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Abstract   

Cognitive flexibility, the ability to quickly adapt to changing environmental demands, is a hallmark 

of human behaviour, and is impaired across multiple psychiatric disorders. Especially 

compulsivity and impulsivity disorders have been linked to impaired adaptive learning and 

flexibility. Initial computational investigations suggested these distinct psychiatric dimensions 

suffer from the same underlying neurocognitive impairments, related to stochasticity during 

choice. However, a recent advance in computational neuroscience has demonstrated that 

imprecision in the learning process itself can account for a large portion of behavioural variability 

traditionally attributed to choice-stochasticity. Here, in a series of large-scale experiments using 

both lab-designed and gamified citizen-science tasks, we show that distinct computational 

markers are affected in compulsivity and impulsivity. Whilst impulsivity is tied to an imprecision 

in learning across valence domains, (hygiene-related) compulsivity is linked to choice-

stochasticity. This double-dissociation demonstrates that distinct neurocomputational 

mechanisms can drive seemingly similar behavioural deficits, only dissociable using targeted 

computational approaches.  

 

Key words: impulsivity, compulsivity, learning noise, learning imprecision, choice stochasticity, 

adaptive learning, crowd-sourced smartphone experiments 
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Introduction 

The ability to learn and adjust to changes in action-outcome contingencies lies at the core of 

flexible behaviour and is critical for survival in dynamic environments. Imbalances in cognitive 

flexibility are a hallmark of “impulsive-compulsive” disorders such as obsessive-compulsive 

disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), and substance abuse1–5. 

Phenomenologically, compulsive behaviours are believed to arise from excessive rigidity and 

cognitive inflexibility, which leads to maladaptive compulsive perseveration and reduced goal-

directed behaviour6–9. In contrast, premature and exaggerated switching is archetypical for 

impulsivity1,10,11.  

Despite the apparent phenomenological opponency between compulsivity and impulsivity, 

behavioural and computational analyses of cognitive flexibility thus far have found rather similar 

impairments showing deficits in the choice rather than the learning phase of adaptive (reversal) 

learning paradigms. Compulsivity was often linked to increased choice switching12–18, similarly to 

impulsivity, which has been linked to increased switching often seen as exaggerated 

exploration19–22.  

However, recent advances in the neurocomputational understanding of perceptual and value-

guided decision-making have put previous modelling attempts into question 23,24 by identifying a 

new source of behavioural variability that has previously not been accounted for, and which 

stems from the imprecisions in the inference process itself23,24. In reward-guided learning24, this 

inference imprecision translates into imprecisions in the learning process itself, i.e., random 

variability in feedback processing. These learning-driven imprecisions account for over 2/3 of 

behavioural variability that has previously been attributed solely to choice variability24. They also 
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demand to re-consider several behavioural phenomena, such as choice hysteresis (repetition of 

previous choices; as proposed in compulsivity) and the presence of what was typically assumed 

to be exploratory decisions (as proposed in impulsivity)24,25. 

In this series of large-scale computational studies, we thus examined whether and how distinct 

computational mechanisms can account for the cognitive flexibility impairments seen in 

impulsivity and compulsivity. In the first dimensional online study, we used this recently 

developed task and model24 to demonstrate that impulsivity is linked to an exaggerated learning 

imprecision but not choice deficits, whilst compulsivity (primarily washing compulsions) is linked 

to imbalances in choice stochasticity but not learning. In a second experiment, we demonstrate 

that this double-dissociation holds true for novel forms of data collection using crowd-sourced, 

citizen-science smartphone apps. Our findings thus not only provide a re-interpretation of the 

cognitive flexibility deficit mechanisms, but also reveal that seemingly similar impairments can 

have distinct computational origins, which provide us with critical new information about their 

underlying neural mechanisms15,20,26–29. 
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Results  

Learning imprecisions account for choice deficits in adaptive learning 

To assess cognitive flexibility in compulsivity and impulsivity, we collected a large non-clinical 

sample (N=392; age 32.6±12.4 (mean±s.d.), range 18-72, 204F) via the Prolific online workers 

platform. Subjects played a restless 2-arm bandit reward learning task online, similar to the one 

we previously used to examine learning noise imprecisions24 (Fig.1A-B, Methods, STable1).  

Overall, subjects accumulated more rewards than chance, demonstrating they adapted their 

behaviour based on the received information (t(391)=36.29, p<0.0001), and their  performance 

was comparable to the performance obtained in the previous laboratory study (N=30)24 (Fig.1D) 

confirming that careful online experimentation can elicit similar data as lab-based studies30.  

Recent work has highlighted the importance of accounting for learning errors when modelling 

behavioural variability in reward-guided decisions under uncertainty24,25.      To probe whether 

this also held true for our online sample, we ran a model comparison and found that indeed a 

‘noisy’ model with learning imprecision better explained subjects’ behaviour than a traditional 

‘exact’ reinforcement learning (RL) model without any learning noise (Fig.1E; posterior model 

exceedance probability Pexc>0.99).  

Importantly, this winning model allowed for two sources of variability: at the moment of choice 

(through a softmax inverse temperature parameter) and at the moment of action value update 

through learning imprecision (a learning noise parameter that scaled with the absolute 

magnitude of prediction error on each trial). This ‘noisy’ model also fit subjects’ choices better 

than a model with just learning imprecisions (i.e., noisy ‘argmax’ model) (Fig.1E), suggesting that 

both sources of variability are needed to best explain behaviour.  
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Finally, we examined to which extent the learning noise explained variability previously 

attributed to choice stochasticity31. We found that learning noise explained more than 73.9±1.5% 

(mean±s.e.m) of total behavioural variability in our data (Fig.1E), in line with previous findings24. 

This suggests that previous findings linked to choice stochasticity as a primary source of inter-

individual differences may be inadequate and could be explained through other mechanisms.  

 

Impulsivity and Compulsivity are linked to choice stochasticity in the exact model  

Following previous studies32–36, we characterized compulsivity and impulsivity dimensionally 

using questionnaires (OCI-R37–40 to measure compulsivity; BIS-1141,42 to measure impulsivity; 

SFig.3). 

First, we wanted to assess whether both dimensions were linked to an imbalanced choice process 

in the standard, exact (i.e., noise-free) learning.18,43–45 In line with previous findings, we found 

that both compulsivity 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂−𝑅𝑅  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.16 ,𝑝𝑝 = 0.002 and impulsivity 𝑅𝑅𝐵𝐵𝑂𝑂𝐵𝐵  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.13 , 𝑝𝑝 =

0.01  were positively associated with the choice stochasticity (inverse softmax temperature 

parameter) parameter17–19,36, suggesting that these personality traits might increase choice-

driven variability.  

To make sure that these associations were not driven by other covariates, we additionally 

controlled for age, gender and other computational model parameters. We replicated the above 

effects (Fig.2a; 𝛽𝛽𝐵𝐵𝑂𝑂𝐵𝐵  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.11 (𝑆𝑆𝑆𝑆 = 0.04),𝑝𝑝 = 0.02;  𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂−𝑅𝑅  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  0.13 (𝑆𝑆𝑆𝑆 =

0.04),𝑝𝑝 = 0.002), which means that these covariates did not explain the observed association, 

and we kept them in all subsequent analyses. 
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We did not observe any relationship between the learning rate for the chosen option and either 

of the two psychiatric traits (both p-values>0.17), suggesting that inter-individual differences in 

compulsivity and impulsivity did not depend on the exact learning process. 

    

Distinct associations of impulsivity and compulsivity when accounting for learning imprecisions  

We next investigated the model parameters of the better fitting ‘noisy’ model, which additionally 

captures learning imprecisions. Interestingly, when learning noise was taken into account, the 

choice stochasticity was no longer linked to impulsivity (Fig.2B; 𝛽𝛽𝐵𝐵𝑂𝑂𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.02 (𝑆𝑆𝑆𝑆 =

 0.04),𝑝𝑝 = 0.51 ), but it remained associated with compulsivity (𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂−𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  0.11 (𝑆𝑆𝑆𝑆 =

 0.04),𝑝𝑝 = 0.002). Instead, we found a significant association of learning noise parameter with 

impulsivity (Fig.2C; 𝛽𝛽𝐵𝐵𝑂𝑂𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.08 (𝑆𝑆𝑆𝑆 = 0.04),𝑝𝑝 = 0.02),  but not compulsivity 

(𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂−𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.03 (𝑆𝑆𝑆𝑆 = 0.04),𝑝𝑝 = 0.49). 

We, again, observed no relationship between the learning rates and either psychiatric trait 

(𝛽𝛽𝐵𝐵𝑂𝑂𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.03 (𝑆𝑆𝑆𝑆 = 0.05),𝑝𝑝 = 0.61, 𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  −0.05 (𝑆𝑆𝑆𝑆 = 0.05),𝑝𝑝 = 0.35) 

suggesting impulsivity is not associated with poorer or exaggerated learning per se, but rather, it 

is linked to a more inconsistent learning over time22,46.  We found a similar double dissociation in 

another task setting, in which participants received feedback for both (chosen and unchosen) 

stimuli (Supplementary Information). 

Finally, in line with previous study24, accounting for learning imprecisions resulted in re-

categorizing of more than 70% (74.6±1.5%) (mean±s.e.m) of the decisions labelled as ‘non-

greedy’ (i.e., choices where an option with lower expected value has been chosen) under the 

exact model, as ‘greedy’ under the noisy model. This re-evaluation resulted in a dissociation 
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between compulsive and impulsive traits previously linked to the non-greedy decisions 7,33,36 with 

only compulsivity positively contributing to the exploratory decisions (cf Supplementary 

Information).  

      

Learning imprecisions are sufficient to account for choice hysteresis  

A tendency to repeat previous choices irrespective of their value has been traditionally captured 

with an additional parameter during choice47–49. This “choice hysteresis” (tendency to repeat 

same action) parameter has previously been linked to compulsivity7,14,15,17. However, we found 

that choice hysteresis was no longer necessary when accounting for learning imprecisions, 

aligned with previous simulations24 (Supplementary Information). While in the exact setting, 

adding choice hysteresis parameter improved model fitting (Pexc with bias>0.97), the same 

parameter in the noisy model was not necessary: Pexc no bias>0.99 (SFig.1C, Supplementary 

Information).  

In the exact model, the choice hysteresis parameter was significantly different from 0: 1.06±0.05, 

t(391)=21.8, p<0.0001 and was negatively associated with OCI-R total score in line with previous 

studies7,14,15,17: 𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  = −0.17 (𝑆𝑆𝑆𝑆 = 0.05), 𝑝𝑝 = 0.0007  (controlling for the covariates: 𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  = −0.13 (𝑆𝑆𝑆𝑆 = 0.05), 𝑝𝑝 = 0.003). We examined whether a similar association was 

present in the a (worse fitting) noisy model with choice hysteresis and did no longer observe any 

association between compulsivity and choice hysteresis (𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  = −0.07 (𝑆𝑆𝑆𝑆 = 0.04),𝑝𝑝 = 0.12). This suggests that choice hysteresis is superfluous in this task when accounting for 

learning noise.  
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Associations with specific compulsivity and impulsivity components 

Impulsivity and compulsivity as captured here are multifactorial constructs that aggregate across 

what is believed to be separable components of compulsivity and impulsivity1,10,50,51. Previous 

factor analyses of BIS and OCI-R revealed multiple subscales, which characterize different facets 

of these endophenotypes37–39 and contribute to different behavioural deficits1,8,52,53. 

We thus assessed which components of compulsivity and impulsivity were most strongly linked 

to the model parameters observed above. As these factors are correlated with each other (R-

values>0.3, SFig.6C-D), we conducted separate regression analyses and then corrected for 

multiple comparisons. 

When investigating choice stochasticity, we found that this parameter was primarily linked to the 

compulsivity subscales of “washing” (Fig.3B, 𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂−𝑅𝑅 𝑤𝑤𝑡𝑡𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 0.12 (𝑆𝑆𝑆𝑆 = 0.04),𝑝𝑝 = 0.001, 

αcorrected=0.004) and “hoarding” (𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂−𝑅𝑅 ℎ𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 = 0.10 (𝑆𝑆𝑆𝑆 = 0.03),𝑝𝑝 =

0.003, αcorrected=0.004) (Fig.3A, STable2). We did not find any relationship between choice 

stochasticity and any of the impulsivity subscales (all p-values>0.05, Fig.3A, STable2) suggesting 

that choice imbalances are primarily associated with behavioural compulsions related to washing 

and hoarding. 

Next, we investigated learning noise as the parameter primarily linked to impulsivity. We found 

that learning noise was specifically associated with the motor impulsiveness subscale (Fig.3B; 𝛽𝛽𝐵𝐵𝑂𝑂𝐵𝐵 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜 𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑡𝑡𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤 = 0.17 (𝑆𝑆𝑆𝑆 = 0.03),𝑝𝑝 < 0.0001, αcorrected=0.004), capturing the 

propensity to act prematurely without foresight37,39 (all other subscales p-values>0.05, STable2).  

 

Cognitive flexibility in crowd-sourced smartphone app data 
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Online experiments, as used above, have been highly successful for studying inter-individual 

differences in psychiatric traits and transdiagnostic approaches34,54,55. Nevertheless, using online 

worker platforms has several limitations30,56. First, the participant pool is limited to registered 

workers whose primary interest is most often financial. Moreover, the platforms are restricted 

in age (adults only), language (mostly English speakers) and most often confined to a specific 

geographic location (here: United Kingdom). More importantly, using laboratory tasks online 

does not answer the question whether obtained results could generalize across different 

contexts and have sufficient ecological validity for a potential translation into clinical 

applications57,58. Thus, several research groups turned towards studying cognition through 

gamified tasks and more ecologically valid settings using crowd-sourced game platforms, such as 

smartphone app games30,59–62. 

The goal of this second experiment was thus not only to replicate our findings in a more 

ecologically realistic sample, but also examine whether similar results could be obtained using a 

substantially shorter task in a less well controlled environment which is likely to be more 

reflective of any potential future clinical translation57,58. 

We designed a short, gamified version of the 2-arm bandit task from experiment 1 (Fig.1C) and 

used it as part of the smartphone-based Brain Explorer research app (www.brainexplorer.net). 

We collected an independent large convenience sample of app users (N=2610, age 41.8y±15.9 

(s.d.), range (18–85y), 1499F; STable1) who played the game voluntarily and without 

reimbursement (comparison of samples cf SFig.3-5).  

Subject played a “Milky Way” game with the goal to cumulate as much space milk as possible 

from two space cows (i.e., bandits with drifting reward magnitudes, Fig.1C). The performance 

http://www.brainexplorer.net/
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between the two experiments was comparable, but slightly lower in the smartphone sample 

(Fig.1D; exp.1: 8.12±0.22, exp.2: 7.07±0.09 (mean±s.e.m), t(535.51)=4.31, p=0.0002). This 

difference is expected as the latter task is substantially shorter, has a much briefer training and 

no pre-task quiz (as used in experiment 1; also see30). However, the second sample still 

performed significantly above chance (t(2609)=76.05, p<0.0001), showing that they understood 

the task and adapted based on the feedback.  

As in experiment 1, the model that included both choice stochasticity and the learning noise term 

outperformed the models with either only the choice stochasticity (exact learning) or only the 

learning noise: Pexc>0.999 (Fig.1F) with the best fitted parameter distributions laying in similar 

ranges but having slightly higher values as compared to experiment 1 (Fig.S2, Supplementary 

Information). The fraction of behavioural variability that was accounted for by the learning noise 

was even larger in the smartphone sample, accounting for 78.7±0.06% (mean±s.e.m) (exp.1 vs 

exp.2: t(499.47)=2.60, p=0.01) (Fig.1F). This highlights that learning noise is of particular 

importance when assessing learning using smartphone apps like the one used here.   

 

Associations with impulsivity and compulsivity 

All users also completed the BIS and OCI-R questionnaires (STable1), with scores comparable 

between the two experiments (SFig.3-5; BIS total exp.1: 60.7±11.1, exp.2: 62.3±10.0; OCI-R total 

exp.1: 18.7±13.8, exp.2: 15.2±10.1 (mean±s.d.)). 

First, we replicated that choice stochasticity was significantly associated with impulsivity (Fig.2D; 𝛽𝛽𝐵𝐵𝑂𝑂𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.07 (𝑆𝑆𝑆𝑆 = 0.01),𝑝𝑝 <  0.0001)  and compulsivity (𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂−𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.04 (𝑆𝑆𝑆𝑆 =

 0.02),𝑝𝑝 = 0.008) in the worse-fitting, exact model that does not account for learning noise. This 
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confirms our hypothesis that imbalanced cognitive flexibility in compulsivity and impulsivity 

would be expressed as a bias in choice selection when we do not account for imprecisions during 

learning. When investigating the best-fitting model, which accounted for both sources of 

variability, we again found that choice stochasticity was no longer associated with impulsivity 

(Fig.2E; 𝛽𝛽𝐵𝐵𝑂𝑂𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.006 (𝑆𝑆𝑆𝑆 = 0.01),𝑝𝑝 = 0.63 ) but impulsivity was now significantly 

associated with learning noise instead (Fig.2F; 𝛽𝛽𝐵𝐵𝑂𝑂𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.10 (𝑆𝑆𝑆𝑆 = 0.01),𝑝𝑝 <  0.00001). 

These findings confirm our previous observation that general impulsivity was exclusively linked 

to learning imprecisions when accounting for this mechanism. 

Interestingly, unlike in the first experiment, general compulsivity was no longer linked to choice 

stochasticity (Fig.2E; 𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂−𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = −0.009 (𝑆𝑆𝑆𝑆 = 0.01),𝑝𝑝 = 0.55). In line with experiment 1, 

we also did not find any association between compulsivity and the learning noise parameter 

(Fig.2F; 𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.01 (𝑆𝑆𝑆𝑆 = 0.008),𝑝𝑝 = 0.22). 

 

Compulsivity and impulsivity subscales reliably linked to behaviour 

In the first experiment, we identified that specific subscales were more closely associated with 

biases in both choice stochasticity and learning imprecisions. As these showed stronger 

associations with the parameters, we specifically tested whether we could find the same 

associations in the smartphone sample. We thus investigated whether motor impulsiveness was 

linked to learning noise, and whether hoarding and/or washing compulsions were linked to 

choice stochasticity. 
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We indeed confirmed the specific association between motor impulsiveness and learning noise 

(Fig.4B; STable3; 𝛽𝛽𝐵𝐵𝑂𝑂𝐵𝐵 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜 𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑡𝑡𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤 = 0.10 (𝑆𝑆𝑆𝑆 = 0.01),𝑝𝑝 < 0.0001) with no association 

between any impulsivity sub-scores and choice stochasticity, (Fig.4; STable3).  

Next, even though we did not replicate the association between choice stochasticity and overall 

compulsivity, we were able to replicate the association between choice stochasticity and washing 

compulsivity (Fig. 4A; 𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂−𝑅𝑅 𝑤𝑤𝑡𝑡𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 0.03 (𝑆𝑆𝑆𝑆 =  0.01),𝑝𝑝 = 0.02) but not hoarding (Fig.4; 

STable3). Our findings thus suggest that the specific link between choice stochasticity and 

compulsive washing was strong enough to remain significant in this somewhat noisier 

smartphone-based data set.  

 

(Motor) impulsiveness drives learning imprecision across valence domains   

Lastly, we tested whether the learning imprecision effects observed in impulsivity would 

generalize across valence domains, i.e., whether they would also be present in learning to avoid 

punishment. This is particularly relevant for impulsivity as previous studies linked impulsivity to 

altered cognitive flexibility and learning from punishment63–66.       

We thus implemented a version of the same smartphone game in the loss domain. Instead of 

collecting points users were instructed to learn how to avoid losing the points already won 

(Fig.5A). Overall, 670 (42.8y±17.3, range 18-83, 415F) (STable1) users completed both reward 

and punishment (reward game always played first) games, together with the questionnaires and 

showed comparable performances across both games (Fig.5B, Supplementary Information).  

We verified that the learning noise model also better accounted for this task (Pexc=0.99) 

(Supplementary Information) with comparable parameters across both games (SFig.7A-D).  
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As in the reward domain, we replicated the positive association between general impulsivity 

(Fig.5C-D, Stable4, Supplementary Information). We further found that motor impulsivity was 

specifically linked to learning noise, suggesting that these associations are present across both 

valence domains.   

 
Discussion  

Reduced cognitive flexibility and adaptive learning are hallmarks of many impulsive and 

compulsive disorders4,5,8,67,68. Yet, their computational mechanisms remain poorly understood 

and early modelling attempts suggested similar impairments despite apparent 

phenomenological differences. Here, we show that by considering new sources of learning 

variability23–25, we could deconvolve the impulsivity- and compulsivity-related reductions in 

cognitive flexibility and show that they are driven by different computational mechanisms. We 

demonstrate across multiple large-scale studies that while compulsivity is associated with 

increased choice stochasticity, impulsivity is related to the imprecisions in learning process itself.  

Whilst previous computational modelling approaches have linked both impulsivity and 

compulsivity to deficits during the choice process15,17,18,45,69, we highlight that this is not the case 

when considering multiple sources of variability. We also replicated previous findings24 that 

showed that accounting for learning imprecisions not only substantially improved model 

performance and but their lack resulted in inflated estimates of choice-driven variability. In fact, 

we show that contrary to previous findings, impulsivity is not linked to imprecisions during choice 

(e.g., exploration19,22,36,45), but rather to increased variability during learning with likely different 

underlying neurobiological mechanisms.  
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Noradrenaline is believed to play a key role in the learning variability70–72. Previous work found 

that learning imprecisions were linked to indirect markers24 of noradrenaline functioning73–75 

such as activity in the dorsal anterior cingulate cortex and pupil size fluctuations. This suggestion 

also aligns well with the assumption that many impulsivity disorders, such as ADHD, are linked to 

impaired noradrenaline functioning19,26,76,77. However, our study cannot rule out that an 

increased exploration during choice – as proposed in previous studies 19,22,36,45  – is still present 

in impulsivity. Studies that investigate exploration in the absence of any learning20,36,71 suggest 

that increased exploration might still be linked to impulsivity and reflect noradrenaline 

functioning71. Interestingly, preliminary pharmacological studies suggest that noradrenaline is 

linked to increased learning imprecisions rather than choice stochasticity.25,78 

Impulsivity represents a heterogenous symptom dimension which shows substantial 

variability10,50,68,79. Here, we observed a particularly strong association between motor 

impulsiveness (i.e., acting without thinking and the inability to withhold a response) and learning 

noise. Previous work showed that motor impulsiveness contributed to disinhibition possibly via 

noradrenaline system52,80, suggesting a potentially more specific link.   

In contrast to impulsivity, our computational analysis of compulsivity – more specifically washing 

compulsivity – confirmed a reduced precision during choice, even when accounting for the 

learning noise. Importantly, the introduction of learning imprecisions also allowed us to 

reconsider other computational phenomena that have previously been attributed to 

compulsivity such as choice hysteresis (or ‘stickiness’) 47,81,82. Whilst choice hysteresis improved 

model fitting in the noise-free model and correlated positively with compulsivity, in the better-
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fitting noisy learning model, this parameter no longer improved model fits thus inviting to 

reconsider the previous findings14–17. 

Our study was also a testbed for new technologies and the potential of translation and 

generalisation of such computational tasks. In the first study, we used a well-established paid 

worker platform, whilst in the second we analysed an unpaid, heterogenous sample of 

smartphone users which played a short, gamified version of the same experiment. Importantly, 

we replicated most of the key associations in both samples, which is critical for the findings’ 

robustness and the potential for using such tasks in clinics57,58. However, it should also be noted 

that the association between choice stochasticity and compulsivity was more variable and only 

robust for washing compulsions. We believe that this is due to a generally increased noisiness in 

the shorter smartphone-based task, which may render the choice stochasticity parameter less 

sensitive. Such effects on signal quality are important to consider when building cognitive probes 

and could arise from differences in the samples (semi-professional vs lay participants), in the 

study length, instruction, or design. Crowd-source smartphone-based experiments provide an 

unprecedented access to the population that are difficult to reach in the laboratory settings (e.g., 

children and elderly) but one should be mindful of the larger variability and elevated 

measurement noise leading to lower effect sizes30,58. 

In this study, we demonstrate that by taking into account recent developments in understanding 

multiple sources of behavioural variability, we can successfully dissociate differences in cognitive 

flexibility linked to compulsivity and impulsivity. By testing and replicating these effects across 

different sample and contexts, we demonstrate how advanced computational modelling can help 

pinpoint distinct neurocognitive mechanisms underlying seemingly similar deficits. 
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Figure 1. Task structure and contributions of learning noise to behavioural variability 

  
A. Trial structure and design in two-armed bandit task in experiment 1. On every trial, participants were making a 

choice between two bandits represented by coloured shapes on the screen and observed the outcome (between 1 

or 99 points) for the chosen option. B.  Example of reward magnitudes for two bandits for one session in experiment 

1. Reward magnitudes changed through trials and were sampled from two probability distributions with 
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independently drifting means. Thick lines represent the drifting means of two distributions; dotted lines represent 

the reward outcomes that could have been observed by the subject conditioned on the choice. This observable 

reward magnitudes are sampled from the distribution mean with added Gaussian sampling noise to ensure 

continuous learning in the task. C. Task structure for reward learning two-armed bandit task in experiment 2 (Milky 

Way game in the Brain Explorer app). On every trial, participants were making a choice between two space cows 

and then observed how much space milk they have collected in the form of points (from 1 to 99). The underlying 

distributions of drifting mean rewards were the same as in experiment 1 but the task was substantially shorter. D. 

To analyse the subjects’ overall performance in both experiments, we computed the difference between the total 

average reward won by each subject and the foregone reward (to account for the individually generated reward 

trajectories). A positive difference means that subjects were performing better than at chance level. In both 

experiment 1 and 2, subjects performed better than chance (p<0.001) White dots are medians, error bars are 25th 

and 75th percentile of the performance distributions. Grey dots represent individual subjects. Black dots are the 

median performance from the previous laboratory study24. E. Top panels. Bayesian model selection (BMS) results 

for experiment 1 (left panel) and experiment 2 (right panel). Bars represent estimated model frequencies for exact 

model (just softmax decision rule, left bar), noisy learning model with softmax decision rule (middle bar), and noisy 

learning model with argmax decision rule (right bar). Error bars are s.d. for model frequencies based on Dirichlet 

distribution. Model with two sources of variability (learning noise and softmax decision rule) better accounted for 

data in both experiments similarly to the previously observed results24. Bottom panels. Fraction of behavioural 

variability attributed to learning noise based on the best winning model in experiment 1 (left panel) and experiment 

2 (right panel). In both experiments more than 2/3 of total variability in the decision was due to learning noise rather 

than choice stochasticity. Black dots represent the results obtained in the previous laboratory study24.     
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Figure 2. Contributions of impulsivity and obsessive-compulsive traits to choice stochasticity and learning noise.  

 

A. In the exact model (no learning noise added), both impulsivity traits measured with BIS total score and OC traits 

measured with OCI-R total score showed a significant association with choice stochasticity (softmax parameter). B. 

Impulsivity traits were no longer associated with choice stochasticity when learning noise is added to the model. C. 

Impulsivity traits contributed to learning noise rather than choice stochasticity in the learning noise model. D-F. 

Same analysis as in A-C for the Brain Explorer (experiment 2) data. All regressions included age, gender, IQ 

(experiment 1), mental health status (experiment 2), and other model parameters as covariates. Dark bar colours 

indicate the replication tests based on the results from experiment 1. Error bars are standard errors, * - p < 0.05, ** 

- p < 0.01, *** - p < 0.001.   
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Figure 3. Contributions of different subscales of impulsivity and obsessive-compulsive traits to choice 

stochasticity and learning noise in experiment 1 (N = 392).  

 

 A. Analysis of impulsivity and compulsivity sub-scales show that hoarding and washing compulsions (right panel) 

were most closely associated with choice stochasticity in the noisy model, whilst there was no association with any 

of the impulsivity subscores (left panel). B. In contrast, learning noise was exclusively associated with motor 

impulsiveness, but no other impulsivity or compulsivity subscore. Error bars are standard errors, * - p < 0.05, star 

represents test results Bonferroni corrected for multiple comparisons across regression models.     

 



 21 

 
 

Figure 4. Contributions of different subscales of impulsivity and obsessive-compulsive traits to choice 

stochasticity and learning noise in experiment 2 (N = 2610).  

 

 A. Choice stochasticity from the noisy model was again associated with washing compulsions (replicating the first 

experiment), but not with hoarding or any other subscore. B. Learning noise was again primarily associated with 

motor impulsiveness, as in experiment 1. No compulsivity subscale was associated with learning noise. Error bars 

are standard errors, * - p < 0.05, ** - p < 0.01, *** - p < 0.001. Dark bar colours indicate the replication tests based 

on the results from experiment 1. 
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Figure 5. Learning noise also linked to (motor) impulsivity in punishment learning (N = 670). 

 

A. Trial structure for the Pirate Market game in Brain Explorer app – a version of the “Milky Way” game but in the 

loss domain. This was framed as choosing the one of two pirates, who takes away less milk (hence, we called it ‘Pirate 

Market’). On every trial, users are endowed with 100 points (a full bucket of milk) and must choose a pirate that will 

steal less milk from them. The amount of stolen milk is presented in points (range from -99 to -1). The game setup 

and the outcome sequences were analogue to the Milky Way game but in the loss domain. B. Relative average 

rewards (chosen – unchosen) cumulated by the same sample of users (N = 670) in reward learning game (Milky Way, 

left) and in the punishment learning game (Pirate Market, right). White dots are medians, error bars are 25th and 

75th percentile of the performance distributions. As in the reward learning context participants performed 

significantly better than chance (t(669)=38.8, p<0.0001), demonstrating they understood the task and learned to 

choose the less punishing bandit. Performance between the two domains was positively associated (r=0.33, 

p<0.0001), meaning that those who performed better in the reward version also performed better in the punishment 

version, even though they won slightly less in the punishment version (t(669)=3.00, p=0.003, two-tailed), C. BIS total 

score was associated with choice stochasticity in the exact, but not in the noisy learning model. D. In the better 

fitting noisy model, BIS total score was associated with learning noise. Amongst the subscales, motor impulsiveness 

again showed the strongest association. * - p < 0.05, ** - p < 0.01, *** - p < 0.001.   
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Methods  

 

 

Participants  

Experiment 1  

420 participants living in the UK were recruited via the Prolific online testing platform 

(https://www.prolific.co). All participants were over 18 y.o. and gave their informed consent. 

There were no other recruitment restrictions to gain a representative sample of the general 

public. The study was approved by University College London’s Research Ethics Committee. 

We excluded 28 participants because of incomplete dataset or failure to at least one of the 

attention checks (instructed questionnaire answers). This resulted in a final sample of 392 

participants (age 32.6±12.4 (mean±s.d.), range (18-72), 204F). Participants received monetary 

compensation for their participation (8.25£) in the study, and an additional performance-based 

bonus of up to 2£ at the end of the experiment. 

 

Experiment 2 and experiment 3  

Between December 2020 and June 2021, 2790 users played at least one full session of the reward 

learning game (“Milky Way”) using a smartphone-based app as part of the Brain Explorer project 

(https://brainexplorer.net). We excluded users with multiple but incomplete sessions, as well as 

with incomplete demographic or questionnaire data. In total, 2610 (age 41.8±15.9 (mean±s.d.), 

range (18-85), 1499F) out of 2790 users completed both OCI-R and BIS questionnaires, passed 

the data quality checks and were included in the final sample.  Among these 2610 users, 670 (age 

42.8±17.3 (mean±s.d.), range (18-83), 415F) also played at least one session of the punishment 

https://www.prolific.co/
https://brainexplorer.net/
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learning game (“Pirate Market”). All participants first played the Milky Way reward learning game 

and then the Pirate market game.  

 

Experimental protocol 

Experiment 1.  

Participants played a restless, two-armed bandit game where their goal was to maximize the 

number of points won that were translated into a monetary bonus at the end of the game. On 

each trial, participants chose one of the two coloured shapes presented to the left and to the 

right of the fixation point on the screen and observed an outcome (Fig.1A). Choices were made 

in a self-paced manner with no time restrictions, but participants were instructed to complete 

the task within one hour. The task was divided into two sessions of 72 trials each. Each session 

involved a separate pair of coloured shapes.  

All participants completed a training session and had to pass the quiz prior to starting the game.  

The task included continuous payoff ranging from 1 to 99 points which were sampled 

independently for each bandit from probability distribution whose properties were validated in 

the previous experiment24 (Fig.1B). The mean payoffs on trial t �̂�𝑟𝑡𝑡 followed a random walk process 

and was sampled from a beta distribution with shape parameters 𝛼𝛼 = 1 + �̂�𝑟𝑡𝑡−1 𝑒𝑒𝑒𝑒𝑝𝑝(𝜏𝜏) and 𝛽𝛽 =

1 + (1− �̂�𝑟𝑡𝑡−1) 𝑒𝑒𝑒𝑒𝑝𝑝(𝜏𝜏). This parameterization corresponds to a mode equal to �̂�𝑟𝑡𝑡−1 and a spread 

growing monotonically with 𝜏𝜏, fixed to 3.0. Participants did not observe these mean payoffs 

directly but instead were shown the rounded to the nearest integer payoffs which were sampled 

from another beta distribution with shape parameters 𝛼𝛼 = 1 + �̂�𝑟𝑡𝑡 𝑒𝑒𝑒𝑒𝑝𝑝(𝜔𝜔)  and 𝛽𝛽 = 1 + (1−
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�̂�𝑟𝑡𝑡) 𝑒𝑒𝑒𝑒𝑝𝑝(𝜔𝜔). The mode of this distribution on trial t 𝑟𝑟𝑡𝑡 corresponded to �̂�𝑟𝑡𝑡 and a spread growing 

monotonically with 𝜔𝜔, fixed to 1.5. While parameter 𝜏𝜏 controlled the overall volatility of the 

environment (with on average 1 reversal in every 16 trials), parameter 𝜔𝜔 controlled additional 

instantaneous fluctuations around the mean payoff that were introduced to insure a sufficient 

level of uncertainty and continuous learning throughout the session.  

To analyse the subjects’ overall performance in the task, we computed the difference between 

the total average reward won by each subject and the foregone reward (to account for the 

individually generated reward trajectories). A positive difference means that subjects were 

performing better than choosing at chance (Fig.1D). 

 

 

Experiment 2  

Milky Way game. The game represented a gamified version of the laboratory task used in 

experiment 1.  As before, participants played a restless, two-armed bandit game but instead of 

the coloured shapes, the two bandits were depicted as brown and black-and-white space cows 

(Fig.1C). The goal of the game consisted of accumulating as many points as possible that were 

translated into a “space milk”. On each trial, participants made a self-paced choice between the 

two cows and observed the number of points won. Participants only observed the number of 

points from the chosen cow. Participants did not receive any monetary compensation for playing 

the game. Each game session consisted of 72 trials split into two rounds of 36 trials each. On 

average the users played 1.3±0.58 (mean±s.d.) sessions of the Milky Way game resulting in 
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93.0±42.1 (mean±s.d.)  trials per user. Reward magnitudes were generated from the distributions 

with the same volatility and sampling parameters as in the experiment 1.   

 

Experiment 3  

Pirate Market game. The game was similar to the Milky Way game but instead of space cows that 

distributed “space milk”, participants encountered space pirates that were stealing the milk from 

them. The goal of the game was to preserve as much milk as possible but avoiding the most 

ravenous pirate (Fig.5A). On every trial, participants were endowed with 100 points and made a 

choice between two pirates, they next observed how many points (between 1 and 99) the chosen 

pirate had stolen, and the remaining points were added to their cumulative score.  Each game 

session consisted of 72 trials split into two rounds. On average the users played 1.25±0.48 

(mean±s.d.) sessions of the Milky Way game resulting in 90.2±34.8 (mean±s.d.) trials per user.  

For both games, the payoffs were sampled from the beta distributions with the same shape 

parameters as in experiment 1 (Fig.1B). We verified that participants also in this version 

performed significantly better than chance (t(669)=38.8, p<0.0001), demonstrating they 

understood the task and learned to choose the less punishing bandit. Interestingly, performance 

between the two domains was positively associated (r=0.33, p<0.0001), meaning that those who 

performed better in the reward version also performed better in the punishment version, even 

though they won slightly less in the punishment version (Fig.5B; t(669)=3.00, p=0.003).  

 

Computational model  
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To model participants’ choice behaviour, we used the same models that were previously 

developed and validated24. Choice behaviour was modelled using two versions of the 

reinforcement learning algorithm. In the first model, we deployed a traditional exact Rescorla-

Wagner83  learning rule that was used to update the state-action Q-values on each trial t following 

action at trial t-1 and obtained reward r:  

 𝑄𝑄𝑡𝑡 = 𝑄𝑄𝑡𝑡−1 + 𝛼𝛼 (𝑟𝑟𝑡𝑡−1 − 𝑄𝑄𝑡𝑡−1) 

 where 𝛼𝛼 is the learning rate that scales the prediction error (PE) between obtained reward 𝑟𝑟𝑡𝑡−1 

and expected reward 𝑄𝑄𝑡𝑡−1. In this formulation, the update of the values is deterministic and only 

depends on the learning rate.  

In our previous work24 we introduced a “noisy” formulation of this model which assumes 

stochasticity in the update rule.  On each trial, the updated value is corrupted by additive random 

noise 𝜀𝜀𝑡𝑡: 
𝑄𝑄𝑡𝑡 = 𝑄𝑄𝑡𝑡−1 + 𝛼𝛼 (𝑟𝑟𝑡𝑡−1 − 𝑄𝑄𝑡𝑡−1) + 𝜀𝜀𝑡𝑡 

 

where 𝜀𝜀𝑡𝑡 is drawn from a Normal distribution with zero mean and standard deviation 𝜎𝜎𝑡𝑡 equal to 

a constant fraction 𝜁𝜁 of the magnitude of the PE: 𝜎𝜎𝑡𝑡 = 𝜁𝜁 |𝑟𝑟𝑡𝑡−1 − 𝑄𝑄𝑡𝑡−1|. In this formulation of the 

noisy learning model, the noise added at each update scales with the prediction error similarly 

to Weber’s law. Previous studies have demonstrated its better performance and advantage over 

models with just random noise (e.g., where the standard deviation 𝜎𝜎𝑡𝑡 does not scale with the 

prediction error)24,84.  
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The learning noise was applied to the update of both chosen and unchosen option values. While 

in the complete feedback (see Supplementary Information), the update of both options was 

based on the observed outcomes, in the partial feedback condition (as described in the main 

manuscript), we assumed a “decaying” learning rule for the unchosen option where the reward 

was replaced by the average payoff equal to 50 in our task similarly to the previous experiment24.  

In both models the choice process was modelled as a stochastic ‘softmax’ action selection policy, 

controlled by an ‘temperature’ 𝛽𝛽 and an optional ‘choice repetition bias’ 𝜉𝜉: 

𝑃𝑃(𝐴𝐴) 𝑎𝑎𝑡𝑡 =   � 1

1 +𝑒𝑒𝑒𝑒𝑝𝑝  �−𝛽𝛽 �𝑄𝑄𝑡𝑡,𝐴𝐴 − 𝑄𝑄𝑡𝑡,𝐵𝐵� − 𝜉𝜉 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑎𝑎𝑡𝑡−1)� 
� 

where 𝑄𝑄𝑡𝑡,𝐴𝐴 and 𝑄𝑄𝑡𝑡,𝐵𝐵 are the values associated with options A and B at time point t. This stochastic 

action selection policy reduces to a purely greedy (value-maximizing) ‘argmax’ policy when 𝛽𝛽 →∞.  

Model fitting procedure 

Model fitting was conducted using Monte Carlo methods85 following the implementation 

developed in the previous work24. The model with the exact learning rule was fitted using an 

Iterated Batch Importance Sampler (IBIS)86 to obtain the posterior distributions for the 

parameters 𝜃𝜃 when the likelihoods 𝑝𝑝(𝑎𝑎𝑡𝑡 | 𝑎𝑎1:𝑡𝑡−1, 𝑟𝑟1:𝑡𝑡−1,𝜃𝜃) are tractable24. This class of Monte 

Carlo methods could not be used for the noisy RL models because the corresponding likelihoods 

are intractable in this latter case. To obtain posterior parameter distributions for the noisy 

learning model we used the ‘SMC2’ algorithm87. To obtain action values trajectories in the noisy 

learning model, we applied smoothing procedures to estimate the smoothing distributions of the 
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trajectories of action values over the course of each block 𝑝𝑝(𝑄𝑄1:𝑖𝑖|𝑎𝑎1:𝑖𝑖, 𝑟𝑟1:𝑖𝑖,𝜃𝜃𝑀𝑀𝐴𝐴𝑀𝑀) , where 𝑠𝑠 

corresponds to the number of trials in each block, and 𝜃𝜃𝑀𝑀𝐴𝐴𝑀𝑀 to maxima a posteriori for model 

parameters {𝛼𝛼, 𝜁𝜁,𝛽𝛽, 𝜉𝜉} . To obtain samples approximately distributed under the smoothing 

distributions, we used the Forward Filter Backward Simulator (FFBSi)88,89 to obtain 𝐾𝐾 samples 𝑄𝑄�1:𝑖𝑖,𝑘𝑘. For details of the computational model and model inversion procedures, see 24.  

 

Model comparison  

We performed a series of Bayesian Model Selection (BMS) analyses to test whether learning 

imprecisions help account for choice data across the experiments. In all model comparisons we 

used model evidence conditioned on human decisions obtained from the particle MCMC fitting 

procedures (Methods,24). We used random-effect model selection procedure where models are 

treated as random effects that could differ between subjects and their prior frequencies are 

drawn from Dirichlet distribution. Model posterior frequencies and exceedance probabilities 

(e.g., how likely it is that a given model is more frequent in the population than other models in 

the set) were obtained through the BMS algorithm implemented in SPM1290,91.  

To identify whether learning imprecision is an important source of behavioural variability, we 

compared three models across experiment 1 and 2: 1) exact model with just choice stochasticity 

in the softmax decision rule 2) model with just learning noise and no choice stochasticity (argmax 

choice policy) and 3) model with both sources of variability: learning noise and softmax. In both 

experiments model with both sources of variability better explained the data (Fig.1E-F). 

To verify whether subjects inferred the value of the unchosen option we compared the model 

with no update of the counterfactual option with the model that assumed a progressive decay of 
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the counterfactual option to the mean of 50 in both exact and noisy learning model formulations 

(SFig.1B)24. We performed this analysis for both experiment 1 and experiment 2. In both, exact 

and noisy model formulations, the model which assumed the update of the unchosen option 

better accounted for the data (all exceedance probabilities > 0.99) (SFig.1B) suggesting that in 

both experiments users inferred the values of the unchosen option when making their choices. 

In both experiments, learning rates for the forgone option were lower than learning rates for the 

chosen option: experiment 1 chosen 0.59±0.01 (mean±s.e.m.), unchosen 0.24±0.008 

(mean±s.e.m.), difference t(391)=25.81, p<0.0001; experiment 2 chosen 0.69±0.004 

(mean±s.e.m.), unchosen 0.38±0.003 (mean±s.e.m.), difference t(2609)=59.21, p<0.0001, 

suggesting participants were putting more weight on the observed rather than inferred option 

values.  

Additionally, we tested an alternative model formulation, in order to investigate whether 

additional choice hysteresis parameter is necessary to improve model behaviour fitting. We 

compared model with and without repetition bias separately for exact and noisy learning 

formulations in the experiment 1 (SFig.1C).  

 

Analysis of inter-individual differences in impulsivity and compulsivity  

Linear regressions  

Relationships with choice stochasticity and learning noise parameter  

To examine the relationship between model parameters and impulsive and compulsive 

psychiatric traits we conducted a series of linear regressions. For both Experiment 1, 2 and 3, 

dependent variables were choice stochasticity 1/𝛽𝛽 , and the learning noise parameter 𝜁𝜁  that 
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scaled the amount of stochasticity at each update step proportionally to the prediction error 

magnitude. 

Larger values of 𝜁𝜁 resulted in larger deviations of the noisy action values from the exact action 

values. Additionally, in experiment 1 we also ran linear regressions with learning rate 𝛼𝛼 for the 

chosen option as dependent variable but did not proceed further since no significant results have 

been observed. For all dependent variables, other model parameters have been included as 

covariates to control for the shared variance due to the correlation between the model 

parameters (SFig.6A-B). In all models, age and gender have been included as covariates. In 

addition, in experiment 1 IQ scores was included as additional covariate, and in experiment 2 and 

3, mental health status (a binary variable encoded as 1 if the user indicated to have a current or 

past diagnosed mental health condition and 0 otherwise). All continuous regressors were z-

scored to ensure comparability of regression coefficients. We performed separate regressions 

for each total score and subscore. We computed robust multiple regression models using the rlm 

function of the MASS package92 in R with a Hampel and bisquare methods to down-weight 

outliers and assessed their p values using the rob.pvals function of the repmod R package. For 

regression models in the experiment 1 we applied Bonferroni corrections for multiple 

comparisons over the number of tests performed for each scale (6 tests for BIS scale and 6 tests 

for OCI-R scale, total 12 tests, adjusted thresholds for Type 1 error at 0.05 results in a corrected 

α=0.004). For experiment 2, we did not correct our results for multiple comparisons as the 

performed tests were hypothesis-driven based on the results obtained in the experiment 1.  
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Additionally, we computed pair-wise correlations between model parameters, scales, and 

demographic variables: age, gender, IQ (experiment 1) and mental health status (experiment 2) 

(SFig.6).  

   

Analysis of contribution of learning noise to behavioural variability  

To estimate the fraction of behavioural variability explained by the learning noise illustrated on 

Figures 1E-F, we estimated separate contributions of learning noise and choice stochasticity to 

total behavioural variability. To estimate the behavioural variability generated by learning noise, 

we computed the standard deviation of the difference between the action values based on the 

noisy smoothing distributions 𝑄𝑄� t (i.e., with added Weber noise at the value update at time step 

t-1) and action values 𝑄𝑄� t obtained through the exact application of Rescorla-Wagner learning rule 

to noisy action values 𝑄𝑄� t-1 at time step t-1. To estimate the behavioural variability generated by 

choice stochasticity, we approximated the softmax (logistic) distribution as the cumulative 

probability function for the Gaussian normal distribution (see Supplementary Modeling notes of 

Findling et al., 201924 for details). From this approximation, we computed the standard deviation 

of the logistic distribution for the inverse temperature β as 
𝜋𝜋𝛽𝛽√3.  

To characterize the contribution of learning noise to exploration, we estimated the fraction of 

non-greedy decisions that could be caused by learning noise in experiment 1 and experiment 2. 

First, we labelled decisions as non-greedy based on the fits from the exact model. Non-greedy 

exact decisions were defined as choices where participant did not maximize their value {𝑄𝑄𝑡𝑡,𝐴𝐴, 𝑄𝑄𝑡𝑡,𝐵𝐵} as predicted by the exact model31. Next, we generated the smoothing distributions of action 

values based on the fits from the noisy learning model and averaged across smoothing 
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trajectories to obtain noisy action values {𝑄𝑄� t,A, 𝑄𝑄� t,B}. We then labelled as noise-driven all the exact 

non-greedy trials for which the noisy action values predicted an opposite ranking of action values 

relative the exact model:  

sign(𝑄𝑄𝑡𝑡,𝐴𝐴 - 𝑄𝑄𝑡𝑡,𝐵𝐵) ≠ sign(𝑄𝑄� t,A  − 𝑄𝑄� t,B) 
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Figures

Figure 1

Task structure and contributions of learning noise to behavioural variability

 



A. Trial structure and design in two-armed bandit task in experiment 1. On every trial, participants were
making a choice between two bandits represented by coloured shapes on the screen and observed the
outcome (between 1 or 99 points) for the chosen option. B. Example of reward magnitudes for two
bandits for one session in experiment 1. Reward magnitudes changed through trials and were sampled
from two probability distributions with independently drifting means. Thick lines represent the drifting
means of two distributions; dotted lines represent the reward outcomes that could have been observed by
the subject conditioned on the choice. This observable reward magnitudes are sampled from the
distribution mean with added Gaussian sampling noise to ensure continuous learning in the task. C. Task
structure for reward learning two-armed bandit task in experiment 2 (Milky Way game in the Brain
Explorer app). On every trial, participants were making a choice between two space cows and then
observed how much space milk they have collected in the form of points (from 1 to 99). The underlying
distributions of drifting mean rewards were the same as in experiment 1 but the task was substantially
shorter. D. To analyse the subjects’ overall performance in both experiments, we computed the difference
between the total average reward won by each subject and the foregone reward (to account for the
individually generated reward trajectories). A positive difference means that subjects were performing
better than at chance level. In both experiment 1 and 2, subjects performed better than chance (p<0.001)
White dots are medians, error bars are 25th and 75th percentile of the performance distributions. Grey dots
represent individual subjects. Black dots are the median performance from the previous laboratory
study24. E. Top panels. Bayesian model selection (BMS) results for experiment 1 (left panel) and
experiment 2 (right panel). Bars represent estimated model frequencies for exact model (just softmax
decision rule, left bar), noisy learning model with softmax decision rule (middle bar), and noisy learning
model with argmax decision rule (right bar). Error bars are s.d. for model frequencies based on Dirichlet
distribution. Model with two sources of variability (learning noise and softmax decision rule) better
accounted for data in both experiments similarly to the previously observed results24. Bottom panels.
Fraction of behavioural variability attributed to learning noise based on the best winning model in
experiment 1 (left panel) and experiment 2 (right panel). In both experiments more than 2/3 of total
variability in the decision was due to learning noise rather than choice stochasticity. Black dots represent
the results obtained in the previous laboratory study24.   



Figure 2

Contributions of impulsivity and obsessive-compulsive traits to choice stochasticity and learning noise.

 



A. In the exact model (no learning noise added), both impulsivity traits measured with BIS total score and
OC traits measured with OCI-R total score showed a signi�cant association with choice stochasticity
(softmax parameter). B. Impulsivity traits were no longer associated with choice stochasticity when
learning noise is added to the model. C. Impulsivity traits contributed to learning noise rather than choice
stochasticity in the learning noise model. D-F. Same analysis as in A-C for the Brain Explorer (experiment
2) data. All regressions included age, gender, IQ (experiment 1), mental health status (experiment 2), and
other model parameters as covariates. Dark bar colours indicate the replication tests based on the results
from experiment 1. Error bars are standard errors, * - p < 0.05, ** - p < 0.01, *** - p < 0.001.  



Figure 3

Contributions of different subscales of impulsivity and obsessive-compulsive traits to choice
stochasticity and learning noise in experiment 1 (N = 392).

 



 A. Analysis of impulsivity and compulsivity sub-scales show that hoarding and washing compulsions
(right panel) were most closely associated with choice stochasticity in the noisy model, whilst there was
no association with any of the impulsivity subscores (left panel). B. In contrast, learning noise was
exclusively associated with motor impulsiveness, but no other impulsivity or compulsivity subscore. Error
bars are standard errors, * - p < 0.05, star represents test results Bonferroni corrected for multiple
comparisons across regression models.   



Figure 4

Contributions of different subscales of impulsivity and obsessive-compulsive traits to choice
stochasticity and learning noise in experiment 2 (N = 2610).

 



 A. Choice stochasticity from the noisy model was again associated with washing compulsions
(replicating the �rst experiment), but not with hoarding or any other subscore. B. Learning noise was
again primarily associated with motor impulsiveness, as in experiment 1. No compulsivity subscale was
associated with learning noise. Error bars are standard errors, * - p < 0.05, ** - p < 0.01, *** - p < 0.001.
Dark bar colours indicate the replication tests based on the results from experiment 1.



Figure 5

Learning noise also linked to (motor) impulsivity in punishment learning (N = 670).

 

A. Trial structure for the Pirate Market game in Brain Explorer app – a version of the “Milky Way” game
but in the loss domain. This was framed as choosing the one of two pirates, who takes away less milk
(hence, we called it ‘Pirate Market’). On every trial, users are endowed with 100 points (a full bucket of
milk) and must choose a pirate that will steal less milk from them. The amount of stolen milk is
presented in points (range from -99 to -1). The game setup and the outcome sequences were analogue to
the Milky Way game but in the loss domain. B. Relative average rewards (chosen – unchosen) cumulated
by the same sample of users (N = 670) in reward learning game (Milky Way, left) and in the punishment
learning game (Pirate Market, right). White dots are medians, error bars are 25th and 75th percentile of the
performance distributions. As in the reward learning context participants performed signi�cantly better
than chance (t(669)=38.8, p<0.0001), demonstrating they understood the task and learned to choose the
less punishing bandit. Performance between the two domains was positively associated (r=0.33,
p<0.0001), meaning that those who performed better in the reward version also performed better in the
punishment version, even though they won slightly less in the punishment version (t(669)=3.00, p=0.003,
two-tailed), C. BIS total score was associated with choice stochasticity in the exact, but not in the noisy
learning model. D. In the better �tting noisy model, BIS total score was associated with learning noise.
Amongst the subscales, motor impulsiveness again showed the strongest association. * - p < 0.05, ** - p <
0.01, *** - p < 0.001.  
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