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Abstract
Background: In order to provide scientific basis for toxicity evaluation and prevention of manganese, this
study aims to investigate acute toxicity and testicular alkaline phosphatase (ALP), acid phosphatase
(ACP), lactic dehydrogenase (LDH) in male rats after manganese exposure at different time points.

Methods: Under strict control of light/darkness (12 h:12 h), the experimental animals were injected
intraperitoneally with MnCl2·4H2O at different zeitgeber time (ZT) after adaptive feeding for 7 days. The
acute toxicity test was performed by Kunming mice treated with manganese once and observed for 14
days. LD50 was calculated by improved Karber method according to the death of animals in each group.
Short-term repeated manganese exposure was conducted by continuous 30 mg/kg manganese exposure
once a day for 21 days. And then the adult SD male rats were killed to detect activities of testicular ALP,
ACP and LDH by ELISA at different ZT points the second day after exposure.

Results: Acute toxic reactions of mice exposed to manganese were varied at different ZT points. The
LD50 at ZT2, ZT8, ZT14 and ZT20 were 472.0 mg/kg, 408.2 mg/kg, 303.3 mg/kg and 358.0 mg/kg,
respectively. Furthermore, short-term repeated manganese exposure could induce the activity changes of
ACP, ALP and LDH in testes at different ZT points. ALP increased at ZT20 while decreased at other time
points (P<0.05). ACP only decreased at ZT2 (P<0.05). LDH increased at ZT2 and ZT8 (P<0.05), but
decreased at ZT14 and ZT20 (P<0.05). In addition, all the testicular enzymes except ACP had interactions
between manganese and exposure time.

Conclusion: The acute toxicity and function injury of male reproductive caused by manganese exposure
are varied at different ZT points. The timing of toxic reaction needs to be considered in the toxicity
evaluation of manganese.

Background
As a kind of heavy metal, manganese (Mn) is considered to be one of the necessary trace elements for
human body. Manganese is involved in many important biochemical reactions as a component of
metabolic enzymes or agonists [1]. In addition, manganese is a cofactor of many enzymes and necessary
for reproduction. Previous study found that hormone secretion blocked by deficient manganese can
cause hypaphrodisia, sterility, inhibition of reproductive function and obstruction of sperm maturation [2].
Excessive manganese can accumulate in testicle to disrupt male reproductive function and destroy the
testicular structure [3]. These studies show that both deficient and excessive manganese can lead to
reproductive dysfunction. In modern toxicology, the time study is becoming a new research focus for
metal toxicity [4]. However, no time study has addressed the direct connection between manganese
exposure and testicular enzyme activity in the context of reproductive disease.

The activities of alkaline phosphatase (ALP), acid phosphatase (ACP) and lactic dehydrogenase (LDH) in
testicular tissue can be used as biomarkers for the injury of male reproductive and the change of sperm
quality. Semen ALP, ACP and LDH are positively related to sperm motility and quantity, showing a
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testicular origin of these enzymes [4]. Moreover, the levels of these enzymes in semen indicate the
function, integrity and damage of spermatozoa, that is why they are recommended as important
biomarkers of sperm quality [5, 6]. Accumulated evidence indicates these enzymes can be regulated by
manganese exposure. Eidi A et al. showed that manganese could significantly attenuate the increase of
serum ALP to nearly normal levels, exerting a hepatoprotection against CCl4-induced liver injury in rats
[5]. Li P et al. assessed the relationships between multiple metals burden in human seminal plasma and
semen quality parameters. They found manganese concentration was significantly higher in human with
fertility problems than that in normal human, while the ACP activity was significantly higher in normal
human [6]. Manganese treatment was reported to significantly decrease the cell viability of SK-N-MC cell
and increase the release of LDH [7].

Circadian rhythm is a common biorhythm for physiological and behavioral activities of almost all
organisms. The biological clock genes are also expressed in testicles and spermatozoa, suggesting
circadian rhythm plays an important role in the regulation of sperm development and male reproduction
[8, 9]. Because of circadian rhythm, the body has different sensitivities to the same poison at different
times of the day and night [10]. As a result, the toxicity of most exogenous chemicals is related to the
exposure time. The toxic reaction of animals to the same dose of chemicals sometimes is of different
degrees simply because of different exposure time. It may even lead to a phenomenon called all or none,
that highly sensitive at one time point while no reaction at another time point. Therefore, the toxicity of
chemicals should be analyzed not only from the dose, but also from the time point of view.

In this study, acute toxicity parameters and testicular enzymes were used as indexes to explore the time
toxicity of manganese. The timed acute toxicity and male reproduction in experimental animals exposed
to manganese will provide relevant basis for toxicity evaluation, prevention and treatment of manganese.

Methods
Reagents

MnCl2•4H2O purity greater than 99% was purchased from Sigma (St. Louis, MO, USA). ACP, ALP and LDH
kits were purchased from Lingnan Biological Products (Guangxi, China). BCA kit for protein concentration
was purchased from Beyotime Biotechnology (Shanghai, China).

Experimental animals and feeding

The experimental animals used are of SPF grade and provided by the Experimental Animal Center of
Guilin Medical University. The conditions of animal feeding room were as follows: light/darkness (12 h:12
h), temperature (24±1)℃, humidity (55 ±10)%. The experimental animals were free to drink and eat
during the whole experiment period. When the experiments were finished, the animals were anaesthetized
by intraperitoneal injection of pentobarbital sodium (50 mg/kg) using a 1-mL plastic syringe. After the
animals were asleep, they were killed by cervical dislocation. The animals were managed in agreement
with the criteria defined in the NIH publication (no. 85-23, revised in 1985), and the experimental protocol
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was approved by the Ethics Committee for Animal Care of Guilin Medical University (no.
GLMC201603027).

Definition of zeitgeber time (ZT)

The starting time of light is defined as ZT0 (equivalent to 7: 00 of Beijing time) [11]. The natural time is
converted to ZT. The exposure time points ZT2, ZT8, ZT14 and ZT20 are equivalent to 9: 00, 15:00, 21:00
and 3: 00 of Beijing time, respectively.

Acute toxicity test

One hundred Kunming mice of 18-22 g were randomly divided into 20 groups after 7 days of adaptive
feeding. According to the zeitgeber time points and 0.2 mL/10 g·body weight, the mice were injected
intraperitoneally with 250.00 mg/kg, 329.56 mg/kg, 434.45 mg/kg, 572.72 mg/kg and 754.99 mg/kg of
MnCl2·4H2O. After exposure, the toxicity and the number of dead animals were closely observed and
recorded for 14 days. The LD50 and 95%CI were calculated with death number of animals according to
the improved Karber method.

Short-term repeated toxicity test

Ninety-six healthy adult SD male rats with initial body weight of 251.06±21.52 g were selected for the
test. After adaptive feeding for 1 week, animals were randomly divided into 8 groups (4 control groups
and 4 manganese exposure groups) and injected intraperitoneally with distilled water or 30 mg/kg
MnCl2·4H2O at the corresponding ZT points for 21 days. The animals were killed for obtaining testes at
different ZT points the second day after exposure. The testes were then stored at -80°C for detecting
enzyme activity within 2 weeks.

Detection of ACP, ALP, LDH activity and protein concentration

Testicular tissue (0.3 g) on the same side of rats was added with 2.7 g pre-cooled saline for 10% tissue
homogenate by electric homogenizer at 4℃. And then the tissue homogenate was centrifugated at 3000
r/min for 10 min and the supernatant was used to determine the activity of ACP, ALP and LDH by ELISA
method on 7170A Automatic Biochemical Analyzer (Olympus, Japan). The protein concentration was
determined by BCA kit on 721 Spectrophotometer (Olympus, Japan) and used to adjust the activity of
above enzymes.

Statistical analysis

All the data was analyzed by SPSS 16.0 statistical software. Two samples t test and factorial analysis
were carried out and P<0.05 was considered as statistically significant.

Results
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Toxic reactions of mice in acute toxicity test

The experimental mice had different degrees of poisoning symptoms after MnCl2•4H2O exposure, the
mild ones appeared listlessness, emaciation, loss of appetite or abolition, curling up, while standing
unstable, hair removal and leg edema in the heavy ones. At later stage of the test, the mice fell on the
ground, curled claws and toes, had leg stiffness and tremor. With dose of MnCl2•4H2O increased, all these
reactions aggravated aggravation. The earliest symptom appeared at once upon MnCl2•4H2O exposure,
and death began as early as 20 min and stopped on the 12th day after MnCl2 •4H2O exposure. We found
the dead mice had dark red of blood, light color of muscle, larger and darker of filling gallbladder and
punctate bleeding liver or some khaki-yellow liver. There was no obvious pathological change in other
organs.

LD50 and 95%CI of mice exposed to manganese

The death of mice at ZT2, ZT8, ZT14 and ZT20 points was shown in Table 1. As shown in Table 2, the
acute toxicity of mice after manganese exposure at ZT14 point was the highest, and the LD50 (95%CI)
was 303.30 mg/kg (275.30-334.20 mg/kg). The LD50 (95%CI) at ZT20 and ZT8 points were 358.01
mg/kg (294.92-434.61 mg/kg) and 399.85 mg/kg (315.42-506.89 mg/kg), respectively. The acute toxicity
at ZT2 was the least, and the LD50 (95%CI) was 471.95 mg/kg (376.14-592.17 mg/kg).

Effects of manganese exposure on testicular ALP, ACP and LDH of SD rats

As shown in Figure 1, short-term repeated manganese exposure could induce the activity changes of ACP,
ALP and LDH in rat testes. However, the changes were varied at different time points. The activity of ALP
increased at ZT20 point while decreased at other time points (P<0.05). The activity of ACP was reduced
only at ZT2 point (P<0.05), but there was no significant difference in other time points (P>0.05). The
activity of LDH increased at ZT2 and ZT8 time points (P<0.05), but decreased at ZT14 and ZT20 time
points (P<0.05).

Interactions between testicular enzymes and ZT points after manganese exposure

Above results show that the activities of testicular ACP, ALP and LDH were varied at different ZT points
upon manganese exposure, suggesting there may be some interactions between these testicular enzymes
and ZT points. As shown in Table 3 and Figure 2, the changes of ALP and LDH in testicular tissue of rats
had interactions between manganese and zeitgeber time points (P<0.01), while the interaction between
manganese and ZT points of ACP enzyme was not statistically significant (P>0.05).

Discussion
The physiological and behavioral activities of organisms are largely affected by circadian rhythm [10],
which leads to the toxic reactions of experimental animals are of varied poisoning degrees due to
different exposure time to chemicals. Our results show that even if it is only once of manganese
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exposure, the acute toxicities induced by manganese at different ZT points are different. Among them,
the acute toxicity at ZT14 is the highest, followed by ZT20 and ZT14, and ZT2 is the least.

Spermatogenesis is a complex process of multitemporal phase, which is closely related to the activity of
many enzymes in spermatogenic cells. LDH is the main enzyme that produces energy by glucose
metabolism in spermatogenic cells and is one of the enzymes that produce ATP. LDH plays an important
role in the metabolic process of sperm survival, movement and fertility, and is a marker predictive of
sperm quality [12, 13]. Another key enzyme ACP is mainly distributed in the supporting cells of
spermatogonia. It can be used as an index to measure whether spermatogenesis disorder occurs. In
patients with clinical ejaculation disorder, ALP from testes and epididymis can be used as a marker to
distinguish oligozoospermia from spermatozoa deficiency [14]. In wild boars, there was a correlation
between sperm quality and sperm ALP release under maximum or minimum pressure [15]. Wang Meizhen
et al. also reported that the increase of LDH enzyme activity was a crucial indicator of energy metabolism
weakening and sperm deformity in spermatogenic cells [16]. The activity decrease of ACP enzyme may
be caused by weak activity of sertoli cells, which also results in it as an important marker for the decrease
of sperm count. This study indicates that manganese exposure can affect the activities of testicular ACP,
ALP and LDH. Our results are consistent with those results of Adedara et al. [17], which shows that
excessive manganese exposure could decrease the activities of ALP, ACP and LDH in testes.

Because of biorhythm, circadian rhythm implicates in sperm development and production [18]. We found
that the activity changes of ALP, ACP and LDH were varied upon the same dose of manganese exposure
at different ZT points. ALP increased at ZT20, but decreased at other time points. ACP only decreased at
ZT2, and LDH increased at ZT2 and ZT8 while decreased at ZT14 and ZT20. However, the changes of
these enzymes were consistent with the decrease of sperm count and motility [19]. Furthermore, factorial
analysis showed that the changes of these enzymes in testicular tissue of rats had interactions between
manganese and zeitgeber time points except ACP.

Conclusion
In summary, there is a difference of acute toxicity exposed to manganese at different zeitgeber time
points. Moreover, the injury of male reproductive system caused by manganese is varied at different
zeitgeber time points. In future, it is necessary to consider the timeliness of toxic reaction when
evaluating the toxicity of manganese.

Abbreviations
ALP: alkaline phosphatase; ACP: acid phosphatase; LDH: lactic dehydrogenase; ZT: zeitgeber time; Mn:
manganese
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Tables
Table 1  Death of mice after intraperitoneal injection of MnCl2•4H2O at different time points

Group Dose Number of mice Death number Death rate (p) Survival rate (q) p×q

mg/kg logarithm

Z2 1 250.0 2.3979 5 0 0 1 0

2 329.6 2.5179 5 2 0.4 0.6 0.24

3 434.5 2.6379 5 2 0.4 0.6 0.24

4 572.7 2.7579 5 3 0.6 0.4 0.24

5 755.0 2.8779 5 4 0.8 0.2 0.16


   
 
 
 
 
 
 


Z8 1 250.0 2.3979  5 1 0.2 0.8 0.16

2 329.6 2.5179  5 2 0.4 0.6 0.24

3 434.5 2.6379  5 3 0.6 0.4 0.24

4 572.7 2.7579  5 4 0.8 0.2 0.16

5 755.0 2.8779  5 4 0.8 0.2 0.16


   
 
 
 
 
 
 


Z14 1 250.0 2.3979  5 0 0 1 0

2 329.6 2.5179  5 4 0.8 0.2 0.16

3 434.5 2.6379  5 5 1 0 0

4 572.7 2.7579  5 5 1 0 0

5 755.0 2.8779  5 5 1 0 0


   
 
 
 
 
 
 


Z20 1 250.0 2.3979  5 1 0.2 0.8 0.16

2 329.6 2.5179  5 2 0.4 0.6 0.24

3 434.5 2.6379  5 3 0.6 0.4 0.24

4 572.7 2.7579  5 5 1 0 0

5 755.0 2.8779  5 5 1 0 0

 

 

 

Table 2   LD50 and  95%CI of mice after intraperitoneal injection of MnCl2•4H2O at different zeitgeber time
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ZT LD50 (mg/kg) 95%CI (mg/kg)

ZT2 471.95 376.14-592.17

ZT8 399.85 315.42-506.89

ZT14 303.32 275.30-334.20

ZT20 358.01 294.92-434.61

 

 

 

Table 3   Factorial analysis on the effects of manganese and exposed time points on ALP, ACP and LDH in testes

of SD rats

Source ALP ACP LDH

F P-value F P-value F P-value

Adjusted model 60.125 0.000 6.487 0.000 82.189 0.000

Intercept 4.098E3 0.000 5.339E3 0.000 1.622E4 0.000

Mn 33.438 0.000 1.163 0.293 0.555 0.464

ZT 113.767 0.000 12.363 0.000 64.333 0.000

Mn*ZT 16.072 0.000 2.858 0.060 124.340 0.000

 

 

Figures
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Figure 1

Effects of manganese (Mn) exposure on testicular ALP, ACP and LDH of SD rats at different ZT points.
(a) The activity of testicular ALP upon manganese exposure. (b) The activity of testicular ACP upon
manganese exposure. (c) The activity of testicular LDH upon manganese exposure. *, P<0.05 is based on
the Student t test compared to the control. All results are from three independent experiments.
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Figure 2

Interactions between testicular enzymes and ZT points after manganese exposure. (a) Interaction
between testicular ALP and ZT points upon manganese exposure. (b) Interaction between testicular ACP
and ZT points upon manganese exposure. (c) Interaction between testicular LDH and ZT points upon
manganese exposure.
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