
FastGWA-GLMM: a generalized linear mixed model
association tool for biobank-scale data
Jian Yang  (  jian.yang@westlake.edu.cn )

Westlake University https://orcid.org/0000-0003-2001-2474
Longda Jiang 

Institute for Molecular Bioscience, The University of Queensland
Zhili Zheng 

The University of Queensland

Technical Report

Keywords: genome-wide association (GWA) methods, software, traits

Posted Date: February 12th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-128758/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Nature Genetics on November 4th, 2021.
See the published version at https://doi.org/10.1038/s41588-021-00954-4.

https://doi.org/10.21203/rs.3.rs-128758/v1
mailto:jian.yang@westlake.edu.cn
https://orcid.org/0000-0003-2001-2474
https://doi.org/10.21203/rs.3.rs-128758/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41588-021-00954-4


 1 

FastGWA-GLMM: a generalized linear mixed model association tool for biobank-scale data 1 

 2 

Longda Jiang1,$, Zhili Zheng1,$, Jian Yang1,2,3,* 3 

 4 

1Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, 5 

Australia 6 

2School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China 7 

3Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China 8 

$Equal contribution 9 

*Correspondence: Jian Yang (jian.yang@westlake.edu.cn) 10 

 11 

Abstract 12 

Compared to linear mixed model-based genome-wide association (GWA) methods, generalized 13 

linear mixed model (GLMM)-based methods have better statistical properties when applied to 14 

binary traits but are computationally much slower. Here, leveraging efficient sparse matrix-based 15 

algorithms, we developed a GLMM-based GWA tool (called fastGWA-GLMM) that is orders of 16 

magnitude faster than the state-of-the-art tool (e.g., ~37 times faster when 𝑛 = 400,000) with 17 

more scalable memory usage. We show by simulation that the fastGWA-GLMM test-statistics of 18 

both common and rare variants are well-calibrated under the null, even for traits with an extreme 19 

case-control ratio (e.g., 0.1%). We applied fastGWA-GLMM to the UK Biobank data of 456,348 20 

individuals, 11,842,647 variants and 2,989 binary traits (full summary statistics available at 21 

http://fastgwa.info/ukbimpbin) and identified 259 rare variants associated with 75 traits, 22 

demonstrating the use of imputed genotype data in a large cohort to discover rare variants for 23 

binary complex traits. 24 

25 
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Introduction 26 

Over the past decade, we have witnessed the tremendous growth of data from genome-wide 27 

association studies (GWASs). For example, there are nearly half million genotyped individuals 28 

with rich phenotypes in the UK Biobank (UKB)1, which have played a pivotal role in discovering 29 

novel genotype-phenotype associations in recent years2-6. Nonetheless, the scale of biobank data 30 

imposes great computational challenges on methods for genome-wide association (GWA) 31 

analysis. New methods and tools have been actively developed for biobank-scale data, including 32 

linear regression-based tools such as PLINK2 (ref.7) and BGENIE1, and linear mixed model 33 

(LMM)-based tools such as DISSECT8, BOLT-LMM9, and fastGWA10. LMM-based methods are 34 

usually preferred over linear regression-based methods largely because the former can account 35 

for relatedness without the need to remove related individuals. Despite that the linear regression- 36 

and LMM-based methods are developed under normality assumption, they are often used for 37 

binary traits11-13. However, recent studies9,14 show that test statistics from LMM-based methods 38 

are inflated under the null when the case-control ratio of the trait of interest is low, leading to an 39 

inflated false-positive rate (FPR), particularly for rare variants. To avoid such inflation, a common 40 

practice is to remove rare variants (e.g., minor allele frequency, MAF < 0.01) and phenotypes with 41 

a low case-control ratio (e.g., < 1:99)9,10, resulting in unnecessary loss of data. 42 

 43 

Compared to LMM-based approaches, generalised linear mixed model (GLMM)-based methods 44 

are better suited for GWA analysis for binary traits14. Unfortunately, most of the GLMM-based 45 

GWA methods are not scalable to large biobank data. SAIGE14 is one of very few exceptions and is 46 

currently the most commonly used GLMM-based tool for biobank-scale data because of its 47 

computational efficiency and well-calibrated test-statistics of both common and rare variants for 48 

unbalanced binary traits. However, it is almost computationally prohibitive to use SAIGE to 49 

analyse all the thousands of binary traits in the UKB, more so in cohorts with larger sample sizes 50 

than the UKB (e.g., data accumulated in the direct-to-consumer genetic testing companies). The 51 

main reason why the performance of SAIGE is encumbered is because of the manipulation of full-52 

dense n  n matrices (although not explicitly computed) with n being the sample size, which is 53 

both time- and resource-consuming. 54 

 55 

In our previous work, we developed an LMM-based GWA tool, fastGWA, that is orders of 56 

magnitude faster than BOLT-LMM, mainly owing to the use of a sparse genomic relationship 57 

matrix (GRM) to capture pedigree relatedness among individuals10. However, when we applied 58 

fastGWA in the GWA analyses of all the UKB traits, we had to remove around 3 million rare 59 

variants (MAF  0.01) and ~1,000 traits with a case-control ratio < 1:99 to avoid the inflation in 60 

FPR mentioned above10. In this study, we aim to develop a GWA tool that is scalable to GWAS data 61 
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of over a million individuals and applicable to both common and rare variants for all binary 62 

phenotypes including those with a low case-control ratio. To achieve this goal, we incorporated 63 

GLMM into the fastGWA framework and developed efficient sparse matrix-based algorithms for 64 

parameter estimation and association test. We name the method fastGWA-GLMM and 65 

demonstrate by simulation that the test-statistics from fastGWA-GLMM are not inflated for either 66 

common or rare variants even if the case-control ratio is extremely low (e.g., 0.1%). We then show 67 

by analysing subsets of the UKB data that fastGWA-GLMM is orders magnitude faster than SAIGE 68 

with more scalable memory usage (e.g., when n = 400,000, fastGWA-GLMM is ~34 times faster 69 

and uses only about a third memory compared with SAIGE). From the speed test results, we 70 

predict that fastGWA-GLMM is, in principle, applicable to GWAS data with sample sizes over a 71 

million. We have implemented fastGWA-GLMM in the GCTA software package15. In addition, we 72 

have used fastGWA-GLMM to perform GWA for 2,989 binary traits from the UKB and made the 73 

full summary statistics publicly accessible at the fastGWA data portal 74 

(http://fastgwa.info/ukbimpbin). 75 

 76 

Results 77 

Overview of the method 78 

The fastGWA-GLMM model can be written as  79 logit(𝝁) = 𝒙𝑠𝛽𝑠 + 𝐗c𝜷𝑐 + 𝒈 80 

where 𝒚 is an n×1 vector of binary phenotypes; 𝝁 is a vector of 𝜇𝑖 = 𝑃(𝑦𝑖 = 1|𝑥𝑠−𝑖 , 𝑋𝑐−𝑖 , 𝑔𝑖) with 81 𝜇𝑖 being the probability of subject i being a case given the subject’s genotype 𝑥𝑠−𝑖 , covariates 𝑋𝑐−𝑖 , 82 

and random genetic effect 𝑔𝑖 ; 𝒙𝑠 is a vector of genotype variables of a variant of interest with its 83 

effect 𝛽𝑠 ; 𝐗c  is the incidence matrix of fixed-effect covariates (e.g., sex, age and principal 84 

components) with their corresponding coefficients 𝜷𝑐; 𝒈 is a vector of effects that capture genetic 85 

and common environmental effects shared among related individuals, 𝒈~𝑁(0, 𝝅𝜎𝑔2) with 𝝅 being 86 

the pedigree relationship matrix and 𝜎𝑔2 being the corresponding variance component. In practice, 87 

if pedigree information is unavailable or incomplete, 𝝅 can be replaced by the GRM with all the 88 

small off-diagonal elements (e.g., those<0.05) set to zero, i.e., the sparse GRM10. 89 

 90 

The fastGWA-GLMM method comprises two steps: 1) the estimation step: estimating 𝜎𝑔2 , 𝜷𝑐 , and 91 

the other parameters under the null model (i.e., logit(𝝁) = 𝐗c𝜷𝑐 + 𝒈); 2) the association test step: 92 

performing score test for each variant and, if necessary, applying saddle point approximation 93 

(SPA) to the score statistic to correct for potential inflation driven by case-control imbalance and 94 

low MAF (Online Methods). In the estimation step, we have developed an extraordinarily 95 

efficient method (named fastGWA-GLMM-REML; Online Methods) to estimate the variance 96 

components in the GLMM in a robust manner even for traits with an extreme case-control ratio 97 

http://fastgwa.info/ukbimpbin
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(e.g., 0.1%). In the association test step, based on the estimates obtained from the step above, the 98 

score test statistic for each variant can be computed by the following equation: 99 𝑇𝑠𝑐𝑜𝑟𝑒 = 𝒙𝑠T(𝒚 − 𝝁̂) with var(𝑇𝑠𝑐𝑜𝑟𝑒) = 𝒙𝑠T𝐏𝒙𝑠 100 𝑇𝑠𝑐𝑜𝑟𝑒2var(𝑇𝑠𝑐𝑜𝑟𝑒) ~𝜒𝑑𝑓=12  101 

where 𝐏 is an n×n projection matrix, which is dense despite 𝝅 being sparse. Therefore, to avoid 102 

computational bottleneck due to matrix multiplication involving 𝐏 , a GLMM version of the 103 

GRAMMAR-GAMMA approximation14 is implemented in fastGWA-GLMM (Online Methods).  104 

 105 

As for the inflation in test-statistics due to case-control imbalance, for any variant with a score 106 

test p-value larger than a threshold (e.g., 𝜒𝑑𝑓=12 = 2), SPA is applied to calibrate the test statistic. 107 

In addition, to further improve computational efficiency, in fastGWA-GLMM, we developed an 108 

approximate approach to account for covariates for variants with score test 𝜒𝑑𝑓=12  smaller than 109 

the threshold (Online Methods). This strategy greatly reduces the runtime, especially when the 110 

number of covariates is large. An alternative version of fastGWA-GLMM without this covariate 111 

approximation strategy is also available, which is a few times less efficient depending on the 112 

number of covariates (Online Methods). 113 

 114 

Runtime and resource requirements 115 

We used the UKB data consisting of 456,348 individuals of European ancestry and 11,842,647 116 

variants (Online Methods) to evaluate the resource requirements of fastGWA-GLMM in GCTA 117 

v1.93.3 and benchmarked it against SAIGE v0.42.1. Note that the standard logistic regression (as 118 

implemented in PLINK2 v2.00a2.3) was not included in the runtime comparison because it 119 

is >100 times slower than fastGWA-GLMM and not applicable to some of our simulation settings. 120 

After randomly sampling subgroups of individuals (n ranged from 50,000 to 400,000) from the 121 

UKB, we performed a GWA in each subset of data using fastGWA-GLMM and SAIGE respectively, 122 

on a computing platform with 80 GB memory and 8 CPU cores. The trait used for comparison is 123 “Irritability” (case-control ratio = 0.39; UKB data-field: 1940). The genotype data were stored in 124 

BGEN v1.3 format16. Each test was repeated 5 times for an average of runtime and memory usage. 125 

As shown in Figure 1a, for a GWA with n = 400,000, fastGWA-GLMM only required 4.9 hours, 126 

which is ~37 times more efficient than SAIGE. Besides, the runtime of the estimation step of 127 

fastGWA-GLMM is negligible compared to that of SAIGE (Supplementary Table 1). Moreover, 128 

the runtime of fastGWA-GLMM was generally stable for traits with different levels of case-control 129 

ratio (Supplementary Figure 1), so is SAIGE (Supplementary Table 2). As for memory 130 

requirements, the actual memory usage of fastGWA-GLMM was almost invariant to sample size 131 

(~4 GB for n ranged from 50,000 to 400,000), while this was not the case for SAIGE, e.g., SAIGE 132 
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only required 1.88 GB memory for n = 50,000, but the memory usage soon increased to 13.0 GB 133 

when n = 400,000 (Figure 1b and Supplementary Table 3). Our observation that the runtime 134 

of fastGWA-GLMM increased almost linearly with sample size with almost invariant memory 135 

usage (Figure 1) suggests that fastGWA-GLMM is, in principle, scalable to sample sizes over a 136 

million given the same computing environment as used in this study. 137 

 138 

False-positive rate (FPR) and statistical power 139 

In order to quantify the statistical performance of fastGWA-GLMM in comparison with other 140 

methods, including SAIGE14 and PLINK2 (logistic regression using all individuals or unrelated 141 

individuals, denoted as LR-All and LR-unRel, respectively)7, we generated a sample of 100,000 142 

simulated individuals with substantial population stratification and relatedness from a subset of 143 

the real UKB genotype data (Online Methods). Based on the simulated genotype data, we 144 

randomly sampled a number of causal variants from all variants on the odd chromosomes to 145 

simulate phenotypes, leaving the variants on the even chromosomes as the null variants to 146 

quantify the type-1 error rate. We also introduced common environmental effects (i.e., non-147 

genetic effects shared among close relatives) and population stratification effects to the 148 

phenotype (Online Methods). Finally, using the simulated data, we quantified the FRP (i.e., the 149 

proportion of null variants with p-values < a threshold) and statistical power (measured by the 150 

mean 𝜒2 statistic at the causal variants) for different association methods. 151 

 152 

The results showed that when the prevalence was larger than 0.05, the FPRs of the null variants 153 

at five different p-value thresholds (=0.05, 0.005, 510-4, 510-5, and 510-6) were largely 154 

consistent with the expected values for fastGWA-GLMM, SAIGE, and LR-unRel but inflated for LR-155 

All because relatedness was not accounted for in LR-All (Figure 2 and Supplementary Figure 156 

2). When the prevalence was 0.01 or below, both LR-unRel and LR-All showed inflated FPRs, 157 

while such inflation was not observed for SAIGE and fastGWA-GLMM. The FPR of SAIGE was 158 

slightly more deflated than that of fastGWA-GLMM in all the simulation scenarios (Figure 2 and 159 

Supplementary Figure 2). Particularly, in the scenario with prevalence = 0.005, the FPRs of 160 

SAIGE were more deflated than those of all the other methods because the parameter estimation 161 

process of SAIGE failed to converge in ~25% of the simulation replicates (see below for more 162 

discussion). 163 

 164 

We partitioned all the null variants into two groups (common and rare variants) based on an MAF 165 

threshold of 0.01 and evaluated the FPR of the two groups separately in each simulation scenario. 166 

The FPRs for rare variants (MAF < 0.01) from LR-unRel and LR-All were substantially inflated in 167 

the scenarios with low prevalences, while those from fastGWA-GLMM remained consistent with 168 
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the expected values for both common and rare variants regardless of the prevalence level 169 

(Supplementary Figures 3 and 4). SAIGE showed similar performance as fastGWA-GLMM, 170 

except that it showed more deflated FPRs than all the other methods when prevalence = 0.005 171 

due to its convergence issue as described above.  172 

 173 

Next, we quantified the statistical power of different methods by calculating the mean 𝜒2 statistic 174 

at the causal variants. We found that the power of fastGWA-GLMM was slightly higher than that 175 

of SAIGE (Figure 3). The mean 𝜒2 statistic of LR-All and LR-unRel was not informative in this case 176 

as it suffered from inflation driven by both relatedness and case-control imbalance. We then 177 

quantified the power of common and rare causal variants separately. The patterns were similar 178 

between common and rare variants, though the power to detect the rare causal variants was 179 

lower than that for the common causal variants (Figure 3). We also used the area under the curve 180 

(AUC) as a metric to compare the difference in power between the methods given the same level 181 

of FPR (Online Methods). In almost all the scenarios, SAIGE, fastGWA-GLMM, and LR-All showed 182 

similar AUCs while LR-unRel showed lower AUCs than the other methods because of its smaller 183 

sample size (Supplementary Figure 5). The only exception is the scenario with prevalence = 184 

0.001, in which LR-All and LR-unRel showed higher AUCs than fastGWA-GLMM and SAIGE, 185 

possibly due to the overcorrection of GLMM and/or SPA under this extreme condition. 186 

Nevertheless, since the FPRs of LR-All and LR-unRel were heavily inflated when prevalence = 187 

0.001 (Figure 2), the higher power for LR in this scenario is not practically meaningful. In 188 

addition, we showed that the test statistics of fastGWA-GLMM remained well-calibrated when 189 

cases were oversampled (Supplementary Figures 6-8). We further demonstrated that when 190 

pedigree information was fully available, fastGWA-GLMM using pedigree relationship matrix 191 

performed almost equally well as that using the sparse GRM (Supplementary Note; 192 

Supplementary Figures 9 and 10). 193 

 194 

Application of fastGWA-GLMM to 2,989 binary traits in the UKB 195 

We used fastGWA-GLMM to conduct GWA analyses of 11,842,647 imputed variants in all the UKB 196 

participants of European ancestry (n=456,348) for 2,989 binary phenotypes. These binary 197 

phenotypes were either generated from the analysis pipelines used by the Neale Lab 198 

(http://www.nealelab.is/uk-biobank) or from our in-house ICD-10-to-PheCode pipeline using 199 

map from ref.17 (Online methods). To benchmark fastGWA-GLMM against SAIGE and PLINK2 200 

LR-unRel (note: n=348,456 for LR-unRel), we selected eight representative phenotypes 201 

(prevalence ranging from 0.0008 to 0.45; Supplementary Table 4) from the 2,989 traits. Based 202 

on the summary statistics from each method for the eight traits, we noticed that overall fastGWA-203 

GLMM identified more genome-wide significant loci than SAIGE or LR-unRel (Supplementary 204 
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Figure 11 and Supplementary Table 5). The difference was more apparent when the prevalence 205 

of the trait was moderate to high ( 0.1) (Supplementary Figure 11a-c) and became less 206 

significant as the prevalence decreased (Supplementary Figure 11d-h). Additionally, after 207 

clumping, the number of quasi-independent signals from fastGWA-GLMM was also higher than 208 

that from SAIGE or LR-unRel (Supplementary Table 6). As for case-control imbalance, the 209 

results from LR-unRel started to exhibit inflation for traits with prevalence < 0.01 (see the 3rd 210 

panels of Supplementary Figure 11e-h), consistent with our simulation results, and the inflation 211 

was more prominent for the rare variants (see the 3rd panels of Supplementary Figure 12e-h). 212 

Meanwhile, the results from fastGWA-GLMM and SAIGE remained robust for traits with low 213 

prevalence. Among all the 2,989 traits analysed, we identified 326 pairs of quasi-independent 214 

genome-wide significant associations between 259 rare variants (MAF < 0.01 and p-value  510-215 

9) and 75 traits (Supplementary Table 7, Online Methods). Of the 259 rare variants, 37 are 216 

located in either the exonic regions or the 3’ or 5’ UTRs (Supplementary Table 7), highlighting 217 

the enrichment of rare variants in the coding and UTR regions (enrichment p-value = 9.610-5, 218 

Supplementary Note).  219 

 220 

We have previously developed an online tool to query and visualize the GWAS results of over 221 

2,000 phenotypes from the UKB10. Similarly, the association results of the 2,989 binary 222 

phenotypes from this study are also freely available for visualization and downloading through 223 

our fastGWA data portal at http://fastgwa.info/ukbimpbin. 224 

 225 

Discussion 226 

In this study, we developed an association method, fastGWA-GLMM, with extraordinary 227 

performance in computational efficiency, for GWA analyses of binary phenotypes in large cohorts 228 

such as the UKB. Tested in a dataset of 400,000 individuals and 11,842,647 variants, fastGWA-229 

GLMM is ~37 times faster than SAIGE (the most efficient existing method for binary traits). 230 

Besides, the implementation of GLMM framework allows users to retain the maximum number of 231 

individuals in a GWA analysis in the presence of relatedness, and the incorporation of SPA 232 

correction properly calibrates the test-statistics for traits with extreme case-control ratios. The 233 

application of fastGWA-GLMM to 2,989 binary traits in the UKB further demonstrated its utility 234 

and efficiency.  235 

 236 

The major advantage of fastGWA-GLMM over LR-unRel is that it does not need to remove related 237 

individuals from the study, as the relatedness can be well accounted for by a pedigree relatedness 238 

matrix or a sparse GRM. Take the real data application in the UKB as an example. FastGWA-GLMM 239 

was able to include all 456,348 participants into the association test, while LR-unRel could only 240 

http://fastgwa.info/ukbimpbin/
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utilize information from 348,456 unrelated participants. Since most of the large population-based 241 

cohorts rely on an assessment-centre based recruitment strategy, the proportion of relatives in 242 

the cohorts tends to be high and will keep increasing in the future1. In such case, it is crucial to 243 

avoid removing data of related individuals. Another advantage of fastGWA-GLMM over LR-unRel 244 

is its efficiency. FastGWA-GLMM, as many other GLMM-based methods, uses a score statistic for 245 

association test, which is computationally easy to compute (Online Methods). In contrast, LR-246 

unRel as in PLINK2 is based on an iteratively reweighted least squares method and the Wald’s 247 

test that solves the full model for each variant repeatedly, which is much slower than the score 248 

test especially when covariates are included. 249 

 250 

The advantages of fastGWA-GLMM over LMM-based methods, including the original fastGWA 251 

method10, can be summarized into two aspects. The first is the better interpretability of the effect 252 

sizes, as we can directly use natural logarithm to convert the 𝛽̂𝑠 from fastGWA-GLMM into odds 253 

ratio (Supplementary Note). However, such transformation in LMM-based methods is indirect 254 

and requires sophisticated approximations18. The second aspect is the better-controlled FPR of 255 

fastGWA-GLMM by the SPA correction. Since SPA correction was only designed for GLMMs but 256 

not LMMs19, a common strategy for LMM-based methods to mitigate such inflation is to exclude 257 

any trait with a small case-control ratio (e.g.,  1:99) and any variant with a low MAF (e.g., < 258 

0.01)9,10. Yet, excluding them causes significant loss of valuable information. For instance, the 259 

3,821,959 rare variants tested in this study would have been removed from the analyses using 260 

the LMM-based methods, among which we identified hundreds of variants associated with the 261 

traits at a very stringent significance level and some of them are known (Supplementary Table 262 

7). For example, we identified a rare missense variant in the HOXB13, rs138213197, strongly 263 

associated with prostate cancer, and this association had also been reported repeatedly in 264 

previous studies20-22.  265 

 266 

SAIGE is a GLMM-based method that uses a dense GRM. Apart from the GRM setting, there are 267 

another two major differences between fastGWA-GLMM and SAIGE. The first difference is that 268 

fastGWA-GLMM uses a grid search-based algorithm, fastGWA-GLMM-REML, to estimate the 269 

variance components (Online Methods), which is more robust and often orders of magnitude 270 

more efficient than the average information (AI) REML algorithm used in SAIGE even for traits 271 

with extreme case-control ratios. We observed that under the simulation scenario with 272 

prevalence = 0.005, the variance estimation procedure of SAIGE failed to converge for 26 out of 273 

100 simulation replicates. The second difference is that instead of using covariate-adjusted 274 

genotype data to calculate a score test statistic for every variant, fastGWA-GLMM first uses 275 

unadjusted (but mean-centred) genotype data to calculate an approximate score test statistic, 276 
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and then re-calculate the exact test statistic using the covariate-adjusted genotype data only if the 277 

p-value from the approximate score test is smaller than a threshold (by default, 𝜒𝑑𝑓=12 > 2); note 278 

that the SPA correction is also applied when this threshold is met (Methods). This strategy allows 279 

fastGWA-GLMM to omit the computation of matrix multiplication between the covariate matrix 280 

and ~95% of the genotype vectors. We confirmed that the difference of test statistics between 281 

the approximate covariate-adjustment approach and the exact approach is negligible, and only 282 

variants with 𝜒𝑑𝑓=12 < 2 might suffer from slight deflation in test-statistics which does affect the 283 

power of detecting association at a genome-wide significance level (Supplementary Figure 13). 284 

This strategy is particularly useful when the number of covariates is large (e.g., larger than 20). 285 

In our software tool, there is an option to allow users to switch off this approximation and force 286 

all the statistics to be calculated by the covariate-adjusted genotypes, which will cause a loss of 287 

computational efficiency by a few folds, depending on the number of covariates.  288 

 289 

There are a few caveats when applying fastGWA-GLMM in practice. First, if pedigree data are not 290 

usable, a sparse GRM needs to be pre-computed from the SNP data. A very efficient parallelized 291 

algorithm has been implemented in GCTA to compute the sparse GRM10. Since the sparse GRM 292 

setting has already been adopted by fastGWA10, once generated, the same sparse GRM of a cohort 293 

can be used for GWA analyses of all the quantitative and binary phenotypes. Therefore, the 294 

average computational cost per trait is minimal. Second, the 𝜎̂𝑔2 estimated from fastGWA-GLMM-295 

REML cannot be interpreted as genetic variance or heritability. This is mainly due to the use of 296 

the penalized quasi-likelihood and the Laplace method14. However, from our simulations and real 297 

data applications, it did not affect the statistical performance of the association test of fastGWA-298 

GLMM. Third, in our previous work, we found that when analysing quantitative traits the 𝜎̂𝑔2 299 

estimated based on a sparse GRM might be a better quantity to control for relatedness than that 300 

from dense-GRM-based methods10. In this study, however, when analysing binary traits, we 301 

observed that fastGWA-GLMM did not have such advantage over SAIGE. Both fastGWA-GLMM and 302 

SAIGE had well-controlled FPR. Fourth, the inclusion of rare variants in the association tests 303 

increases the multiple testing burden. Hence, in this study, following the guideline from previous 304 

studies23,24, we used p-value  510-9 instead of 510-8 as the genome-wide significance threshold.  305 

 306 

Despite these caveats, fastGWA-GLMM is a highly efficient GLMM-based method that is applicable 307 

to GWA analyses of a large number of binary phenotypes in biobank-scale data. The extensive 308 

simulations under different parameter settings and the real-data analyses of nearly 3,000 UKB 309 

traits have together manifested its statistical robustness and computational efficiency. We believe 310 

that fastGWA-GLMM is a very useful tool for current and up-coming large-scale data, and the 311 
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summary statistics released from this study will be useful for future studies to give insights into 312 

the genetic basis of many health-related outcomes.  313 

 314 

ONLINE METHODS 315 

Estimating the variance components 316 

As described in the Results section, the fastGWA-GLMM model can be written as logit(𝝁) =317 𝒙𝑠𝛽𝑠 + 𝐗c𝜷𝑐 + 𝒈. The logit function, logit(𝜇) = log⁡( 𝜇1−𝜇), is a commonly used link function in 318 

GLMM that links the expectation of the dependent binary variable 𝒚 to a linear predictor that 319 

involves the independent variables. Solving this full model repeatedly for each variant is 320 

computationally unfeasible in large samples, so a common strategy is to first solve 𝜎𝑔2 as well as 321 

the other essential components under the null model, i.e., logit(𝝁) = 𝐗c𝜷𝑐 + 𝒈, and then calculate 322 

the score statistic for each variant based on the estimates from the null model. This strategy has 323 

been adopted by many existing LMM and GLMM methods14,25-33. 324 

 325 

Following GMMAT33 and SAIGE14, the log quasi-likelihood of the null model is  326 𝑞𝑙(𝜷𝑐 , 𝜎𝑔2) = log ∫ exp {∑ 𝑞𝑙𝑖(𝜷𝑐|𝒈)𝑛𝑖=1 } × (2𝜋)−0.5𝑛|𝝅𝜎𝑔2|−0.5 × exp⁡{−0.5𝒈𝑇(𝝅𝜎𝑔2)−1𝒈}𝑑𝒈 327 

where 𝑞𝑙𝑖(𝜷𝑐|𝒈) = ∫ 𝑎𝑖(𝑦𝑖−𝜇)𝜇𝑖(1−𝜇𝑖) 𝑑𝜇𝜇𝑖𝑦𝑖  is the quasi-likelihood for the ith individual given the random 328 

effect 𝒈, and 𝑎𝑖 is a known constant which will be omitted during the derivation. Following the 329 

derivations in ref.33, we have 𝜷̂𝑐 = (𝐗cT𝐕−1𝐗c)−1𝐗cT𝐕−1𝐘̃ and 𝒈̂ = 𝜎𝑔2𝛑𝐕−1(𝐘 − 𝐗c𝜷̂𝑐), where 𝐕 is 330 

a variance-covariance matrix (i.e., 𝐕 = 𝐖−1 + 𝝅𝜎𝑔2) with 𝐖 being a diagonal matrix (i.e., 𝑤𝑖𝑖 =331 𝜇𝑖(1 − 𝜇𝑖)), and 𝐘 is the so-called ‘working vector’ with 𝐘 = 𝐗c𝜷𝑐 + 𝒈 + logit′(𝝁)(𝒚 − 𝝁). Given 332 𝜷̂𝑐 and 𝒈̂, the restricted maximum likelihood (REML) version of ql(𝜷𝑐 , 𝜎𝑔2) can be written as 333 ql(𝜷𝑐 , 𝜎𝑔2) = const − 0.5 log|𝐕| − 0.5 log|𝐗cT𝐕−1𝐗c| − 0.5𝐘T𝐏𝐘̃ 334 

where 𝐏 = 𝐕−1 − 𝐕−1𝐗c(𝐗cT𝐕−1𝐗c)−1𝐗cT𝐕−1. An iterative approach is required to compute the 335 

quasi-likelihood and estimate the parameters. A commonly used algorithm is the average 336 

information REML (AI-REML)34, which has been adopted by both GMMAT33 and SAIGE14. 337 

Leveraging the sparsity of 𝝅, we propose a grid-search-based REML approach (called fastGWA-338 

GLMM-REML) with a special optimizer (see below) that can directly maximize ql(𝜷𝑐 , 𝜎𝑔2) and 339 

return a maximum likelihood estimate of 𝜎𝑔2, which is often orders of magnitude faster and more 340 

robust (especially for traits with extremely unbalanced case-control ratios) than AI REML. A brief 341 

summary of fastGWA-GLMM REML is shown as follows. 342 

1) Let subscript i denote the iteration step with i starting from 0; 343 

2) 𝜷̂𝑐(𝑖)  is estimated from a standard logistic regression (i.e., logit(𝝁) = 𝐗c𝜷𝑐 ), which is 344 

used as the starting value for 𝜷𝑐; 345 
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3) 𝜎̂𝑔(𝑖)2  and 𝒈̂𝑖 are set to 0; 346 

4) Calculate 𝝁̂𝑖 = logit−1(𝐗c𝜷̂𝑐(𝑖) + 𝒈̂𝑖); 347 

5) Calculate 𝐘𝑖 = 𝐗c𝜷̂𝑐(𝑖) + 𝒈̂𝑖 + 𝐲−𝝁̂𝑖𝝁̂𝑖(𝟏−𝝁̂𝑖), 348 

                                  𝐖𝑖 = diag{𝝁̂𝑖(𝟏 − 𝝁̂𝑖)}; 349 

6) Perform fastGWA-GLMM-REML to estimate 𝜎̂𝑔(𝑖+1)2  given 𝜷̂𝑐(𝑖) and⁡𝒈̂𝑖 (see details in next 350 

section);  351 

7) Calculate 𝐕𝑖+1 = 𝐖𝑖−1 + 𝜎̂𝑔(𝑖+1)2 𝝅; 352 

8) Calculate 𝜷̂𝑐(𝑖+1) = (𝐗cT𝐕i+1−1 𝐗c)−1𝐗cT𝐕𝑖+1−1 𝐘𝑖 , 353 

                   𝒈̂𝑖+1 = 𝜎̂𝑔(𝑖+1)2 𝝅𝐕𝑖+1−1 [𝐘̃𝑖 − 𝐗c𝜷̂𝑐(𝑖+1)]; 354 

9) Set 𝑖 = 𝑖 + 1  and repeat 4) to 8) until both ⁡(||𝜷̂𝑐(𝑖+1)|−|𝜷̂𝑐(𝑖)|||𝜷̂𝑐(𝑖+1)|+|𝜷̂𝑐(𝑖)| ⁡)𝑚𝑎𝑥  and 
|⁡𝜎̂𝑔(𝑖+1)2 −𝜎̂𝑔(𝑖)2 |𝜎̂𝑔(𝑖+1)2 +𝜎̂𝑔(𝑖)2 ≤  a 355 

threshold (by default 510-5). 356 

We use the sparse matrix Cholesky decomposition algorithm implemented in the Eigen C++ 357 

library (http://eigen.tuxfamily.org) to compute the terms involving |𝐕| or 𝐕−1 in a very efficient 358 

manner. 359 

 360 

The grid-search-based fastGWA-GLMM-REML optimizer 361 

As mentioned above, we have developed a grid-search-based optimizer to estimate 𝜎𝑔2, which is 362 

more robust and often orders of magnitude faster than AI-REML. In the ith iteration of the 363 

estimation step of the fastGWA-GLMM REML method, the grid-search-based optimizer runs as 364 

follows. 365 

1) Wide-range search. We set a grid of k values of 𝜎̂𝑔2, i.e., [𝑙(𝑖), 𝑢(𝑖)], compute ql(𝜷𝑐 , 𝜎𝑔2) 366 

given each value of 𝜎̂𝑔2, and select the flanking grids of the 𝜎̂𝑔2 value that produces the 367 

maximum quasi-likelihood to form a finer-scale searching interval (denoted by 368 

[𝜎̂𝑙𝑜𝑤,02 , 𝜎̂𝑢𝑝,02 ]) for the fine-tuning step below. 369 

2) Fine-tuning search. Similar as the process above, we divide [𝜎̂𝑙𝑜𝑤,02 , 𝜎̂𝑢𝑝,02 ] into a grid of 16 370 𝜎̂𝑔2 values, compute ql(𝜷𝑐 , 𝜎𝑔2) given each value of 𝜎̂𝑔2, and select the flanking grids of the 371 𝜎̂𝑔2  value that produces the maximum quasi-likelihood to form a finer-scale searching 372 

interval (denoted by [ 𝜎̂𝑙𝑜𝑤,12 , 𝜎̂𝑢𝑝,12 ]). This fine-tuning step is repeated 4 times, and 373 𝜎̂(𝑚𝑎𝑥)2 = (𝜎̂𝑙𝑜𝑤,52 + ⁡ 𝜎̂𝑢𝑝,52 )/2  is returned as an estimate of 𝜎𝑔(𝑖)2  for the ith iteration of 374 

fastGWA-GLMM-REML. 375 

The 𝑙(i) is the lower bound of the grid which is set to 0 when i  3 or 
𝜎𝑔(𝑖−3)2 +𝜎𝑔(𝑖−2)2 +𝜎𝑔(𝑖−1)23 ≤ 0.1, 376 

and set to 
𝜎𝑔(𝑖−3)2 +𝜎𝑔(𝑖−2)2 +𝜎𝑔(𝑖−1)23 × 0.8 when 𝑖 > 3 and 

𝜎𝑔(𝑖−3)2 +𝜎𝑔(𝑖−2)2 +𝜎𝑔(𝑖−1)23 > 0.1. Similarly, the 𝑢(i) 377 

http://eigen.tuxfamily.org/
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is the upper bound of the grid which is set to 𝐘𝑖2 when 𝑖 = 1, set to 10𝜎𝑔(𝑖−1)2  when 𝑖 = 2 and 3, 378 

and set to 
𝜎𝑔(𝑖−3)2 +𝜎𝑔(𝑖−2)2 +𝜎𝑔(𝑖−1)23 × 1.2 when 𝑖 ≥ 3. The k is the number of steps in the grid which is 379 

set to 800 when 𝑖 = 1, set to 200 when 𝑖 = 2 and 3, and set to 50 when 𝑖 ≥ 3 . We apply the 380 

settings above to determine the boundaries and grid steps given the observation from 381 

simulations that 3 iterations are sufficient to identify a reasonable interval for 𝜎𝑔2. The reason why 382 

we do not adopt the commonly used conventional optimizers (e.g., the golden-section search) is 383 

that the domain of ql(𝜷𝑐 , 𝜎𝑔2) does not always cover the whole range of [0, 𝐘𝑖2]. Therefore, it is 384 

difficult to choose an appropriate searching interval [𝑙(𝑖) , 𝑢(𝑖)] for the conventional optimizers, 385 

which would lead to a local optimum. On the other hand, the main reason why we do not adopt 386 

AI-REML as implemented in SAIGE14 is that AI-REML often fails to converge when the case-control 387 

ratio is low. For example, in our simulations, SAIGE did not converge in 26 out of 100 simulation 388 

replicates under the simulation scenario with prevalence = 0.005.  389 

 390 

Computing the score test statistic by the GRAMMAR-GAMMA approximation 391 

As mentioned above, the fastGWA-GLMM method comprises two steps, the estimation step and 392 

the association test step. After obtaining all the necessary estimates from the null model in the 393 

estimation step, we can test the association of each variant using the score test: 𝑇𝑠𝑐𝑜𝑟𝑒 =394 𝒙̃𝑠T(𝒚 − 𝝁̂) with var(𝑇𝑠𝑐𝑜𝑟𝑒) = 𝒙̃𝑠T𝐏𝒙̃𝑠 , where 𝒙̃𝑠  is the covariate-adjusted genotype vector with 395 𝒙̃𝑠 = 𝒙𝑠 − 𝐗c(𝐗cT𝐖𝐗c)−1𝐗cT𝐖𝒙𝑠 . We know from the prior work14 that 𝐗cT(𝒚 − 𝝁̂) = 𝟎  and 396 𝐏𝐗c(𝐗cT𝐖𝐗c)−1𝐗cT𝐖 = 𝟎 , we then have 𝑇𝑠𝑐𝑜𝑟𝑒 = 𝒙̃𝑠T(𝒚 − 𝝁̂) = 𝒙𝑠T(𝒚 − 𝝁̂)  and var(𝑇𝑠𝑐𝑜𝑟𝑒) =397 𝒙̃𝑠T𝐏𝒙̃𝑠 = 𝒙𝑠T𝐏𝒙𝑠. The score test p-value can be computed based on 
𝑇𝑠𝑐𝑜𝑟𝑒2var(𝑇𝑠𝑐𝑜𝑟𝑒) ~𝜒𝑑𝑓=12 . 398 

 399 𝑇𝑠𝑐𝑜𝑟𝑒  can be computed efficiently as it only involves vector multiplication and (𝒚 − 𝝁̂) only needs 400 

to be calculated once. However, var(𝑇𝑠𝑐𝑜𝑟𝑒) is difficult to obtain since 𝐏 is an 𝑛 × 𝑛 dense matrix, 401 

and 𝒙𝑠T𝐏𝒙𝑠  needs to be evaluated repeatedly for every variant. The GRAMMAR-GAMMA 402 

approximation is a method to tackle this problem in LMM-based GWA analysis for quantitative 403 

traits30, and has been extended to cope with GLMMs in SAIGE14. In brief, for a random variant, its 404 

gamma ratio (𝛾 = 𝒙̃𝑠T𝐏𝒙̃𝑠𝒙̃𝑠T𝐖𝒙̃𝑠) is approximately constant regardless of its genotypes. The denominator 405 

is easy to compute because 𝐖 is an 𝑛 × 𝑛 diagonal matrix. Therefore, by randomly selecting m 406 

variants (the default m value is 200 in fastGWA-GLMM), we first estimate the mean of the gamma 407 

ratio by 𝛾̂ = 1𝑚 ∑ 𝒙̃𝑠T𝐏𝒙̃𝑠𝒙̃𝑠T𝐖𝒙̃𝑠  and then calculate var(𝑇𝑠𝑐𝑜𝑟𝑒) ≈ 𝛾̂𝒙̃𝑠T𝐖⁡𝒙̃𝑠  for all the variants14. This 408 

strategy avoids computing var(𝑇𝑠𝑐𝑜𝑟𝑒) = 𝒙̃𝑠T𝐏𝒙̃𝑠  repeatedly for each variant and reduces the 409 

computational complexity of the association test step to nearly 𝑂(𝑚𝑛) . The runtime can be 410 
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further reduced by an approximate covariate adjustment approach, especially when the number 411 

of covariates is large (e.g., 𝑐 > 20). The full derivation of the approximate covariate adjustment 412 

approach has been described in the Supplementary Note. We observed from real data 413 

applications that the difference between the test statistics of the approximate and exact methods 414 

was very small (Supplementary Figure 13). In our software tool, users can mute the 415 

approximation method, and in that case, it is a few times slower than the default version, 416 

depending on the size of c.  417 

 418 

Correcting for genomic inflation by saddle point approximation 419 

After obtaining the score test statistics, we calibrate the fastGWA-GLMM p-values by saddle point 420 

approximation (SPA)35,36 to avoid potential inflation driven by case-control imbalance. The SPA 421 

method has recently been improved to cope with GWAS data (called fastSPA)14,19. FastSPA was 422 

originally implemented in R19. To improve the computational efficiency, we implemented fastSPA 423 

by highly optimised C++ codes in fastGWA-GLMM. By default, fastGWA-GLMM applies the fastSPA 424 

correction to variants with 𝜒𝑑𝑓=12   2. 425 

 426 

The UK Biobank data 427 

The UK Biobank (UKB) is a large cohort study consisting of approximately 500,000 participants 428 

aged between 40 and 69 at recruitment, with extensive phenotypic records1. In this study, 429 

456,348 UKB participants of European ancestry were selected for simulation and real data 430 

analyses. Genetic data were genotyped by two different arrays, the Applied BiosystemsTM UK 431 

Biobank AxiomTM Array and the Applied BiosystemsTM UK BiLEVE AxiomTM Array1. SNP 432 

imputation was conducted by the UKB analysis team using whole-genome sequence data from 433 

the Haplotype Reference Consortium37 and the UK10K project38 as the reference panels. The 434 

imputed data were filtered with standard QC criteria in PLINK27, e.g., MAF ≥ 0.0001, Hardy-435 

Weinberg Equilibrium test P ≥ 10-6, genotyping rate ≥ 0.9, and imputation info score ≥ 0.8, 436 

resulting in 11,842,647 imputed variants (8,020,670 common and 3,821,977 rare). Note: we used 437 

588,927 genotyped variants for the simulation study and 11,842,647 imputed variants for real 438 

data analyses1. 439 

 440 

Simulation 441 

To assess the statistical performance of fastGWA-GLMM, we simulated 100,000 artificial 442 

individuals with a moderate proportion of relatives (10% of all samples) and substantial 443 population stratification (to mimic two different ancestry backgrounds). A “mosaic-chromosome” 444 

scheme modified from ref.32 was used to generate the artificial individuals (see ref.10 for detailed 445 

description of the simulation settings). The difference of the current simulation process with that 446 
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from ref.10 was the inclusion of 32,658 genotyped rare variants from the UKB (MAF ranging from 447 

0.01 to 0.0001). 448 

 449 

A set of different parameters were used to simulate a binary phenotype. We started from 450 

simulating a quantitative phenotype for the 100,000 simulated individuals based on the model 451 

below 452 𝒚 = 𝒈𝑐𝑜𝑚 + 𝒈𝑟𝑎𝑟𝑒 + 𝒛𝑏𝑝 + 𝒆𝐶 + 𝒆 453 

where 𝒈𝑐𝑜𝑚 = ∑ 𝒙𝑐𝑜𝑚−𝑖𝑏𝑐𝑜𝑚−𝑖𝑚1𝑖=1  is the sum of the genetic effects of 𝑚1 common causal variants 454 

(MAF  0.01) with 𝒙𝑐𝑜𝑚−𝑖  being a vector of variant genotypes and 𝑏𝑐𝑜𝑚−𝑖~𝑁(0,1) ; 𝒈𝑟𝑎𝑟𝑒 =455 ∑ 𝒙𝑟𝑎𝑟𝑒−𝑖𝑏𝑟𝑎𝑟𝑒−𝑖𝑚2𝑖=1  is the sum of the genetic effects of 𝑚2 rare causal variants (MAF < 0.01) with 456 𝒙𝑟𝑎𝑟𝑒−𝑖  being a vector of variant genotypes and 𝑏𝑟𝑎𝑟𝑒−𝑖~𝑁(0,1) ; z is a vector consisting of 0 457 

(British) and 1 (Irish) to indicate ancestry with 𝑏𝑝  being the mean difference in phenotype 458 

between the two groups; 𝒆𝐶  is a vector of common environmental effects shared among 459 

individuals in the same families with 𝒆𝐶~𝑁(𝟎, 𝑰𝜎𝐶2) ; and 𝒆  is a vector of residuals with 460 𝑒~𝑁(𝟎, 𝑰𝜎𝑒2). The causal variants (𝑚1 = 10,000 and 𝑚2 = 1,000) were randomly sampled from 461 

variants on the odd chromosomes, so the variants on the even chromosomes could be treated as 462 

the null variants to quantify type-1 error rate. We varied the variance of the common 463 

environmental effects in different simulation scenarios including (see Supplementary Note for 464 

detailed description of the parameter settings):  465 

a) no common environmental effects (denoted by “noEnv”);  466 

b) common environmental effects explaining 10% of 𝑉𝑝  among the 1st and 2nd degree 467 

relatives (denoted by “comEnv”);  468 

After obtaining the quantitative phenotypic value for each individual, we dichotomized the 469 

phenotype given seven sample prevalence rates (i.e., 0.3, 0.2, 0.1, 0.05, 0.01, 0.005, or 0.001) to 470 

convert it to a binary phenotype. Each simulation was repeated 100 times. 471 

 472 

Assessing the false positive rate and statistical power 473 

Four different methods, SAIGE, LR-All, LR-unRel, and fastGWA-GLMM, were used to conduct GWA 474 

analyses for the simulated data. The top 10 principal components (PCs) computed from a set of 475 

LD-pruned variants (MAF  0.01, window size = 1 Mb, step size = 50 variants, and LD r2 threshold 476 

= 0.05) using flashPCA2 (ref.39) were included in the association analysis as fixed covariates. For 477 

fastGWA-GLMM, 538,752 common variants with MAF  0.01 were used to compute the sparse 478 

GRM, while for SAIGE, as recommended in the software documentation, a set of 78,295 LD-pruned 479 

common variants were used as “ModelSNPs” for the estimation of the additive genetic variance 480 

(Supplementary Note). After performing GWA analyses of the simulated data, we quantified the 481 
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FPR using the null variants on the even chromosomes and the power using the mean 𝜒2 of the 482 

causal variants for each method in each simulation scenario. We additionally evaluated the area 483 

under the curve (AUC) for each method, which can be interpreted as how well a method ranks 484 

true positives above true negative (Supplementary Note). Moreover, we also measured the 485 

statistical performance of each methods for common (MAF  0.01) and rare (MAF < 0.01) variants 486 

separately.  487 

 488 

Real data analyses 489 

We used fastGWA-GLMM to perform GWA analyses of 2,989 binary traits in the UKB. Participants 490 

with imputed SNP data and labelled as European ancestry (UKB data-field 1001) were included 491 

in the analyses (n=456,348 and m=11,842,647). Of all the traits, 2,154 were generated based on 492 

the QC pipeline provided by the Neale Lab (https://github.com/Nealelab/UK_Biobank_GWAS), 493 

which were either originally dichotomous or transformed from multi-categorical traits. The rest 494 

traits were generated from the ICD-10 records from the UKB. The original ICD-10 records 495 

provided by the UKB were text-based data (UKB data-field 41202), which were not easy to 496 

process. Therefore, we first extracted every unique ICD-10 code for each individual, and then 497 

grouped the ICD-10 codes into different PheCode based on the PheCode v1.2 ICD-10 map17. Any 498 

individual not labelled with a particular PheCode was treated as a control for that PheCode. We 499 

did not remove individuals with relevant diseases from the control group to avoid selection bias40. 500 

Eventually, 835 PheCode traits were retained for further analysis. We removed traits with ncases < 501 

100 or ntotal < 5,000 and retained 2,989 traits in total. We fitted age, age2, sex, agesex, age2sex, 502 

and the top 20 PCs provided by the UKB as covariates in the GWA analysis (note: only age, age2, 503 

and the top 20 PCs were fitted for the sex-specific traits). We also applied SAIGE to all the 456,348 504 

individuals and PLINK2 logistic regression to 348,501 unrelated individuals for eight binary 505 

phenotypes selected from the UKB for comparison with fastGWA-GLMM. The same covariates 506 

were fitted, and details of the parameter settings of SAIGE and PLINK2 are described in the 507 

Supplementary Note. Clumping analyses were performed using the GWAS results from 508 

fastGWA-GLMM, SAIGE, and PLINK2, respectively (LD-clumping parameters used: p-value 509 

threshold=510-9, window size=5Mb, and LD r2 threshold=0.01) for each of the eight phenotypes.  510 

 511 

Statistical testing 512 

In all the association analyses, we used a 𝜒𝑑𝑓=12  statistic to test against the null hypothesis of no 513 

association (i.e., 𝐻0: 𝑇𝑠𝑐𝑜𝑟𝑒 = 0). 514 

 515 

Code availability 516 

https://github.com/Nealelab/UK_Biobank_GWAS
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fastGWA-GLMM is integrated in the GCTA software (http://cnsgenomics.com/software/gcta). 517 
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 529 

 530 

Figure 1. Comparison of runtime and memory usage between fastGWA-GLMM and SAIGE. 531 

In panel a), the x-axis represents the sample size, and the y-axis represents the runtime in hour 532 

units. For both fastGWA-GLMM and SAIGE, the runtime consists of two components: 1) the 533 estimation of mixed model parameters (“Para. Est.”), and 2) the association test (“Assoc.”). In 534 

panel b), the x-axis represents the sample size, and the y-axis represents the memory usage in GB 535 

units. The data used in the tests consisted of 11,842,647 variants, of which 114,494 LD-pruned 536 variants were used as “model SNPs” in SAIGE (Supplementary Note). All tests were performed 537 

in the same computing environment: 80 GB memory and 8 CPU cores (Intel Xeon Gold 6148). 538 

Each test was repeated 5 times for an average. 539 
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 541 

 542 

Figure 2. False positive rate (FPR) computed from the null variants. The y-axis represents 543 

the FPR computed from the null variants (i.e., all the variants on the even chromosomes), and the 544 

x-axis represents different levels of prevalence of the simulated binary phenotypes (prevalence 545 = 𝑛𝑐𝑎𝑠𝑒/(𝑛𝑐𝑎𝑠𝑒 + 𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙)). FPR is evaluated at five different p-value thresholds (=0.05, 0.005, 546 

and 510-6), as shown from panels a to c. The dashed lines indicate the expected FPR (i.e., the 547 

alpha level). Each boxplot represents the distribution of FPR across 100 simulation replicates. 548 

The line inside each box indicates the median value, notches indicate the 95% confidence interval, 549 

central box indicates the interquartile range (IQR), whiskers indicate data up to 1.5 times the IQR, 550 

and outliers are shown as separate dots. 551 
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 553 

 554 

Figure 3. Comparison in power between the methods. Here, power is measured by the mean 555 

2 of the causal variants. The y-axis represents the mean 2 of the causal variants (10,000 common 556 

and 1,000 rare causal variants on the odd chromosomes), and the x-axis represents different 557 

levels of prevalence of the simulated binary phenotypes (prevalence = 𝑛𝑐𝑎𝑠𝑒/(𝑛𝑐𝑎𝑠𝑒 + 𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙)). 558 

Apart from being evaluated for the 11,000 variants altogether in panel (a), the mean 2 is 559 

evaluated for common (MAF ≥ 0.01) and rare (MAF < 0.01) causal variants separately, as shown 560 

in panels (b) and (c), respectively. Each boxplot represents the distribution of mean 2 across 100 561 

simulation replicates. The line inside each box indicates the median value, notches indicate the 562 

95% confidence interval, central box indicates the interquartile range (IQR), whiskers indicate 563 

data up to 1.5 times the IQR, and outliers are shown as separate dots. 564 
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Figures

Figure 1

Comparison of runtime and memory usage between fastGWA-GLMM and SAIGE.  In panel a), the x-axis
represents the sample size, and the y-axis represents the runtime in hour units. For both fastGWA-GLMM
and SAIGE, the runtime consists of two components: 1) the estimation of mixed model parameters
(“Para. Est.”), and 2) the association test (“Assoc.”). In panel b), the x-axis represents the sample size, and
the y-axis represents the memory usage in GB units. The data used in the tests consisted of 11,842,647
variants, of which 114,494 LD-pruned variants were used as “model SNPs” in SAIGE (Supplementary
Note). All tests were performed in the same computing environment: 80 GB memory and 8 CPU cores
(Intel Xeon Gold 6148). Each test was repeated 5 times for an average.



Figure 2

False positive rate (FPR) computed from the null variants. The y-axis representsthe FPR computed from
the null variants (i.e., all the variants on the even chromosomes), and the x-axis represents different levels
of prevalence of the simulated binary phenotypes (prevalence  =฀฀฀฀฀/(฀฀฀฀฀+฀฀฀฀฀฀฀฀)). FPR is evaluated
at �ve different p-value thresholds (a=0.05, 0.005,  and 5 x 10-6), as shown from panels a to c. The
dashed lines indicate the expected FPR (i.e., the alpha level). Each boxplot represents the distribution of
FPR across 100 simulation replicates. The line inside each box indicates the median value, notches



indicate the 95% con�dence interval, central box indicates the interquartile range (IQR), whiskers indicate
data up to 1.5 times the IQR, and outliers are shown as separate dots.

Figure 3

Comparison in power between the methods. Here, power is measured by the mean x2 of the causal
variants. The y-axis represents the mean x2 of the causal variants (10,000 common and 1,000 rare causal
variants on the odd chromosomes), and the x-axis represents different levels of prevalence of the
simulated binary phenotypes (prevalence =฀฀฀฀฀/(฀฀฀฀฀+฀฀฀฀฀฀฀฀)). Apart from being evaluated for the
11,000 variants altogether in panel (a), the mean x2 is evaluated for common (MAF ≥ 0.01) and rare (MAF



< 0.01) causal variants separately, as shown in panels (b) and (c), respectively. Each boxplot represents
the distribution of mean x2 across 100 simulation replicates. The line inside each box indicates the
median value, notches indicate the 95% con�dence interval, central box indicates the interquartile range
(IQR), whiskers indicate data up to 1.5 times the IQR, and outliers are shown as separate dots.
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