
Training Load Responses Modelling in Elite Sports:
How to Deal with Generalisation?
Frank Imbach  (  frank.imbach@umontpellier.fr )

University of Montpellier
Stephane Perrey 

University of Montpellier
Romain Chailan 

University of Montpellier
Thibaut Meline 

University of Perpignan
Robin Candau 

University of Montpellier

Research Article

Keywords: sport performance modelling, elastic net (ENET), principal component regression (PCR),
random forest (RF)

Posted Date: December 23rd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-128940/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-128940/v1
mailto:frank.imbach@umontpellier.fr
https://doi.org/10.21203/rs.3.rs-128940/v1
https://creativecommons.org/licenses/by/4.0/


Training load responses modelling in elite sports:

how to deal with generalisation?

Frank Imbach1,2,3,*, Stephane Perrey2, Romain Chailan1, Thibaut Meline4, and Robin
Candau3

1Seenovate, Univ. Montpellier, Montpellier, 34000, France
2EuroMov Digital Health in Motion, Univ. Montpellier, IMT Mines Ales, Montpellier, 34090, France
3DMeM, Univ. Montpellier, INRAe, Montpellier, 34000, France
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ABSTRACT

This study aims to provide a transferable methodology in the context of sport performance modelling, with a special focus to

the generalisation of models. Data were collected from seven elite Short track speed skaters over a three months training

period. In order to account for training load accumulation over sessions, cumulative responses to training were modelled by

impulse, serial and bi-exponential responses functions. The variable dose-response (DR) model was compared to elastic

net (ENET), principal component regression (PCR) and random forest (RF) models, while using cross-validation within a

time-series framework. ENET, PCR and RF models were fitted either individually (MI) or on the whole group of athletes (MG).

Root mean square error criterion was used to assess performances of models. ENET and PCR models provided a significant

greater generalisation ability than the DR model (p = 0.012, p < 0.001, p = 0.005 and p < 0.001 for ENETI , ENETG, PCRI and

PCRG, respectively). Only ENETI , ENETG and RFI were significantly more accurate in prediction than DR (p = 0.020, p < 0.001

and p = 0.043, respectively). In conclusion, ENET achieved greater generalisation and predictive accuracy performances. Thus,

building and evaluating models within a generalisation enhancing procedure is a prerequisite for any predictive modelling.

Introduction

The relationship between training load and performance in sports has been studied since decades. A key point of the performance

optimisation is the training prescription delivered by coaches, physical trainers or the athlete himself. Such a programming

involves both various modalities of exercise (i.e. the type of training regarding to the physical quality required to perform)

and adjusted training load. Training load is usually dissociated into i) an external load defined by the work completed by the

athlete, independently of his internal characteristics1 and ii) an internal load corresponding to the psycho-physiological stresses

imposed on the athlete in response to the external load2.

Models of training load responses emerged with the impulse response model promoted by Banister et al.3 in order to

describe human adaptations to training loads. Afterwards, a simplified version of the original model built on a two-way

antagonistic first order transfer function (fitness and fatigue components, so called Fitness - Fatigue model) has showed a

large interest to describe the training process4–8. However, several limitations regarding to the model stability, parameter

interpretability, ill-conditioning and predictive accuracy were reported9, 10. Such models may be considered as non-linear

models according to their component structure11 and therefore, require a sufficient number of observations (i.e. performances)

to correctly estimate relationships between training load and performance9, 12. To overcome some of the limits, refinements of

the former impulse response model were proposed by using a recursive algorithm in order to estimate parameters according

to each model input (i.e. the training load)11 and by introducing variations in the fatigue response to a single training bout13.

Further adaptations to the Fitness - Fatigue model were also developed with the aim of improving both goodness-of-fit and

prediction accuracy14, 15. Nonetheless, because impulse-response models aiming to predict training effects in both endurance

(running, cycling, skiing and swimming)6, 11, 16–21 and more complex (hammer throw, gymnastic and judo)8, 22, 23 activities

sought to mitigate the underpinning physiological processes involved by exercise into a small number of entities, accuracy

of predictions might greatly suffer from24. Moreover, these models assume that the training effect is maximal by the end of

the training session. This assumption is reasonable only for the negative component of the model (i.e. "Fatigue"), where its

maximal value is taken immediately after the session. Regarding to the positive effects induced by training (i.e. "Fitness"),

such a response is quite questionable since physiological adaptations are continuing from the end of the exercise session. For

instance, skeletal muscle adaptations to training described by increases in muscle mass, fiber shortening velocity and myosin



ATPase activity modifications are known to be progressive (i.e. short to long term after-effects) rather than instantaneous25–27.

Consequently, serial and bi-exponential functions were proposed to counteract these limitations and better describe training

adaptations through exponential growth and decay functions, according to physiological responses in rats28.

A more statistical approach was used to investigate the effects of training load on performance by using principal component

analysis and linear mixed models on different time frames12. Such models infer parameters from all available data (i.e.

combining subjects instead of by-subject model) but allow parameters to vary in respect of heterogeneity between athletes.

The model being multivariate, the multi-faceted nature of the performance could be conserved by including psychological,

nutritional and technical information as predictors12, 16, 18. However, authors did not consider the cumulative facet of daily

training loads, where exponential and decay cumulative functions such as proposed by Candau et al.17 may be suitable for

performance modelling.

Alternatives from computer sciences field were also used to clarify the training load - performance relationship in a

predictive aim. Most notably, machine learning approaches are usually focused on the generalisation of models (i.e. a model

ability to make accurate predictions on unknown data). Various approaches tend to maximise such a criterion. For instance,

one can perform cross-validation (CV) procedures, where data are separated into training sets for parameters estimation and

testing sets for prediction29. Such a procedure fosters the determination of optimal models, relatively to the family of models

considered and regarding to their ability for generalisation. In the same time, CV procedures allow to diagnose under- and

over-fitting of the model. Underfitting commonly describes an inflexible model unable of capturing noteworthy regularities in

a set of exemplary observations30. In contrast, overfitting represents an over-trained model, which tends to memorise each

particular observation thus leading to high error rates when predicting on unknown data31. While aforementioned studies aimed

to describe the training load - performance relationships by estimating model parameters and by testing the model on a single

data set, generalisation of models cannot be ensured. This challenges their usefulness in a predictive application. On the other

hand, modelling methodologies using CV procedures are the standard in a predictive aim rather than only being descriptive. To

our knowledge, only a few recent studies modelled performances with Fitness-Fatigue models using a CV procedure10, 32, 33

and one separated data into two equals training and testing data sets respectively34. Two of them reported an overfitting of

the model at the expense of accurate predictions10, 33. Consequently, interpretations drawn from predictions as well as model

parameters may be incorrect.

The physiological adaptations involved by exercise being complex, some authors investigated the relationship between

training and performance by using Artificial Neural Networks (ANN), non-linear machine learning models35, 36. Despite low

prediction errors reported (e.g. 0.05 seconds error over a 200m swimming performance35), the methodological consideration

in their study mostly influenced by a small sample size and the "black-box" nature of ANN question their use in sport

performance modelling9, 37. Computer sciences offer plenty of machine learning models although being often resumed to ANN

for physical performance prediction. Some algorithms might be preferred for sport performance modelling by preventing high

dimensionality and multicollinearity issues. To cite a few, non-linear approaches such as Random Forest (RF) models38 and

regularised linear regressions39, 40 proved their efficiency and could be profitable in a sport performance context.

To date, not any consensus is claimed about which model family (i.e. impulse response and physiological based, statistical

and machine learning models) should be preferred for physical performance prediction based on a data set, mainly due to

a lack of evidence and confidence in training effect modelling and performance prediction accuracy. In addition, because

generalisation ability is not systemically appraised, practical and physiological interpretations drawn from models may be

incorrect and at least should be taken with caution.

Beyond the model employed to elucidate the relationships between training load and performance in a predictive application,

we hypothesised that modelling approaches including CV procedures, regularisation and dimension reduction methods would

lead to a greater generalisation than former impulse response models.

In order to prescribe an optimal training programming, sport practitioners need to understand the physiological effects

involved by each training session and its after-effects on physical performance. Hence, this study aimed to provide a reliable

and transferable methodology relying on model generalisation in a context of sport performance modelling. To do so, the

variable dose-response (DR) model13 was considered as a baseline framework and compared to two regularisation methods and

one machine learning regression model: a principal component regression (PCR), an Elastic net (ENET) regression and a RF

regression model, respectively.

Materials and methods

Participants
Seven national elite Short-track speed skaters (mean age 22.7 ± 3.4 years old; 3 males, body mass of 71.4 ± 9.4 kg, and 4

females, body mass of 55.9 ± 3.9 kg) voluntary participated to the study. Each athletes experienced the 2018 Olympic Winter

Games in PyeongChang, South Korea (n = 2) or were preparing the Olympics Games of Pekin, China (n = 7). The whole team

was trained by the same coach, responsible for training programming and data collection. Mean weekly volume of training was
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16.6 ± 2.5 hours. Data were collected over a three months training period, beginning one month after resuming training for a

new season. Participants were fully informed about data collection and written consent was obtained from them. The study was

performed in agreement with the standards set by the declaration of Helsinki (2013) involving human subjects. The protocol

was reviewed and approved by the local research Ethics Committee (EuroMov, University of Montpellier, France). The present

retrospective study relied on the collected data without causing any changes in the training programming of athletes.

Data set

Dependent variable: Performance

Participants performed each week standing start time trials (distance = 166.68 meters equal 1.5 lap) after a standardised

warm-up. At the finish line, photocell timing system (Brower timing system, USA) recorded individual time trial performance.

A total of n = 248 performances were recorded for an average of 35.4±2.23 individual performances. The performance test

being a gold standard for the assessment of acceleration ability41, athletes were all familiar with it prior to the study.

In the sequel, let Y ⇢ R be the domain of definition of such a performance and Y 2 Y the random variable. In this context,

each observation y j 2 Y can be referenced by both its athlete i and its day of realisation t as yi,t .

Independent variables

Independent variables stem from various sources, which are summarised in Table 1. In the sequel, let X ⇢ R
d with d 2 N be

the domain of definition of the random variable X = [X1, . . . ,Xd ] 2X . The variable X is thus defined as a vector composed of

the independent variables detailed hereafter. First, {X1} refers to the raw training loads (TL, Figure 1c), calculated from on-ice

and off-ice training sessions (see details on Supplementary material Appendix). Then, {X2,X3} represent two aggregations

of daily TL. Those aggregations come from the daily training loads w(t) –also known here as X1– convoluted to two transfer

functions adapted from Philippe et al.28, which are denoted gimp(t) and gser(t).

The associated impulse response Gimp(t) reflects the acute response to exercise (e.g. fatigue). It is defined as

Gimp(t) = e
�t
τI , (1)

where τI is a short time constant equals to 3 days in this study (Figure 1a). Respectively, the response Gser(t) describes a serial

and bi-exponential function reflecting training adaptations over time. It is defined as

Gser(t) =
�

1� e
�t
τG

�

U + e
�(t�T D)

τD |U�1 | , with U =

(

1 if t < T D

0 otherwise.
(2)

The time delay for the decay phase to begin only after the growth phase is given by T D. Here, T D = 4τG. Both τG and τD are

the time constants of respectively the growth phase and the decline phase with τG = 1 day and τD = 7 days (Figure 1b). Note

that the time constants τI , τG, τD were averaged and based on empirical knowledge and previous findings13. Hence, for a given

athlete,

X2(t) =
�

w⇤gimp

�

(t) =
t

∑
l=1

w(l)

✓

e
�(t�l)

τI

◆

, and

X3(t) = (w⇤gser)(t) =
t

∑
l=1

w(l)

✓

�

1� e
�(t�l)

τG

�

U + e
�(t�T D�l)

τD |U�1 |

◆

, with U =

(

1 if t < T D

0 otherwise.

Note that the symbol ⇤ denotes the convolution product.

Similarly, some characteristics components of each session were aggregated. This encompasses Rate of Perceived Exertion

(RPE) {X4,X5}, averaged power {X6,X7}, maximal power output {X8,X9}, relative intensity {X10,X11}, session duration

{X12,X13} and session density {X14,X15}. Also, for each session ice quality {X16} and rest between two consecutive sessions

{X17} were considered. Since some models may benefit from time through autocorrelated performances yi,t , the preceding

performance yi,t�k with k = 1 was included as predictor, denoted {X18}. Finally, athlete {X19} was considered excepted for

individually built models.

Applied to the observed data of this study a data set of n = 248 observations of performances associated with 19 independent

variables was obtained (see Table 1). To formalise, allowing that X⇥Y ⇠ f with f a function of density, the built data set is a

sample S = {(x j,y j)} jn ⇠ f n.
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(a)

(b)

(c)

Figure 1. Cumulative daily training loads of a representative athlete following (a) the impulse response function (X2, Equation

1) and (b) the serial bi-exponential response function (X3, Equation 2). (c) illustrates the raw daily training loads X1, expressed

by w(t). In (a) and (b), dots represent daily values of the cumulative training load and vertical solid lines indicate occurrence of

training sessions. Values are represented in arbitrary units (a.u). 3/14



Table 1. Summary of independent variables

Independent variables Xi Description Aggregation

Raw training load X1 Daily training load computed from T Lice, T LRT , T Laer, T LRS, T Lact (see Supplementary material Appendix) Daily recorded

Cumulative Training load X2, X3 Daily computed from X1 values Impulse and serial cumulative responses

Rate of Perceived Exertion (RPE) X4, X5 Borg category ratio (CR) 0-10 scale Impulse and serial cumulative responses

Averaged power X6, X7 On-ice sessions Impulse and serial cumulative responses

Maximal power X8, X9 On-ice sessions Impulse and serial cumulative responses

Relative intensity X10, X11 On-ice sessions (see Supplementary material Appendix, Equation S1) Impulse and serial cumulative responses

Session duration X12, X13 All sessions, overall session duration Impulse and serial cumulative responses

Session density X14, X15 All sessions, effective work only Impulse and serial cumulative responses

Ice quality X16 Subjective information quoted on a Borg 0-10 CR scale Recorded the day of performance

Rest X17 Rest between two consecutive sessions (days) Sum of rest days preceding the performance

Past performance X18 Significantly correlated past performancet�k with performancet Performance at dayt�k

Athlete X19 Athlete’s id

Modelling Methodology
Formally, the goal is to find a function h : X ! Y which minimises the generalisation error

R(h) = P(h(X) 6= Y ) = E[1[h(X) 6= Y ]].

In practice the minimisation of R is unreachable. Instead, we get a sample set S = (xi,yi)in 2 X ⇥Y and note the empirical

error as

Re(h) =
1

n

n

∑
i

[1[h(xi) 6= yi]].

The objective becomes to find the best estimate ĥ = argminh2H Re(h) with H the class of function that we accept to consider.

Here, four family of models are evaluated in this context. With the exception of the DR, all models were individually and

collectively computed (hI and hG, respectively).

Reference: Variable dose-response

The non-linear mathematical model developed by Busso13 was considered as the model of reference. Formally and according

to the previously introduced notation, this model is a function h(busso) : X1! Y . It describes the training effects on performance

over time, y(t), from the raw training loads X1. TL are convoluted to a set of transfer functions gapt(t) and gfat(t), relating

respectively to the aptitude and to the fatigue impulse responses as

gapt(t) = e
�t
τ1

gfat(t) = e
�t
τ2 ,

with τ1 and τ2 two time constants. Combined with the basic level of performance y⇤ of the athlete, the modelled performance is

ŷ(busso)(t) = y⇤+ k1(w⇤gapt)(t)� ((k2w)⇤gfat)(t) ,

with k1 and k2(t) being gain terms. The later is related to the training doses by a second convolution to the transfer function

gfat’(t) = e
�t
τ3 ,

with τ3 a time constant. Since is defined as k2(t) = k3(w⇤gfat’)(t) where k3 is a gain term, one may note that k2(t) increases

proportionally to the training load and decay decreases exponentially from this new value. From discrete convolutions, the

modelled performance can be rewritten as

ŷ(busso)(t) = y⇤+ k1

t�1

∑
l=1

w(l)e
�(t�l)

τ1 �
t�1

∑
l=1

k2(l)w(l)e
�(t�l)

τ2 ,

with k2(l) = k3 ∑
l
m=1 w(m)e

�(l�m)
τ3 .

The five parameters of the model (i.e. k1, k3, τ1, τ2 and τ3) are fitted by minimizing the residual sum of squares (RSS) between

modelled and observed performances, such as
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RSS =
T

∑
t=1

(ŷ(busso)(t)� y(t))2
,

where t 2 T being the day in which the performance is measured. A non-linear minimisation was employed according to a

Newton-type algorithm42.

Unlike this model of reference, the next presented models take benefit from the augmented data space X⇤ = X \X1.

Regularisation procedures

Elastic net. In highly dimensional contexts, multivariate linear regressions may lead to unsteady models by being excessively

sensitive to the expanded space of solutions. To tackle this issue, cost functions penalising some parameters on account of

correlated variables exist. On one side, Ridge penalisation reduces the space of possible functions by assigning a constraint

to the parameters, thus minimising their amplitude to almost null values. On the other side, Least Absolute Shrinkage and

Selection Operator (LASSO) penalisation has the capacity to fix parameters coefficient to null. The ENET regularisation

combines both Ridge and LASSO penalisation39. Hence, the multivariate linear model h(enet) : X⇤! Y is

y
(enet)
t = xt

tβ + εt ,

with x 2 X⇤ the predictors, β 2 R
d the parameters of the model and εt the error term. The regularisation stems from the

optimisation of the objective

min
β2Rd

1

2
||y(enet)

t � yt ||
2
2 +λ

�

(1�α)||β ||22 +α||β ||1
�

,

where α 2 [0,1] denotes the mixing parameter which defines the balance between the Ridge regularisation and the LASSO

regularisation. λ denotes the impact of the penalty with λ ! ∞. For α = 0 and α = 1, the model will use a ridge and a lasso

penalisation, respectively. Thus, for α! 1 and a fixed value of λ , the number of removed variables (null coefficients) increases

with monotony from 0 to the LASSO most reduced model. The model was adjusted by hyper-parameters α and λ during the

model selection, being part of the CV process (as described below).

Principal component regression. In this multivariate context with potential multicollinearity issues, principal component

analysis aims to project the original data set from X⇤ into a new space X̃⇤ of orthogonal dimensions called principal components.

These dimensions are built from linear combinations of the initial variables. One may use the principal components to regress

the dependent variable: also known as Principal Components Regression (PCR). The regularisation is performed by using as

regressors only the first principal components which retain the maximum of variance of the original data, by construction. In

our study and according to the Kaiser’s rule43, p principal components with an eigenvalue higher than 1 were retained and

further used in linear regression.

Such a model, h(pcr) : X̃⇤! Y , can be defined as a linear multivariate regression over principal components as

y
(pcr)
t = x̃t

tβ + εt ,

with x 2 X̃⇤ \{X̃⇤p+1, . . . , X̃⇤d} the predictors, β 2 R
p the parameters of the model and εt the error term. In addition to being a

regularisation technique by using a subset of principal components only, PCR also exerts a discrete shrinkage effect on the low

variance components (the lower eigenvalue components), nullifying their contribution in the original regression model.

Random Forest

Random Forest model consists of a large number of regression trees that operate as an ensemble. RF is random in two ways, (i)

each tree is based on a random subset of observations and (ii) each split within each tree is created based on a random subset of

candidate variables. The overall performance of the forest is defined by the average of predictions from the individual trees44.

In this study, random subset of variables and number of trees were the two hyper-parameters for adjusting the model within the

model selection. The model is a function h(rf) : X⇤! Y .
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Time series cross-validation and prediction
Data were separated –respectively to the time index– into one training data set for time series CV (80 % of the total data) and

the remaining data for an unbiased model evaluation (evaluation data set). In this procedure, a model selection occurs first

with the search of hyper-parameters values that minimise the predictive model error over validation subsets. The procedure is

detailed in Algorithm 1.

Algorithm 1 Time series cross-validation

Require:

A data set of n time ordered elements, S = {(x j,y j)} jm

The number of partitions to split training data to, K < m� smin� sval +1 2 N

The minimum size of training set within a partition, smin � 1

The size of validation set within a partition, sval � 1

A class of functions, H

Ensure: An optimal model h⇤ fitted on S

for h(i) 2H do

for k 2 {1, . . . ,K} do

tval smin + k

Strain (xt ,yt) with t 2 [1, tval�1]
Svalid (xt 0 ,yt 0) with t 0 2 [tval, tval + sval�1]

h
(i)
trained Train h(i) on Strain

E[i,k] Evaluate RMSE of h
(i)
trained on Svalid

end for

end for

return h⇤ = h(i
⇤) with i⇤ = argmini{

1
K ∑

K
k=1 E[i,k]}

Algorithm 1 iteratively evaluates a class of functions H , in which each function h(i) differs from its hyper-parameters values.

A time ordered data set S is partitioned into training and validation subsets (Strain and Svalid , respectively). For each partition k

with k 2 {1, ...,K}, h(i) functions are fitted on the incremental Strain and evaluated on the fixed Svalid subset that occurs after

the last element of Strain. Once h(i) functions are evaluated on K partitions of S, a function h(i
⇤) that provides the lowest and

averaged root mean square error (RMSE) among validation subsets defines an optimal model denoted h⇤.

Afterwards and for each partition of S, h⇤ is adjusted on new time ordered training subsets S0train which combines both Strain

and Svalid . Hence, the generalisation capability of h⇤ is evaluated on fixed length subsets of evaluation data, saved for that

purpose.

Statistical analysis
For any model, the goodness of fit according to linear relationships and to performance were described by the coefficient of

determination (R2) and the RMSE criterion respectively. Their generalisation ability is described by the difference between

RMSE computed on each training and testing data. The prediction error was reported through the Mean Absolute Error (MAE)

between observations and predictions. After checking normality and variance homogeneity of the dependant variable by a

Shapiro-wilk and a Levene test respectively, linear models were performed to assess differences in generalisation of models and

differences of predictive performances for each group computed models compared to the DR model. For individual models

comparisons, linear mixed models were used to account for subject variability in performances modelling by including athletes

as random effect. Significance threshold was fixed to p < 0.05. Unstandardised regression coefficients β are reported along

with 95% confidence interval (CI) as a measure of effect size. Models computation and statistical analysis were conducted with

R statistical software (version 4.0.2). The DR model was computed with personal custom-built R package (version 1.0)45.

Results

Through the times series CV, models provided heterogeneous generalisation and performance prediction. Distributions of

RMSE per model are illustrated in Figure 2.

Models generalisation
Comparisons to the DRI models showed significant differences and a greater generalisation capability for both ENET

(p = 0.012, βdi f f = 0.027 [0.007,0.50] 95%CI and p < 0.001, βdi f f = 0.057 [0.045,0.069] 95%CI) and PCR models (p =
0.005, βdi f f = 0.031 [0.010,0.053] 95% CI and p < 0.001, βdi f f = 0.032 [0.020,0.044] 95% CI for individual and group
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computed models respectively). In contrast, RF models reported a lower generalisation than the DRI (p = 0.032, βdi f f =
�0.023 [�0.045,�0.001] 95%CI and p < 0.001, βdi f f = �0.026 [�0.038,�0.014] 95%CI, for RFI and RFG respectively).

Therefore, ENET and PCR models computed on overall data were the most generalisable models, followed by individual ENET

and PCR models. A summary of model pairwise comparisons is provided in Table 2.

(a)

(b)

Figure 2. Distributions of models’ performance. (a) shows RMSE distributions of each individual models and (b) the models

computed on the whole group. Within boxplot midline represents the median of the distribution. All of them are compared to

the dose-response (DR) model.
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Table 2. Summary of models pairwise comparisons for generalisation and prediction abilities. βdi f f represents the difference

in parameter estimates between the DR model and the compared model.

Comparison βdi f f CIlower CIupper Pr(> |t|) Criterion

DRI�ENETG 0.057 0.045 0.069 < 0.001 Generalisation

DRI�PCRG 0.032 0.020 0.044 < 0.001 Generalisation

DRI�PCRI 0.031 0.010 0.053 0.005 Generalisation

DRI�ENETI 0.027 0.007 0.050 0.012 Generalisation

DRI�RFI -0.023 -0.045 -0.001 0.032 Generalisation

DRI�RFG -0.026 -0.038 -0.014 < 0.001 Generalisation

DRI�ENETG 0.032 0.016 0.048 < 0.001 Prediction

DRI�ENETI 0.025 0.004 0.047 0.020 Prediction

DRI�RFI 0.022 0.001 0.044 0.043 Prediction

DRI�PCRI 0.020 -0.002 0.041 0.072 Prediction

DRI�RFG 0.014 -0.002 0.029 0.088 Prediction

DRI�PCRG -0.051 -0.067 -0.035 < 0.001 Prediction

Prediction performances

For any model, the observed RMSE on the evaluation data set showed significant differences to the reference DRI , with

the exception of PCRI and RFG (p = 0.072 and p = 0.088 respectively, see Table 2). The ENETG model provided the

greatest performances (RMSE = 0.176± 0.012, MAE = 0.15± 0.01 and R2 = 0.179± 0.063), closely followed by RFG.

Only PCRG showed lower performances in prediction than DRI . Distributions of RMSE on data used for evaluation have

shown heterogeneous variance between models. The greatest standard deviations were found for DRI and PCRG with

σ = 0.053 and σ = 0.062 respectively. The ENET, PCRI and RF models provided more consistent performances with

lower standard deviations comprised within [0.023;0.027] and [0.012;0.017] intervals for individual and group computed

models, respectively. Mean values of R2 indicated that weak linear relationships between performance and predictors

were identified by models (R2 2 [0.150;0.206]). The highest averaged R2 value but also the greatest standard deviations

were reported for DRI models (R2 = 0.206± 0.093). However, significant differences of averaged R2 were only found for

ENETI , RFG and PCRG (β = �0.056 [�0.10;�0.01] 95% CI, p = 0.02; β = �0.041 [�0.08;�0.01] 95% CI, p = 0.02 and

β =�0.036 [�0.07;�0.01] 95% CI, p = 0.04 respectively). A summary of model performances is provided in Table 3.

Predictions made from the two most generalisable models – ENETG and PCRG – and the reference DRI illustrate the sensitivity

of models for a representative athlete (Figure 3). Performances modelled from DRI model were relatively steady and less

sensitive to real performance variations. Standard deviation calculated on data used for model evaluation supported such a

smooth prediction with σ = 0.015, σ = 0.071 and σ = 0.062 for DRi, PCRG and ENETG, respectively.

Table 3. Summary of the predictive models. According to model families, criteria were averaged among folders and displayed

with their standard deviation. For individual models, averaged values of hyper parameters are displayed along with lower and

upper recorded values. The greatest performance among criteria is listed in bold type.⇤ indicates the DRI as the reference

model and specification of its averaged parameters.

Model R2 MAE RMSE Hyper parameters*

DR⇤I 0.206 ± 0.093 0.189 ± 0.055 0.225 ± 0.053 k1 = -3.95e-05,k1 2 [-4.85e-05; -3.19e-05]
k3 = -7.75e-09,k3 2 [-4.01e-09; -1.71e-08]

τ1 = 36.02,τ1 2 [25.82;42.28], τ2 = 22.57,τ2 2 [14.58;26], τ3 = 5.23,τ3 2 [4.33;6.67]

ENETI 0.150 ± 0.010 0.169 ± 0.020 0.197 ± 0.023 α = 0.176,α 2 [0;0.6], λ = 0.273,λ 2 [0;1]
PCRI 0.164 ± 0.068 0.173 ± 0.025 0.201 ± 0.027 n comp = 1.918,n comp 2 [1;3]
RFI 0.193 ± 0.074 0.170 ± 0.023 0.199 ± 0.024 mtry = 8.90,mtry 2 [1;17]
ENETG 0.179 ± 0.063 0.150 ± 0.010 0.176 ± 0.012 α = 0.28,λ = 0.02

PCRG 0.17 ± 0.053 0.22 ± 0.044 0.259 ± 0.062 ncomp = 3

RFG 0.164 ± 0.069 0.163 ± 0.017 0.195 ± 0.017 mtry = 16
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Figure 3. Modelled performance of a representative subject. Solid and dashed lines represent the DR model and the two most

generalisable models on both training and evaluation data set, separated by the vertical solid line (80% and 20% of the total

data respectively). Fitted parameters of the DR model were k1 = -2.45e-05, k3 = -2.58e-09, τ1 = 39, τ2 = 26, τ3 = 5.

Hyper-parameters of the PCR and ENET models were n comp = 3 and α = 0.28, λ = 0.02.

Discussion

In the present study, we provided a modelling methodology that encompasses data aggregation relying on physiological

assumptions and model validation for future predictions. Data were obtained from elite athletes, able of improving their

performance by training being very sensitive to physical, psychological and emotional states. The variable dose-response

model13 was fitted on individual data. It was compared to statistical and machine-learning models fitted on individual and on

overall data: ENET, PCR and RF models.

Cross validation outcomes revealed significant heterogeneity in performances of models. The main criterion of interest,

generalisation, was significantly greater for both ENET and PCR models than DRI model. One can explain this result by the

capabilities of the statistical models to better catch the underlying skating performance process using up to 19 independent

variables when associated with regularisation methods. Conversely, the DRI model relies on two antagonistic components

strictly based on the training load dynamics. It does not deal with any other factors that may greatly impact the performance

(e.g. psychological, nutritional, environmental, training-specific factors)12, 18, 46. Thus, such a conceptual limit can be overtaken

by employing multivariate modelling that may result in a greater comprehension of the training load - performance relationship,

for the purpose of future predictions9, 12.

Distributions of RMSE from training and evaluation data sets allow us to establish a generalisation model ranking (Table

2). Linear models computed on overall data offer a better generalisation. This finding is essential because by handling the

bias-variance trade-off, models are more suited for capturing a proper underlying function that maps inputs to the target even on

unknown data. Hence, it allows further physiological and practical interpretations from the models. Sample size might be one

source of explanation for such behaviour. It is well known that statistical inference on small samples leads to bad estimates

and consequently to bad performances in prediction47, 48. A greater sample size obtained by combining individual data led

to more accurate parameter estimates, being more suitable for sport performance modelling12. This is particularly important

to consider when we aim to predict a very few discipline specific performances throughout a season. However, predicting

non-invasive physical quality assessments which can be daily performed (e.g. squat jumps and its variations for an indirect

assessment of neuromuscular readiness49, short sprints) may be an alternative for small sample size issues. Also, regularisation

tends to stabilise parameters estimators and favour generalisation of the models. For instance, multicollinearity may occur in

high-dimensional problems. Stochastic models generally suffer from such a conditioning. One would note that the ENET and

PCR models attempt to overcome these issues in their own way by (i) penalising or removing features – or both – that are mostly

linearly correlated and (ii) by projecting the initial data space onto a reduced space, which is optimised to keep the maximum of

variance of the data from linear combinations of the initial features. Both approaches limit the number of unnecessary – or
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noisy – dimensions. In contrast, in this study non-linear machine learning models expressed a lower generalisation capability

than linear models even when models combine data from several athletes. We believe that such models may be powerful in

multidimensional modelling but require an adequate data set with, in particular, ones with a sufficient sample size. Otherwise,

model overfitting may occur at the expense of inaccurate predictions on unknown data.

As reported previously and with the exception of PCRG, models were more accurate in prediction than DRI (Table 3). The

large averaged RMSE as well as large standard deviations provided by the DRI among performance criteria tend to agree with

the literature, since the model is prone to suffer from a weak stability and ill-conditioning raised by noisy data that impact

its predictive accuracy9, 10. This evokes that linear relationships between the two components "Aptitude" – "Fatigue" and the

performance are not clear. However, because of a lack of cross-validation procedures on impulse models and particularly the

DR employed in our study, our results cannot be validly compared with the literature. Despite lower standard deviations of R2

reported by ENET and PCR models, the weak averaged R2 values suggest that linear models can only explain a few part of the

total variance. Therefore and if the data allow it (i.e. a sufficient sample size and robustly collected data), non-linear models

may still be effective and should be considered during the modelling process.

The sensitivity of models according to gains and losses of performances differed between the two most generalisable models

– ENETG and PCRG – and the reference DRI . Such differences can be explained by the influence of variables that may affect

performance, other than training loads dynamic (e.g. ice quality the day of performance, cumulative training loads following a

serial and bi-exponential function, the last known performance) or a DRI model failure in parameter estimates regarding to the

variability of the data. However, this applied example does not inform us about neither the generalisation ability of models nor

accuracy of predictions because it concerns only a particular set of data, where the selected models are trained on the first 80 %

of data and evaluated on the 20 % remaining data.

This study presents some limits. The first one concerns the data we used and particularly the criterion of performance:

standing start time trials few times a week during an approximately 3-months period. Even though being a very discipline

specific test in which athletes are familiar and being conducted in standardised conditions, each test requires high levels of

arousal, buy-in and motivation. Therefore, psychological states and cognitive functions monitoring such as motivation and

attentional focus50, 51 should have been done prior performing each trial. Secondly, the time series cross-validation presented

here has a certain cost, most notably when only few data are available (e.g. when models are individually computed). The rolling

origin re-calibration evaluation performed as described by Beirgmer et al.52 implies a model training only on a incremental

sub-sequence of training data. Hence, the downsized sample size of the first training sub-sequences may cause model failure

in parameter estimates and consequently, an increase of prediction errors. Then, training and evaluation data sets present

some dependencies. In order to evaluate models on fully independent data, some modifications of the current CV framework

exist at the expense of withdrawing even more data in the learning procedure. According to Racine53, the so-called hv - block

cross-validation is one of the least costly alternative to the CV used in our study, requiring a certain gap between each training

and validation subsets. However, due to a limited sample size, we voluntary chose to not adapt the original CV framework

described in Algorithm 1. Nonetheless, we recommend researchers and practitioners to consider such alternatives in case of

significant dependencies and when sample size is sufficient.

Finally, backtesting was performed in order to evaluate model performances on historical data. From a practical point

of view, models are able to predict the coming performance following a given feature of data known until day t. However,

the contribution of training load responses modelling also concerns training after-effects simulations over a longer time

frame. Having identified a suitable model, simulations of independent variables within their own distributions would allow

practitioners and coaches to simulate changes in performance following objective and subjective measures of training loads, and

any performance factors that are monitored. Conditional simulations that consider known relationships between independent

variables (e.g. relationships between training load parameters)54, 55 may improve the credibility of simulations.

Conclusion

In this study, we provided a transferable modelling methodology which relies on the evaluation of models generalisation ability

in a context of sport performance modelling. The mathematical variable dose-response model along Elastic net, principal

component regression and random forest models were cross-validated within a time series framework. Generalisation of the

DR model was outperformed by ENET and PCR models. The ENET model provided the greatest performances both in terms

of generalisation and accuracy in prediction. Increasing sample size by computing models on the whole group of athletes led to

more performing models than the individually computed ones. The methodology highlighted in our study can be reemployed

whatever the data, with the aim of optimising elite sport performance through training protocols simulations. Moreover, we

believe that model validation is a requisite for any physiological interpretation for the purpose of making future predictions.

Further researches that involve training session simulations and model evaluations in forecasting would highlight the relevance

of some model families for training programming optimisation.
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Figures

Figure 1

Cumulative daily training loads of a representative athlete following (a) the impulse response function
(X2, Equation 1) and (b) the serial bi-exponential response function (X3, Equation 2). (c) illustrates the
raw daily training loads X1, expressed by w(t). In (a) and (b), dots represent daily values of the cumulative



training load and vertical solid lines indicate occurrence of training sessions. Values are represented in
arbitrary units (a.u).

Figure 2

Distributions of models’ performance. (a) shows RMSE distributions of each individual models and (b)
the models computed on the whole group. Within boxplot midline represents the median of the
distribution. All of them are compared to the dose-response (DR) model.



Figure 3

Modelled performance of a representative subject. Solid and dashed lines represent the DR model and the
two most generalisable models on both training and evaluation data set, separated by the vertical solid
line (80% and 20% of the total data respectively). Fitted parameters of the DR model were k1 = -2.45e-05,
k3 = -2.58e-09, τ1 = 39, τ2 = 26, τ3 = 5. Hyper-parameters of the PCR and ENET models were n comp = 3
and α = 0.28, λ = 0.02.
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