meshing techniques and afterwards map it back to the 3D
space. Generating planar meshes in the parameter space is a robust approach
that is usually able to provide high quality meshes. Yet, approaches that use
the parameter plane are able to consider surfaces that are isomorphic to a
punctured disk. Meshing complex models with a parameter space approach
does not allow to globally align a mesh with a cross-field, since each discrete
patch of a CAD model may be equipped with an independent parametrization
and the feature edges that separate those patches are not necessary aligned
with the cross-field. Parametrization techniques can also be used to remesh
triangulations [8, 9].

Non-parametric (also referred to as direct surface meshing in the litera-
ture, creating some ambiguity with the terms of direct/indirect approaches
commonly used in quad meshing) approaches to surface meshing can be based
on quad trees [10, 11], advancing front [12, 13] or Delaunay strategies [14, 15].
One of the main advantages of the direct approach is its usefulness for models
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where an underlying parametrization is not available or when it is degraded.
Local mesh modification strategies to remesh models described by STL trian-
gulations are proposed in [16, 17]. One of the main difficulties of this class of
methods is that the manipulation of geometry directly on the 3D space is a
challenging task that may lead to geometric or topologic ambiguities.

Quadrilateral Meshing

Initial efforts to automatically generate quadrilateral meshes include grid based
and paving algorithms. Grid-based methods start with the generation of a
background Cartesian or a quad-tree grid with the subsequent snapping of
elements to the domain boundaries [18–20]. The paving algorithm, first intro-
duced by [21] generates quadrilateral elements in an advancing-front fashion,
propagating from the boundary to the interior. Both classes of methods suffer
from a degraded quadrilateral quality and high node irregularity on specific
regions of the domain: the latter on the domain boundaries and the former on
the front collisions on the interior. In [22], a bichromatic Delaunay quadran-
gulation method is presented, with our current work building upon a similar
concept.

On the other hand, quad conversion or indirect methods are based on
the merging of pairs of adjacent triangles of an input mesh to quadrilaterals
[23, 24]. In Q-Morph [25], triangles are transformed into quadrilaterals with an
advancing-front algorithm. Blossom-Quad algorithm [26] computes a perfect
matching to optimally pair triangles, while [27, 28] produce meshes better
suited for triangle-pairing by generating aligned right-angled triangles.

Cross Fields

Cross fields are nowadays commonly used in the context of mesh genera-
tion, a line of research stemming from the computer graphics community and
global parametrization methods [29]. For quad/hex meshing, cross-fields define
preferred orthogonal directions on the domain to guide creation of optimal ele-
ments [30–32]. Cross fields should be as smooth as possible (except at singular
points) and aligned with the boundary of the domain.

1.2 Contributions

The quad meshing pipeline that is proposed follows a modular approach, with
each of the steps being an independent algorithm that can be re-used in various
situations (Figure 2). As stated before, our main concern is to provide a reliable
solution, i.e., we want the quad meshing pipeline to be resilient to complex/ill-
conditioned inputs.

The two main contributions of this work are:
1. Robust surface meshing. In our procedure, we follow the idea of [28]

of separating the generation of points and the creation of the elements.
The main novelty of this work is our direct approach. In this work, an
input triangular mesh is continuously modified through robust local mesh
modifications. The word continuous is chosen on purpose: each local mesh
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modification that is performed guarantees the topological integrity of the
current triangular mesh. At the end of the remeshing process, most of the
points of the initial triangular mesh, and in most cases all those points
are removed from the triangulation and replaced by the ones created to
accommodate the cross field and size field characteristics.

2. Straightforward and efficient all-quad meshing. We propose a
bipartite labeling scheme that propagates topology information on the
vertices during point generation. By using this information on the right-
angled triangular mesh, we are able to optimally place new Steiner points
to fix topological inconsistencies (odd-bounded regions on the interior)
and recover a bipartite, all-quad mesh. The approach is very efficient since
it converts a global problem to a local one.
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Fig. 2: Schematic outline of the pipeline proposed for quadrilateral meshing
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2 Overview

Our algorithm takes as input a watertight, possibly non-manifold triangula-
tion T0. The input triangulation T0 is classified : the word classified indicates
the fact that the triangles are grouped into colors and interfaces between col-
ors are considered as feature edges that must be conserved in the remeshing
process. Internal feature edges may also exist that lie inside a group of trian-
gles with the same color. Note that feature edges can also be detected based
on the dihedral angle, given a user-defined threshold. We take into account
two special categories of feature edges in T0: (i) non-manifold feature edges
with two or more adjacent surfaces and (ii) internal (embedded) feature edges
inside surfaces (e.g., a crack for solid modeling)

All the necessary topological information is available in the initial mesh.
Surfaces are bounded by closed feature edges and those feature edges by feature
points. Consecutive feature edges form feature curves. Feature curves must
be preserved during the continuous mesh modification process. An important
property of our method is the ability to handle the model as a whole and thus
take advantage of the global nature of the guiding cross field. We do not follow
a patch-wise approach where we handle each surface independently, followed
by a connection of curves to ensure conformity. A half-edge data structure [33]
is used to get connectivity information, and an array of boundary edges that
define feature curves is stored. We extend this data structure by storing the
type of boundary edge (manifold or non-manifold), along with the triangles
connected to each (one triangle for open boundary edges, two triangles for
manifold edges, and a larger than two number for non-manifold ones). This
feature enables us to efficiently treat boundaries during surface meshing.

The scheme provides the flexibility to preserve the topological character-
istics of the input mesh, such as ’hard’ edges or user-defined feature curves,
without relying on extensive a priori knowledge of domain characteristics or
a complicated feature recognition preprocess [34–37]. Furthermore, by utiliz-
ing an appropriate data structure on top of the half-edge one, we can handle
non-manifold configurations that may occur in industrial multi-volume CAD
models.

The input triangulation T0 is the geometric model. Two other inputs are
required for running the algorithm: (i) a unit cross-field f and (ii) a size field
h(x) that are both used for guiding the point insertion process. A cross field
c is a field defined on a surface S with values in the quotient space S1/Q,
where S1 is the circle group and Q is the group of quadrilateral symmetry.
It associates to each point of a surface S to be meshed a cross made of two
unit vectors orthogonal to one another in the tangent plane of the surface and
their opposites (Figure 3(a)). Although T0, f and h can be independent, it is
beneficial to have (i) a cross-field f that is aligned with the feature edges of T0
and (ii) a size field h that takes into account both the local change of direction
of the cross-field and small features of the geometry. In this work f and h are
precomputed using T0 as support with the algorithms described in [38].
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The transformation of the triangulation T0 into the final quad mesh Tq is
done in three sequential steps:

1. Point generation (Section 3) Points of the final mesh Tq are generated in
a frontal fashion starting from the feature curves and guided by both the
cross and the size field. This set of points is embedded on the triangles of
the base/initial mesh T0.

2. Point replacement (Section 4) The initial mesh T0 is continuously trans-
formed into another triangular mesh T1 by connecting the newly generated
points on T0 and subsequently removing the initial mesh points, utilizing
local mesh modifications.

3. From triangles to quads (Section 5) Mesh T1 is transformed into a quad
mesh by combining pairs of triangles. Using a binary labelling scheme for
the points during frontal generation allows us to instantly extract a valid
all-quad topology.

The simple model of Figure 3 is used as an example to describe those three
steps.

(a) (b) (c) (d)

Fig. 3: Surface meshing steps. (a) Cross-field and size-field computed on the
input mesh. (b) Generated points embedded on the input mesh. (c) Inserting
points to the triangulation with local mesh modifications. (d) Right-angled

triangular mesh of the generated points.

3 Point Generation

In this work, we take a standard surface-to-volume point of view of mesh
generation on Gmsh [1] which essentially consists of a bottom-up procedure.
Model curves are discretized at first. Mesh edges on the model curves are used
as boundaries of model faces and mesh triangles on model faces are used as
the boundary of model volumes if they exist.
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A set P of points on surfaces is generated using a frontal point propagation
algorithm that is similar to [28]. The main difference with [28] is that all the
operations are performed here directly on T0 without using a parametric space.
The point sampling scheme has been implemented for the special case of the
sphere [39]. It is extended here for general surfaces and we reiterate the whole
process for completeness. Our frontal approach is enhanced with the use of a
cross-field f that allows to structure the quad mesh and a size field h that allows
taking into account the various feature sizes of a model as well as changes of
directions of f (Figure 3(a)).

3.1 Curve Point Generation

Each feature curve is uniquely defined from a list of non-intersecting connected
edges. Given a size field h defined by a value at each point, we mesh the discrete
representation of each curve by following the general guidelines of [40]. This
leads to the set of points Pc = {pi | i = 1, . . . , Ngc}. It is important to note
that at this step, we can control the generation to have an even number of
points for each feature curve. This provides us with a topologically necessary
condition for all-quadrilateral meshing.

3.2 Surface Point Generation

Starting now from the Ngc generated points on mesh feature curves, we want
to spawn a set of points Ps = {pi | i = 1, . . . , Ngs} on the surfaces in the direc-
tions provided by the cross-field f(x) and with respect to the underlying size
field h(x). The point set Ps, along Pc, will be used to generate a right-angled
triangulation T1 that is well suited for combining triangles into quadrilaterals
and form Tq.

The cross field f gives Nd = 2 tangent orthogonal directions and their
opposites. A priority queue is initially filled with the Ngc points ordered along
the curves. The point pi at the top of the queue then tries to insert 4 new

points pij in the j = 1, . . . , 2Nd directions defined by f
(
pj
i

)
and at a distance

h(pi). In order to have points inserted “by layers”, the priority queue that is
chosen is a first-in, first-out queue. Ordering the boundary points along the
domain allows smooth propagation on the interior.

Each seed point pi tries to spawn pij , j = 1, . . . , 2Nd neighbour points on
T0. Yet, there is no guarantee that point pij is not too close to another point of
the queue. Points pij are hence filtered. A rectangular exclusion zone is defined
by the cross field orientation and the size field around each vertex pi in such a
way that any point lying in this zone will not be inserted in the queue. Finally,
seed points are removed from the queue, and accepted points are added to the
end of the queue as well as in P . The procedure terminates when the queue is
empty. Algorithm 1 describes the procedure. Following, we will focus in detail
on the two main operations, i.e., the point insertion and the point filtering.
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Algorithm 1 Frontal point insertion algorithm.

Input: Initial triangulation T0
cross field f
mesh size field function h(x)

Output: Array of points P
1: Place boundary points in a queue
2: while queue is not empty do
3: pop the first point pi out of the top of the queue
4: interpolate f and h at this point
5: for 2Nd directions do
6: Compute point pij by intersecting T0 with a circle
7: Find set of neighboring points Pf

8: for pf ∈ Pf do
9: if ‖pij − pf‖ > αh(pij) then

10: add pij in P
11: push pij in the back of the queue
12: else
13: delete pij

14: end if
15: end for
16: end for
17: end while

pi

pi j

ni di j

Ci

Fig. 4: Computation of point pij , given a direction dij , the normal ni and
the size hi (the radius of the circle Ci). With green color we denote the

generated points while with red the initial mesh ones. Here the seed point pi

coincides with a red point

3.2.1 Intersection with triangulation

Assume a point pi that lies on one of the triangles of T0, a direction dij =

f
(
pj
i

)
, i.e., a unit vector tangent to the surface and the mesh size hi = h(pi)

at that point. The aim is to create an edge of size hi. Therefore, the new point
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pij can be computed as the intersection of the triangulated surface T0 and a
circle Ci with center pi and radius hi. Ci lies on the plane Pi that is formed
by the direction vector dij and the normal to the triangulation at our origin
point, ni (Figure 4).

To compute pij our goal is to find the intersection point of circle Ci with
the triangulation T0 (Figure 4). We start from the triangle of the base mesh
T0i on which pi lies. First, we compute the intersection line of the plane Pi

and the plane of the triangle PT0i
. Then, we find the intersection points of this

line with the circle Ci and choose the one that lies in direction dij . Finally,
the barycentric coordinates λ0, λ1, λ2 of this point with respect to the current
triangle are calculated. In this way, we determine whether the intersection
point lies on the triangle, and therefore if we have a successful intersection
with this triangle.

In the case where the current triangle is not intersected, we move forward to
another triangle. Since we have already computed the barycentric coordinates
with respect to the current triangle T0i, we know where on the plane PT0i

the
intersection point lies (Figure 5, left). The next triangle to be searched for
an intersection is thus given from the computed barycentric coordinates and
the adjacency information of the input mesh. This procedure continues until
a valid intersection point is retrieved.

Essentially, we perform a walk in the triangulation [41] in the desired direc-
tion until we obtain the intersection point. Our experience shows that this
method is efficient since it utilizes the underlying mesh as a space searching
structure. For the same order of magnitude of mesh sizes on input and desired
meshes, intersection points are found after a little less than two triangle visits
on average.

0
1

2

λ1 < 0
λ0 < 0

λ2 < 0
x

x

x

pi

pi j

Fig. 5: Indication of the position of intersection point according to
barycentric coordinates (left) and computation of point pij by walking in the

triangulation in specific direction (right)
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3.2.2 Filtering procedure

Each point generates pij points for j = 1, . . . , 2Nd directions. We have to
ensure that new points are not too close to already generated points. Therefore,
after each point pij is generated, a filtering procedure should follow. To this
end, we use RTrees as a spatial search structure [42].

For every candidate point pij , we define a large enough search box (typ-
ically 2 times the mesh size). We find then the set of points Pf = {pf , k =
1, . . . , nf} in the vicinity of pij . Since our objective is to create right-angled
triangles, i.e., equilateral triangles in the L∞ norm, we compute the distance
between the candidate point and its surrounding ones as ‖pij − pf‖∞ =
max{|xij − xk|, |yij − yk|, |zij − zk|} The point is accepted for insertion if
condition ‖pij − pf‖∞ > α · h(pij) holds for all pf ∈ Pf .

4 Surface Meshing

    Point 'close' to 
  initial mesh point

Point lying on 
  mesh edge

  Point 'purely' inside 
     a mesh triangle

Fig. 6: Generated points (green) - Initial mesh (red points to be removed)

The objective now is to create a surface mesh with the set of optimal points
P = {pi | i = 1, . . . , Ng} (where Ng = Ngc +Ngs) that have been generated on
curves and surfaces. The idea is straightforward: connect the generated points
P on the initial mesh T0, and subsequently remove the initial mesh points
(Figure 6). A similar idea but in a different context has been used in [43],
leading to a quad-dominant mesh.

Robustness is of crucial interest in our method, since modifying geometrical
aspects of general surfaces in 3D space is a delicate task. With our approach,
the main goal is to preserve the topological integrity of the mesh through each
step of the process, while not compromising the accuracy of the geometrical
representation of the surface.

We can identify two complementary sets of generated points pi:
i Ngc points lying on curves (feature edges)
ii Ngs points lying purely on surface triangles
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with a corresponding unique parent element (feature edge or mesh triangle
respectively) already stored for each of these points. Correspondingly, there
are Nr points from the initial mesh: Nrc points of the feature edges and Nrs

points of the ’interior’ surface. This division enables us to perform a bottom-
up procedure where topological entities are handled independently (first mesh
curves and then surfaces). We can therefore ensure that each step will have a
well defined ’predecessor’ mesh to build upon.

4.1 Local Mesh Modifications

The basic operations utilized to locally modify the mesh follow:

Split Triangles

Given a surface point and its parent triangle, split it by replacing it by three
triangles. This operation is trivial to implement since it cannot change the
geometry or the topology of the mesh.

Fig. 7: Splitting (left) and collapsing (right) a non-manifold feature edge

Split Edges

Given a point that lies on a mesh edge, split this edge. For points on boundary
edges we already know the parent edge, while for points on triangles it is easy
to compute if the point lies on a triangle edge (given a user-defined threshold
value ε). For non-manifold boundary edges, we split all the corresponding
triangles connected to this edge (Figure 7, left). This set of triangles is readily
accessible from the extended data structure for boundary edges.

Collapse Edges

Remove points from the triangulation by collapsing an edge. Collapsing an
edge is not always a valid operation since it can create flipped or degenerate
elements. We check the fan of n triangles connected to the vertex in ques-
tion and choose an edge that can be collapsed. The resulting n − 2 triangles
should not intersect with neighbouring ones. Again, non-manifold edges can be
collapsed if all corresponding ’half-fans’ pass the validity test (Figure 7, right).



Springer Nature 2021 LATEX template

Indirect all-quadrilateral meshing based on bipartite topological labeling. 13

Swap Edges

Given an appropriate quality criterion, swap the edge if the topology is not
violated. Obviously, a feature edge cannot be swapped. Edge swaps have a
significant role during collapsing of edges, since it is not always feasible to
collapse all unnecessary vertices at the first pass. Edge swaps serve at this
point to create improved conditions for the next collapsing iteration. Collapsing
numerous mesh vertices leads to steep angles; therefore we swap edges if it does
not result to bigger dihedral angles. At the final step, swaps can be performed
based only on quality criteria.

4.2 Outline

Algorithm 2 Direct Surface Meshing with Local Modifications.

Input: Initial triangulation T0
generated set of points P to be triangulated.

Output: New mesh T1
1: for Ngc points on curves do
2: Insert points on mesh curves by splitting feature edges
3: end for
4: for Ngs points on surfaces do
5: Insert point on mesh surfaces by splitting edges or triangles
6: end for
7: Swap edges of intermediate mesh Ti
8: while Nr 6= 0 do
9: for Nrc points on curves do

10: Collapse initial points on mesh curves
11: end for
12: for Nrs points on lines do
13: Collapse initial points on mesh surfaces
14: end for
15: Swap edges
16: end while

The procedure consists of the following (Algorithm 2). All generated points
are flagged to be inserted while all initial points are flagged to be removed.
Starting from the model curves, each generated point splits its corresponding
parent feature edge, which can be manifold or non-manifold. Each point has
a unique parent feature edge and the splitting is done based on its parameter
t ∈ [0, 1], thus defined in a unambiguous way. If a point to be inserted is
’close’ (w.r.t to ε) to an initial mesh point, we flag the latter to be preserved
instead of the former in order to avoid small-scale geometric ambiguities that
may occur. The procedure follows until all points on model curves are inserted
into the mesh. Following, points on surfaces are inserted by splitting triangles.
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These points have a unique parent triangle, and the splitting is based on the
barycentric coordinates. If a point is ’close’ w.r.t to ε on one of the triangle’s
edges, we split the edge, and if a point lies ’close’ to an initial point, it gets
disregarded (as explained for points on lines).

At this stage, we have an ’enhanced’ intermediate mesh Ti containing the
initial (red) and generated (green) points (Figure 3(c)). This mesh is of low
quality, but our interest here is that it represents as accurately as possible
the underlying surface and respects the topology of the initial mesh. A qual-
ity improvement with edge swaps can be performed here, though it is not a
necessary condition to continue to the next step.

We want now to remove the initial mesh points. Starting again from model
curves, we iterate for all feature points to be removed and examine if one of the
two connected boundary edges can be collapsed. Similarly with the procedure
of splitting feature edges, we can collapse non-manifold feature edges without
compromising the conformity of the mesh. Subsequently, points on surfaces are
removed by collapsing interior edges. Since not all points are guaranteed to be
removed in the first pass, the two discrete loops for points are encapsulated in
a while loop that terminates when no point to be removed remains or breaks if
the remaining ’red’ points cannot be removed at all. This is a crucial part since
it prevents the algorithm from producing invalid topology. When an initial
mesh vertex cannot be collapsed, it can simply remain in the final mesh. In
practice, we observe that no more than two iterations are necessary to remove
unwanted vertices for most of the models tested. While inserting points in the
triangulation by split edge/triangle operators is trivial, robustly implementing
the collapsing step proved be a fairly strenuous task for the general case.

5 Bipartite quadrilateral labeling

At this point, we have obtained a mesh T1 that is right-angled and ready to be
transformed to an all-quad mesh by triangle pairing. A necessary condition for
an all-quad mesh to exist is to have an even number of edges on the boundary
of each surface of the model. In this work, we trivially impose this condition on
the feature curves that bound the surfaces during the first step of the pipeline
(Section 3.1). Dividing each curve into an even number of segments is not
sufficient to ensure the existence of a perfect matching, i.e., a triangle-pairing
that involves all triangles of T1. This is a typical obstacle of triangle-pairing
methods, leading to isolated triangles that cannot be locally removed. A naive
way to eliminate those triangles is to perform a Catmull-Clark subdivision
[44], converting a quad-dominant mesh to an all-quad at the expense of vastly
increasing the number of elements as well as the number of irregular vertices.
In Blossom-Quad [26] a more sophisticated solution is proposed by computing
a minimum-cost perfect matching of the dual graph to offer a global solution.
Still, ensuring a graph to contain at least one perfect-matching remains quite
complicated.
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vP

Ck C

Cl

Fig. 8: Every cycle C is even so the graph is bipartite and is 2-colorable.
Starting from one 2-colored boundary Ck, it is possible to find the color of

any vertex v /∈ Ck by 2-coloring any path P between Ck and v.

We propose here a new idea for constructing one perfect matching in a
triangular mesh: all edges of the matching will be used to combine their two
neighboring triangles and form a quad mesh.

Let us first recall some elements of graph theory. A graph labeling is the
assignment of labels to the nodes of the graph. A graph coloring is a special
case of graph labeling; it is an assignment of labels traditionally called colors
to the nodes of the graph with the constraint that the graph contains no
monochromatic edge, i.e., no edge connecting two nodes with the same color.

A bipartite graph G is a graph that can be 2-colored. An important property
of a bipartite graph is that it does not contain any odd-cycles (an odd-cycle is
a cycle of odd length).

Let us now look at the quadrilateral mesh of a domain Ω as a graph G.
We assume here that the boundary ∂Ω of Ω is divided into n separated sub-
boundaries ∂Ωi, i = 1 . . . n, with each of the sub-boundaries ∂Ωi forming a
boundary cycle Ci in G. We assume that each Ci is an even-cycle. Under these
conditions, it is easy to see that G is bipartite. We consider a cycle C of G: C
bounds a quadrilateral mesh and it is known [32] that every quadrilateral mesh
has an even number of boundary vertices. If the domain D that is enclosed by
C is simply connected, then C is its only boundary and C is an even-cycle.
If D is not simply connected, its boundary contains other boundary cycles Cl

that are by hypothesis even-cycles. Thus, ensuring that every boundary cycle
Ck is even is sufficient to ensure that any other cycle C is even as well. Figure 8
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illustrates the aforementioned reasoning. It should be noted that not all quad
meshes are bipartite: it only holds when every boundary cycle is even.

It should be noted as well that, starting from the 2-coloring of one of the
boundary cycle Ck, the 2-coloring of the rest of the graph is unique: the color
of any vertex v /∈ Ck is found by coloring any path P between any vertex of
Ck and v (see Figure 8).

(a) (b) (c) (d)

Fig. 9: Bipartite topological correction. (a) Initial labeling on the even-sided
boundary. (b) Splitting topologically inconsistent triangle. (c) reposition of
vertex according to opposite labelled stencil. (d) recovery of quadrilaterals

(defined by same-labelled edges).

We consider now a triangulation of Ω and a bipartite labeling of its vertices.
The graph of a triangulation is obviously not a bipartite graph since every
triangle forms an odd-cycle and therefore it cannot be 2-colored.

Assume that the labeling is done in such a way that there exist no
monochromatic triangle (a triangle is monochromatic if its three vertices have
the same label). Then, the set of monochromatic edges of the triangulation
forms a perfect matching and removing monochromatic edges leads to the
desired quadrangulation. The proof is simple: every triangle of the mesh has
exactly one monochromatic edge, which means that each triangle will be cho-
sen exactly once for creating a quad: this is by definition a perfect matching.
The only possible issue would be the existence of monochromatic edges on ∂Ω.
This issue is avoidable if every boundary cycle is even: coloring should be done
at first on ∂Ω and then be propagated inside.

Now the last question: is it possible to avoid monochromatic triangles? The
answer is no, at least not without modifying the triangulation. We start by
analyzing the simplest possible case of an even triangulation without perfect-
matching (see Figure 9(a)). In this example, all labelings leave the internal
triangle monochromatic so there exists no perfect matching in this graph. In
other words, merging any of the three possible pairs of triangles would leave
two non-connected triangles ’hanging’. In general, picking edges in the graph
while constructing a matching may split the graph into disconnected sub-
graphs with an odd number of edges on their boundaries, thus not allowing
a perfect matching. This condition is a special form of a well-known graph
theory theorem from Tutte [45]. By inserting an additional Steiner point of the
opposite label (by splitting one edge of the triangle in question) our condition



Springer Nature 2021 LATEX template

Indirect all-quadrilateral meshing based on bipartite topological labeling. 17

is met (Figure 9(b)). A perfect matching actually exists and is composed of
all monochromatic edges as demonstrated above (see Figure 9(d)).

(a) (b) (c)

(d) (e)

Fig. 10: Different stages of the quadrangulation process. (a) Random
labeling of the internal vertices, monochromatic triangles are colored. (b)
Local label smoothing. (c) Splitting of remaining isolated monochromatic

triangles. (d) Merging triangles using monochromatic edges and obtention of
a 2-coloring. (e) Final quad mesh after topological optimization.

5.1 Random labeling

We start by 2-coloring the boundary cycles Ck of Ω and assign a random
label to all internal vertices. Figure 10(a) shows this initial random labeling.
Random labeling is not the worst-case scenario: it typically produces 25% of
monochromatic triangles. Yet, this number is too big because the number of
Steiner points that should be added to remove all the monochromatic triangles
is sufficiently large to damage the mesh size field.

It is possible to dramatically decrease the number of monochromatic tri-
angles by applying the following smoothing algorithm. Each internal vertex is
re-labeled if changing its label reduces the number of (its adjacent) monochro-
matic triangles. The smoothing usually ends with monochromatic triangles
that are either isolated or form adjacent pairs (see Figure 10(b)). In this spe-
cific example, no pairs are observed but they cannot be avoided in the general
case.

Then, bipartite topological correction is performed. When monochromatic
triangles appear in pairs, their common edge is split. When they are isolated,
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we choose to split their longest edge, to not degrade the accordance with
the size-field. This process continues until all monochromatic triangles are
eliminated. Figure 10(c) shows the final labeling without any monochromatic
triangle.

The triangular mesh of Figure 10(c) can then be transformed into a quadri-
lateral mesh by removing its monochromatic edges as depicted in Figure 10(d).
Mesh of Figure 10(d) is not of high quality. We had to use all Gmsh’s heavy
optimization weaponry to obtain the final mesh of Figure 10(e).

5.2 Cross field guided labeling

The triangular mesh of Figure 10(a) is not suited to be transformed into
a quadrilateral mesh; obtaining a good mesh at the end heavily relies on
advanced optimization. In Section 3.2, we proposed an advancing front scheme
where each point tries to add other points guided by the orthogonal direc-
tions provided by a cross-field. The cross-field guided point insertion process
produces an excellent labeling scheme: new vertices added by a vertex v have
the opposite label of the one of v (since the edges formed between these ver-
tices will be the cross-field aligned ones that we want to have in the final quad
mesh). Figure 11(a) shows the initial labeling after frontal point insertion. As
few as 14 monochromatic triangles are present in the triangular mesh, leading
to a very small number of Steiner points. More importantly, no Steiner point
has been inserted at the vicinity of the boundary, leading to several perfect
layers of quads (see Figure 11(d)).

By inserting the Steiner points, we have constructed the underlying topo-
logical connectivity of an all-quad mesh (Figure 11(b)). Mesh vertices can be
repositioned at the center of the stencil of opposite labeled neighbors (essen-
tially a single iteration Laplacian smoothing, e.g. Figure 11(c)). In the case of
non-planar surfaces, the repositioned vertices are projected onto the original
triangulation. We can then trivially extract an all-quad mesh, since each pair
of triangles whose common edge has two same labels defines a quadrilateral
(Figure 11(d)). At this point, the advancing labeling scheme is converted to
the true 2-coloring of the final bipartite quadrilateral mesh. Another way to
see this is that the set of same-colored edges is perpendicular to the set of the
edges of the perfect matching of the dual. It is interesting to note that form-
ing the quads this way before inserting the additional vertices would lead to
a quad-dominant mesh with non-quad polygonal regions that are even-sided
due to the bipartite condition.

Finally, it must be noted that our algorithm is straightforward, and lin-
ear in time compared to the computation of an optimal perfect matching,
which is quadratic in time and very complex. For the sake of completeness,
the algorithm is presented on Algorithm 3.
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(a) (b) (c) (d)

Fig. 11: Bipartite all-quad meshing. (a) Topologically inconsistent triangles.
(b) Insert vertices (Steiner points). (c) Reposition of vertices. (d) Bipartite

all-quad mesh.

Algorithm 3 All-Quad Surface Meshing.

Input: (Right-Angled) Triangulated Surface T1
binary label for each vertex vi ∈ T1

Output: All-quad mesh Tq
1: for Nt triangles do
2: Flag triangles with 3 vertices of same label
3: end for
4: for Ne edges do
5: if adjacent triangles ti and tj are flagged then
6: Split edge eij
7: end if
8: end for
9: for the rest (isolated) flagged triangles do

10: Split longest edge of the triangle
11: end for
12: for Ne edges do
13: if edge vertices have the same label then
14: Form a quadrilateral from the two adjacent triangles of the edge
15: end if
16: end for

5.3 Mesh optimization

The algorithm described is always able by construction to produce a topolog-
ical quad mesh Tq . Moreover, Tq is also of high geometric quality (measured
by the scaled Jacobian Q [46]) since it follows the cross-field directions.
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In few cases, especially when the requested size field is much coarser than
the geometric characteristics of the model, we may encounter minor defects
where elements with Q ≤ 0 may occur, such as doublet quads (two quads
connected only by one vertex) or flat quads on the boundary (since boundary
vertices cannot be repositioned). Both cases can be locally handled, the former
by merging the doublet into one quad and the latter by inserting additional
vertices and thus ’pushing’ the boundary irregular vertex inside the domain.

The only smoothing procedure used in this work is the Laplacian smoothing
described in Section 5.2 for the repositioning of vertices. Further and more
suited smoothing (e.g., Winslow smoothing [47]) can be performed on the final
quadrilateral mesh.

The next step in our developments will be to complement our approach
with the more sophisticated optimization procedure proposed in [38] that takes
as input the quad mesh Tq, the cross-field f as well as the size field h. The
main features of this optimization process are:

� All vertices of high valence are eliminated.
� All boundary vertices have their optimal valence in such a way that we can

create a boundary layer mesh without effort.
� Isolated irregular vertices corresponding to the singularities of the cross field

are preserved.
� Advanced vertex relocation schemes are performed to obtain a geometry

regular quad mesh.

6 Results

Fig. 12: CAD model with multiple volumes, leading to non-manifold feature
curves.

To demonstrate the capabilities of our methodology, we have tested the
whole pipeline on a variety of cases with diverse characteristics (Figure 13).
One of our main interests is to be able to produce meshes on any input,
regardless of its complexity. Reviewing the relevant literature, we observe that
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Fig. 13: All-quad meshes on various models obtained from the following
sources: ABC [48], MAMBO [49], Thingi10k [50] and LoopyCuts [51].

the majority of the works present results on relatively simple models. We work
on large model databases (that are recently becoming the common standard
for validation purposes on bulk numbers of models), and we aim to have a close
to 100% success rate on them. The models are obtained from the following
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sources: the ABC [48], MAMBO [49] and Thingi10k [50] datasets, and the
supplementary test data of LoopyCuts software [51].

We present statistics for all the models from MAMBO and LoopyCuts,
since all their models are directly suited for meshing (Table 1). MAMBO con-
tains three categories of CAD models: basic, simple and medium, of which we
use the latter two since they have more complex features of interest. LoopyCuts
models are in general simpler models in terms of surface complexity (smooth
surfaces, absence of very small features) oriented mostly for computer graphics
research.

A desired property of our mesh generation process is to keep user inter-
vention at a minimum. Input parameters are a threshold value ε to suppress
potential discrepancies during local mesh modifications and the angle thresh-
old to detect hard edges. The angle threshold ε may be disregarded, and the
algorithm can initiate from a random edge of the initial mesh instead of the
model curves. We keep in mind that this may result in low-quality meshing on
hard edges.

Cross-fields are precomputed and considered input to the algorithm, or they
can be taken as the unit axis directions for practical purposes. Size-fields can
be a uniform input size or computed from the curvature and geometric char-
acteristics of the input mesh. Both cross and size fields impact considerably
the output mesh quality, and we can observe that the directionality of the ele-
ments matches the input cross-field directions. The output meshes shown here
consist of the ’raw’ quadrilateral meshes, without heavy further optimization
(an example of further optimizing a quad mesh is presented on Figure 14).

Our pipeline can succesfully produce a quad mesh in all the models that
can be processed by GMSH for the initial triangulation. One of the most chal-
lenging aspects of our methodology is the removal of the initial mesh points by
collapsing and testing multiple ’extreme’ cases on that is an ongoing process.
As desired, non-manifold features are well-handled and conformity is preserved
(Figure 12). The final conversion to an all-quad mesh proves to be straightfor-
ward and efficient, given that the input respects the fundamental topological
condition (i.e., even number of edges on each curve). The quad meshes exhibit
high quality Q, computed as the scaled Jacobian (Table 1). Minimum quality
over all LoopyCuts models is 0.22 with the vast majority of the models hav-
ing over 0.50. On the other hand, we observe similar outputs on the MAMBO
models except of a few cases where very thin sliver regions result to almost
flat quad elements with Q ' 0. These kind of features are common in ’real-life’
models and element quality there could be improved with further optimization.

One of our main interests is the computational efficiency of the method.
The majority of operations are local and the algorithms of linear complex-
ity. The most time-consuming parts of our pipeline is the (inevitable) use of
spatial search structures (involved in filtering and also in projection of points
onto the triangulation during surface meshing and all-quad conversion). The
performance of the algorithm is heavily dependent on the input mesh, specifi-
cally its number of triangles and colored surfaces. More triangles lead to more
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Dataset (#) Nq Q tpoints(s) tsurf(s) tquad(s) ttotal(s)
MAMBO (39) 23730 0.988 0.907 0.723 0.366 2.112
LoopyCuts (70) 12748 0.985 0.305 0.351 0.197 0.953

Table 1: Average quality and timings values for MAMBO and LoopyCuts
models. Nq is the average number of quadrilaterals of the output meshes.

The quality metric Q is the scaled Jacobian and tpoints, tsurf and tquad are the
timings in seconds for the three pipeline steps respectively: point generation,

surface meshing and quad conversion.

spatial searches during point generation and filtering as well as more local
mesh modifications during surface meshing. Spatial searches and projections
are the most important bottlenecks on the performance of our pipeline and we
consider that we can speed up with more efficient procedures. In Table 1 we
present the average time for each part of our pipeline, using a single-thread on
a laptop with 2.6 GHz CPU.

Fig. 14: Left: unstructured quad mesh produced with our pipeline, where we
can observe the excess of irregular vertices. Right: quasi-structured quad

mesh obtained with the topological optimization of [38].

7 Conclusions

We have presented a method for the creation of quadrilateral surface meshes
on general complex geometries. One of the important aspects of our pipeline
is its modular nature. Each step can be independently used, for example, a
more efficient point sampling method could be used, or a typical CAD meshing
algorithm to generate the mesh with these points.

The surface meshing algorithm proposed is used to produce right-angled
triangles, but it can be repurposed as a re-meshing tool for triangulations,
given appropriate input (i.e. an ’asterisk’ field [32, 39]). The proposed two-step
method for surface meshing aims at balancing the trade-off between output
quality and robustness. One of its strengths is the ability to handle the model
as a whole and thus create cross-aligned elements globally. While producing
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high-quality elements in this aspect, we always respect the topology and suc-
ceed at meshing small-scale and non-manifold features as shown in the results
demonstrated (Section 6).

A novel method to obtain an all-quad mesh from any quad-dominant
mesh with minimal, if any, post-processing clean-up is introduced. By using a
bipartite labeling scheme, we simplify the global treatment required for quad
meshing to a set of localized operations that can be performed on a quad-
dominant mesh. We are thus enabled to produce always a high-quality quad
mesh, regardless of the complexity of the model. Our meshes can be fur-
ther optimized with a strategy to remove the majority of irregular vertices,
presented on [38].

We are currently in the process of incorporating this quad surface mesher as
a component of a general high-quality hex-dominant meshing pipeline, where
it will be used as the volume bounding surface. An interesting open problem to
this end is if hexahedral element generation should be constrained by a quadri-
lateral mesh, and if yes, what would be its optimal characteristics. Besides
that, we are investigating ways to take advantage of the topological labels used
here for quadrilateral elements to the generation of hexahedra, possibly with
a labeling scheme that can codify more topological information.

References

[1] Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities. International Journal for
Numerical Methods in Engineering 79(11), 1309–1331 (2009). https://
doi.org/10.1002/nme.2579

[2] Borouchaki, H., Laug, P., George, P.-L.: Parametric surface meshing
using a combined advancing-front generalized Delaunay approach. Inter-
national Journal for Numerical Methods in Engineering 49(1-2), 233–
259 (2000). https://doi.org/10.1002/1097-0207(20000910/20)49:1/2〈233::
AID-NME931〉3.0.CO;2-G

[3] Lo, S.: Finite Element Mesh Generation, (2015)

[4] Lo, S.H.: Finite element mesh generation over curved surfaces. Com-
puters & Structures 29(5), 731–742 (1988). https://doi.org/10.1016/
0045-7949(88)90341-0

[5] Sheng, X., Hirsch, B.E.: Triangulation of trimmed surfaces in parametric
space. Computer-Aided Design 24(8), 437–444 (1992). https://doi.org/
10.1016/0010-4485(92)90011-X

[6] Shimada, K., Gossard, D.C.: Automatic triangular mesh generation
of trimmed parametric surfaces for finite element analysis. Computer
Aided Geometric Design 15(3), 199–222 (1998). https://doi.org/10.1016/

https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/1097-0207(20000910/20)49:1/2<233::AID-NME931>3.0.CO;2-G
https://doi.org/10.1002/1097-0207(20000910/20)49:1/2<233::AID-NME931>3.0.CO;2-G
https://doi.org/10.1016/0045-7949(88)90341-0
https://doi.org/10.1016/0045-7949(88)90341-0
https://doi.org/10.1016/0010-4485(92)90011-X
https://doi.org/10.1016/0010-4485(92)90011-X
https://doi.org/10.1016/S0167-8396(97)00037-X
https://doi.org/10.1016/S0167-8396(97)00037-X


Springer Nature 2021 LATEX template

Indirect all-quadrilateral meshing based on bipartite topological labeling. 25

S0167-8396(97)00037-X

[7] Floater, M.S., Hormann, K.: Surface Parameterization: A Tutorial and
Survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in
Multiresolution for Geometric Modelling, pp. 157–186. Springer-Verlag,
Berlin/Heidelberg (2005). https://doi.org/10.1007/3-540-26808-1 9

[8] Remacle, J.-F., Geuzaine, C., Compère, G., Marchandise, E.: High-
quality surface remeshing using harmonic maps. International Jour-
nal for Numerical Methods in Engineering 83(4), 403–425 (2010)
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2824. https://doi.
org/10.1002/nme.2824

[9] Beaufort, P.-A., Geuzaine, C., Remacle, J.-F.: Automatic surface mesh
generation for discrete models – A complete and automatic pipeline based
on reparametrization. Journal of Computational Physics 417, 109575
(2020) arXiv:2001.02542. https://doi.org/10.1016/j.jcp.2020.109575

[10] Shephard, M.S., Georges, M.K.: Automatic three-dimensional mesh gen-
eration by the finite octree technique. Int. J. Numer. Meth. Engng. 32(4),
709–749 (1991). https://doi.org/10.1002/nme.1620320406

[11] Frey, P.J., Marechal, L.: Fast adaptive quadtree mesh generation. In: Pro-
ceedings of the Seventh International Meshing Roundtable, pp. 211–224
(1998)
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