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Abstract
Purpose: Prediction of primary treatment failure (PTF) is necessary for patients suffering from diffuse large B-cell lymphoma
(DLBCL), since it serves as a prominent means for enhancing front-line outcomes. Utilizing interim 18F-Fluorodeoxyglucose
(FDG) positron emission tomography and computed tomography (PET/CT) image data, we aimed to construct multimodal deep
learning (MDL) models to predict possible PTF of low-risk DLBCL, which could enable individualized treatment decision-making
in clinical practice.

Methods: From June 2016 to November 2020, 205 DLBCL patients undergoing interim 18F-FDG PET-CT scans and the front-line
standard-of-care were enrolled. We also collected other 44 patients for the external validation. We built a powerful backbone by
redesigning the famous visual recognition network named Conv-LSTM in aspects of network architecture and learning strategy.
On top of our improved backbone, multiple MDL models using different feature fusion strategies were developed and compared,
including pixel intermixing model, separate channel model, separate branch model, quantitative weighting model, and hybrid
learning model. Moreover, we proposed to use a contrastive training objective in the above best model to enhance the modal
correlation of semantic embeddings for further improving prediction performance. For visualization, the region of interest was
instructed using an activation map.

Results: The MDL model using the hybrid learning strategy provided the best performance in predicting possible PTF with the
accuracy of 89.76% (95% con�dence interval [CI]: 84.85%–93.20%) in the test cohort. After further optimized by contrastive
objective training, the accuracy was improved to 91.22% (95% CI: 86.55%–94.37%). The AUCs of contrastive hybrid learning
achieved 0.926 and 0.925 in the test cohort and external validation cohort, respectively.

Conclusion: Our model showed outstanding performance for predicting PTF of low-risk DLBCL and hold promise of improving
clinical individualized treatment strategies.

1. Introduction
Diffuse large B-cell lymphoma (DLBCL) is the most frequently observed histologic subtype of lymphoma that is particularly
prevalent in Asia [1]. Patients typically present with progressive mass involving lymph nodes and extranodal sites. Currently, over
60% of patients with DLBCL are cured after front-line standard-of-care R-CHOP (rituximab, cyclophosphamide, doxorubicin,
vincristine, and prednisone) chemotherapy [2]. Nevertheless, as high as 15% patients undergoing this chemotherapy experience
primary treatment failure (PTF) limiting their median survival time to one year at most [3]. As a remedy to this problem, novel
emerging therapies, such as chimeric antigen receptor T-cell, were proposed. These therapies show high response rates in
relapsed/refractory DLBCL [4] and bene�t patients at high risk for PTF towards R-CHOP. Ideally, it is necessary to identify these
high-risk patients before ordering them to receive individualized therapies.

Although the revised international prognostic index (R-IPI) and the presence of TP53 mutation are effective in predicting long-
term survival among DLBCL patients, they cannot identify those patients likely to experience PTF [5, 6]. With the development of
medical imaging, 18F-Fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT) emerged
as an effective tool that assists in the diagnosis, staging, prognosis, and predicting treatment response in oncology [7–9]. As a
prognostic marker in DLBCL, quantitative analysis of initial and interim diagnostic imaging has been recently proposed. Kahle et
al. [10] conducted a semi-quantitative analysis of 18FDG-PET scans to investigate differences in the presence of necrosis
between DLBCL cases with or without a MYC gene rearrangement. Similarly, Schöder et al. [11] utilized 18FDG-PET scans at
baseline, interim, and end of treatment (EoT) to identify biomarkers of response that are predictive of remission and survival.
Recently, Santiago et al. [12] built a CT-based radiomics approach that utilizes random forest (RF) machine learning for
predicting refractory DLBCL. Senjo et al. [13] measured metabolic heterogeneity using 18FDG-PET/CT to predict a worse
prognosis. These studies indicated the potential value of texture analysis of both PET and CT scan, which is correlated well with
patient survival. Combining the metabolic information of PET scan to the anatomic features of CT scan in lymphoma
investigations provides sparse results, albeit these results are possibly of some added value in predicting outcomes [14, 15].
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However, diagnostic imaging is routinely used for staging purposes, and few conventional radiological �ndings have been
correlated with PTF in DLBCL [16].

Radiomics has been widely used to correlate feature information from medical images to disease outcome including overall
survival and tumor metastasis [17]. Traditional radiomics studies generally involve three steps: (1) the manual delineation of
regions of interest (ROIs), (2) the quantitative extraction of hand-crafted radiomic features (i.e., shape, intensity, and texture)
from ROIs, and (3) multivariate statistical analysis based on support vector machine (SVM) or RF to determine the correlation
[18]. Many studies have presented effective prediction approaches and obtained important conclusions regarding outcomes in
oncology. Aerts et al. [19] found a multitude of radiomic features with prognostic power in independent datasets concerning
patients of lung and head-and-neck cancers. Seidler et al. [14] utilized machine learning assisted-texture analysis of dual-energy
CT to distinguish metastatic head and neck squamous cell carcinoma lymph nodes from lymphoma, in�ammatory, or normal
lymph nodes. However, these radiomic-based methods were usually time consuming and labor intensive with a semiautomatic
work�ow depending on hand-crafted features. Therefore, an automatic approach for learning adequate information from
medical image data in a way that exceeds human capabilities is needed.

Despite the prior progress made, there are still two challenges in PET/CT-based multimodal data analysis for predicting PTF in
lymphoma. (1) DLBCL lesions are characterized by obvious heterogeneity, and thus designing an appropriate model for
complementary feature learning may further enhance prediction accuracy at EoT. To describe high-level semantic features of
PET/CT, a multimodal deep learning (MDL) model is needed; such an approach could improve both the investigation of PET and
CT complementary characteristics and the interpretation of treatment outcomes. Unfortunately, prior deep learning-based studies
on multimodal medical image analysis mostly adopted simple input-level concatenating [20, 21] or output-level averaging [22] as
the learning approach of complementary features, and some subtle structural information may be lost in these approaches. (2)
On the other hand, image volume has a special 3D structure regarded as a sequence of 2D consecutive slices in many medical
analysis [23–25]. Inter-slice context differentiated from intra-slice semantic information is memorized and propagated along the
z axis. Opposite to the model with isotropic fully connection after convolution, Donahue et al. [26] combined long-range temporal
recursion to convolutional layers and enabled a novel end-to-end model named Conv-LSTM for optimized feature mapping and
better visual description. This study brought a new inspire in medical image volume processing, but the above limitation is often
ignored in constructing a deep learning model specialized in diagnosis, staging, and outcome prediction.

A reliable model to predict PTF in low-risk DLBCL would guide treatment optimization, thereby improving e�cacy and long-term
survival. Therefore, we built a powerful backbone by redesigning the Conv-LSTM and further developed and validated multiple
MDL models using different feature fusion strategies based on 18F-FDG PET/CT data, including the pixel intermixing model,
separate channel model, separate branch model, quantitative weighting model, and hybrid learning model. The model with the
best performance was ultimately trained by a contrastive training objective so as to attain the best accuracy. According to what
we know, our current investigation of PTF prediction in DLBCL patients is the �rst such investigation that uses the PET/CT-based
MDL approaches. Our results indicate that prediction of the best accuracy to date has been achieved by the present hybrid
learning model that employs contrastive objective training. Apparently, our work is capable of securing a noninvasive and
accurate method that indicates possible PTF before EoT and promotes DLBCL individualized treatment strategies.

2. Materials And Methods
Patients and dataset

All patients were collected from Ruijin Hospital (Shanghai, China) and were part of a consecutively observational DLBCL cohort
from June 2016 to November 2020, in accordance with the declaration of Helsinki. For this retrospective study, we �rst analyzed
18F-FDG PET/CT data of 205 patients with de novo histologically con�rmed DLBCL according to the World Health Organization
2016 classi�cation, of no more than one risk factor according to IPI. A complete �ow of data collection is shown in Fig. 1. We
excluded patients who (a) underwent surgical resection of all tumor lesions before immunochemotherapy and included all
patients in this frame who (b) had available interim 18F-FDG PET/CT examination images after (c) receiving R-CHOP regimen,
(d) with de�nite treatment outcome at EoT. Prior to analysis, the patients were divided into two groups for comparison: PTF and
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non-PTF DLBCL. A total of 20 refractory patients, assigned to the PTF group, were de�ned by progression of disease during R-
CHOP, or failure to achieve a complete response (CR) after at least 4 cycles. In the non-PTF group, 185 patients achieved
complete metabolic response at EoT without relapse within 6 months of therapy. Treatment response was evaluated according
to standardized criteria for non-Hodgkin lymphoma [27]. For model development, the patients were randomly divided into three
subsets for training, validation, and test at a ratio of 3:1:1. Following the inclusion criteria of this study, we also supplemented 44
patients from January 2021 to July 2021 for the external validation. In addition, detailed clinical characteristics of all patients
were collected, including age (median with interquartile rang [IQR]), its range (≤ 60 years versus > 60 years), gender, IPI (0 versus
1), stage (I–II versus III–IV), eastern cooperative oncology group (ECOG) performance status (0 versus 1), serum lactate
dehydrogenase (LDH) level (normal versus elevated), extra-lymphatic involvement, and B-symptoms.

Image acquisition and preprocessing

Image data were acquired from a PET/CT scanner (GE Healthcare, Waukesha, Wisconsin, USA) with the reconstruction method
of ordered subset expectation maximization. Each sample contained one CT volume with the resolution of 512 × 512 pixels at
0.98 mm × 0.98 mm and one PET volume with the resolution of 128 × 128 pixels at 5.47 mm × 5.47 mm. Both volumes were
reconstructed with the same number of slices, and the inter-distance was 3.27 mm. A standard routine in the �rst step of dual-
modal image preprocessing was a rigid-body registration to eliminate the misalignment in coordinate spaces between PET and
CT volumes [28, 29]. Next, the aligned image data were rescaled to the same resolution of 64 × 64 × 32 pixels using bicubic
interpolation to reduce computational burden and facilitate model training. Furthermore, PET data were normalized by a
transformation to the standard uptake value (SUV); this process was based on the radionuclide total dose of FDG and the weight
of each patient [30].

MDL model developing

An overview of our framework for PTF-DLBCL prediction is shown in Fig. 2. The starting point of our model is Conv-LSTM [26], a
classic deep learning architecture for natural image recognition and description, that has been recently applied to medical image
analysis such as emphysema pattern classi�cation in CT scans and achieved superior performance over traditional radiomics
approaches [25]. The powerful network backbone for our model (Fig. 2a) was built from a redesigned Conv-LSTM in aspects of
network architecture by constructing two identical encoders for PET and CT data, respectively. To extract hidden image features
of input data, four blocks of convolution and pooling operations were conducted. Then, with the introduction of recursive
learning framework, it had a structure called “long-short term memory” (LSTM) [31, 32], which performed simple learned gating
functions to allow learning parameters to be updated or reset. Above extracted features were concatenated into a sequence,
which was then transformed by the LSTM into a composite feature vector for the sample. Thanks to it, complex and
heterogeneous information of input data were derived to high-level semantic features re�ecting intra-slice spatial structures and
inter-slice contextual correlations. The output of the model was a set of two continuous variables representing the prediction
probability (on the scale of 0.0 to 1.0) for each category and was treated as a discrete probability distribution. The �nal
prediction was calculated as the probability-weighted average of the categories rounded to the nearest integer.

On top of above improved backbone, multiple MDL models using different feature fusion strategies were developed and
compared (Fig. 2b), including the pixel intermixing model (I), separate channel model (II), separate branch model (III),
quantitative weighting model (IV), and hybrid learning model (V). The �rst model (I) is the only input-level kind distinguished
from other feature-level fusion approaches. Here, a PET slice and its corresponding CT slice were integrated as one input image
via pixel intermixing for single-branch encoding [33]. Second (II), PET and CT data were read into one encoder by separate
channels and were simply concatenated after the �rst group of convolution and pooling operations [34]. As for the third model
(III), the output feature maps from PET and CT separate encoding branches were concatenated before fed into the following
LSTM predictor [35]. Forth (IV), the model learned the spatial contribution of feature maps from PET and CT encoders by a
quantitative weighting strategy which calculated the convolutional result as a weighted matrix [36]. In the last model (V), PET
and CT features extracted from two identical encoders were combined by the hybrid learning approach, a modal fusion method
we published before [37], which generated spatial fusion maps and quanti�ed the contribution of complementary information.
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These fusion maps were then concatenated with speci�c-modality (i.e. PET and CT) feature maps to obtain a representation of
the �nal-fused feature maps in different scales.

To achieve a better performance, we further aimed to promote the intra-class cohesion and inter-class separation of the
semantic embeddings of PTF and non-PTF cases. Thus, we adopted the contrastive learning [38] in the hybrid learning model to
achieve that goal. Speci�cally, a cross-entropy of the prediction and ground truth (Fig. 2c) was integrated with a contrastive
training objective (Fig. 2d) derived from the similarity between a pair of samples to generate the overall loss function. Trained in
this way, the contrastive hybrid learning model (VI) will be enhanced because the same class lay close to each other regardless
of the modal heterogeneity of data source domain, and away from those in different classes. Details of constructing the overall
training objective were described in Sec. 1 of the supplementary materials.

Model implementation and visualization

We implemented MDL models using TensorFlow 1.14 [39] on a machine running Windows 10 with CUDA 10.0 and cuDNN 7.6
[40]. Model training was performed on an 11 GB NVIDIA GeForce RTX2080 Ti. Our python code can be found at
https://github.com/cyuan-sjtu/MDL-model. With an eye of reducing the over�tting impact, we employed the data enhancement
strategy in training the data of each-fold cross validation experiment, wherein we included random horizontal and vertical
�ipping of the input images. To establish appropriate training parameters, we employed the values of 0.1, 0.01, and 4,
respectively for the parameters of the regularization factor, the learning rate, and the batch size. We used Sec. 2 of the
supplementary materials to present detailed architecture parameters built in the MDL models.

For each sample, model attention can be visualized for physician comprehension and validation. Here, focused regions of
hidden-layer feature maps were instructed in the form of rough location heat map [41], which highlighted the entry area of
prediction targets and interpreted the explanatory nature of such models about what kinds of features contributed to outputs.
Through this way, complex features that passed deep convolutional and pooling layers were projected on the original input
image.

Statistical analysis

To reveal the difference between clinical characteristics of the PTF group and the non-PTF one, we utilized the statistical
package SPSS version 22.0 for various aspects of univariate analysis, including Mann-Whitney U test for numerical variables
and Pearson’s chi-squared test and, if necessary, Fisher’s exact tests for categorical variables. Here, p-values of < 0.05 were
considered as usual to be statistically signi�cant. Prediction results were drawn from a 5-fold cross-validation, where samples of
dataset 1 were divided into three cohorts for training, validating, and testing of models at ratios of 3:1:1. Samples of dataset 2
were only tested for external validation. The main metrics used to evaluate the model performance were accuracy as well as
sensitivity (True Positive Rate [TPR]), speci�city (True Negative Rate [TNR]), and the positive and negative predictive values (PPV
and NPV). Sec. 3 of the supplementary materials lists the speci�c formulas for these evaluation metrics. Corresponding 95%
con�dence intervals (CIs) of the various variables were calculated based on the Wilson score interval. In addition, we plotted the
confusion matrices and calculated the area under the receiver operating characteristic curves (AUCs) to assess the
discrimination ability and predictive accuracy of multiple MDL models. Moreover, we compared the AUCs of various MDL
models utilizing the Delong test.

3. Results
Baseline clinical characteristics

From June 2016 to November 2020, 205 low-risk DLBCL patients (median age: 55.00 years, 95 females, 110 males) were
collected for model development and assigned to the primary dataset. Besides them, the data of 44 patients (median age: 54.50
years, 23 females, 21 males) were included for prospective validation and assigned to the external dataset. Table 1 displayed the
baseline characteristics of patients in the primary and external dataset. The PTF rates were 9.76% (20/205) and 9.10% (4/44),
respectively, showing a similarity between the two datasets. The percentages of PTF patients and non-PTF patients who



Page 6/16

possessed one IPI risk factor each were 95.00% and 54.05% (100/185), respectively, which demonstrates the existence of a
signi�cant difference between the two cohorts in the primary dataset (p < 0.001).

Performance comparison of MDL models

The prediction performances of MDL models in the test cohort and external validation cohort were listed in Table 2. All four MDL
models using feature-level fusion strategies (separate channel model, separate branch model, quantitative weighting model, and
hybrid learning model) provided better accuracy than the pixel intermixing model in the test and external validation cohorts, the
only one using input-level fusion strategy. Due to the class imbalance between PTF and non-PTF patients, PPVs of all MDL
models were relatively low, which we still considered as a meaningful result. Overall speaking, the hybrid learning model
achieved the best performance among all evaluation metrics (sensitivity = 65.00% [95% CI: 43.29–81.88%], speci�city=92.43%
[95% CI: 87.70–95.44%], accuracy=89.76% [95% CI: 84.85–93.20%], PPV=48.15% [95% CI: 30.74–66.01%], and NPV=96.07%
[95% CI: 92.11–98.08%]) in the test cohort for predicting PTF. This indicated that the hybrid learning feature fusion strategy
increased both the ratio of true positives to false positives and that of true negatives to false negatives. Fig. 3 shows that the
AUC was 0.837 in the test cohort and 0.869 in the external validation cohort. Although the quantitative weighting model achieved
a better AUC of 0.844 in the test cohort, we have taken the external validation cohort for the most important indicator, and,
therefore, we integrated the contrastive training objective with the hybrid learning model and established the contrastive hybrid
learning model.

The contrastive hybrid learning model achieved AUCs of 0.926 and 0.925 in the test cohort and the external validation cohort,
respectively. In addition, the Delong test demonstrated that the AUC of this model was signi�cantly better than that of each of
the pixel intermixing model (p < 0.001), separate channel model (p < 0.05), separate branch model (p < 0.05), and quantitative
weighting model (p < 0.05) in the test cohort. Quantitative comparisons of other �ve evaluation metrics are exhibited in Table 2.
Compared with the quantitative weighting method, which has shown good performances in computer aided diagnosis [36], its
predictive accuracy, sensitivity, speci�city, and predictive values were all improved. In addition, the normalized confusion
matrices of all MDL models in distinguishing PTF from non-PTF in the test cohort were shown in Fig. 4. Notably, the contrastive
hybrid learning model achieved continuous improvements in the overall sensitivity for PTF groups, as indicated from sub�gure
4a to 4f.

Interpretability of MDL models

For each sample, model attention can be visualized for clinical comprehension and validation. Here, we aimed to understand
which areas of input images and what kinds of features contributed to the prediction. Fig. 5 shows input PET/CT images and
the heat maps of corresponding locations for three patients randomly chosen from the test cohort, which demonstrates the
existence of a common pattern that is consistently shared among all samples. The contrastive hybrid learning model paid great
attention (highlighted in red) to the structure of lesion from physiological uptake interference of the heart and bones. This
suggested that this model actively sought tumor lesion distribution areas to classify PTF and non-PTF. Notably, anatomic
features derived from CT-modality data were meaningful, even though radiologists mostly referred PET information in clinical
diagnosis. In addition, the compared models viewed different lesion adjacent areas for the same patient, a discrepancy which
explains why these models differed in the prediction performance attained by each of them. Speci�cally, the heat map of the
contrastive hybrid learning model contained more gradient attention on speci�c regions related to tumor-self, except necrosis
and peripheral in�ammation [42].

4. Discussion
The prediction of PTF for DLBCL patients has been a prominent challenge facing clinicians for a long time. In this work, we
developed and validated a deep learning model that learned complementary high-level semantic features from interim 18F-FDG
PET/CT images and achieved individualized and noninvasive prediction of PTF in patients with low-risk DLBCL at EoT. The
major �ndings of our experiments covered the following issues: (1) As far as we know, our work is a seminal pioneering one,
apparently the �rst that applies the MDL approach on interim PET/CT images acquired from DLBCL patients for predicting PTF.
(2) The prediction performance of the present MDL model, based on both the incorporation of hybrid learning feature fusion
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strategy and the enhancement of contrastive training objective, signi�cantly outperformed (almost all AUCs, p < 0.05) other
models using different feature fusion strategies in ablation comparisons. (3) Our work provides solid evidence that the
contrastive hybrid learning approach on PET/CT images secured an effective method for the prediction of PTF and the
strati�cation of risk for patients suffering from DLBCL.

From the clinical point of view, the tumor involvement changes calculated from pathological FDG uptake in PET imaging can
indicate possible PTF, but its use remains limited because of its dependence on data both prior to and after treatment [43].
Moreover, the identi�cation of CT parameters in the tumor region has been demonstrated to be an effective discrimination
technique for predicting the PTF of different carcinomas [14, 15]. However, present models on extracting and combining invisible
imaging features of PET and CT are not still adequate for predicting PTF of DLBCL. In the current work, we proposed several
MDL models based on 18F-FDG PET/CT to predict PTF, and we investigated ways of fully utilizing the PET/CT data so as to
achieve the best performance. Compared with using the input-level fusion strategy for identifying PTF of DLBCL, other MDL
models with various feature-level fusion strategies actively indicated more accurate tumor involvement areas in PET/CT images.
The hybrid learning model demonstrated particularly outstanding predictive performance for PTF, as it effectively integrated PET
metabolic features with corresponding CT anatomic features.

By optimizing the hybrid learning model with the contrastive training objective enhancement, the proposed contrastive hybrid
learning model signi�cantly outperformed all the other MDL prediction models in AUC (almost all, p < 0.05). By contrast, the
quantitative weighting model implemented the convolutional result from a fusion unit as a weighted matrix that was then
multiplied by the PET and CT feature maps [36]. Element multiplication was used to encompass the level of importance given to
information from each modality, although it considerably weakened the natural characteristics of each modality. The separate
branch strategy was widely used in medical data analysis especially with different-class information [35]. As shown in Table 2,
the separate branch model was second to the quantitative weighting model in terms of sensitivity, speci�city, and AUC. It
included a layer-level fusion strategy based on simple concatenation and then applied prediction layers. Thus, some useful
information associated with complementary features may be lost. In addition, the separate channel model combined the PET
and CT images resulting after the �rst convolutional layer to derive fused feature maps [34], which led to lopsided attention to a
modality with dominant pixel strength. The pixel intermixing strategy was used to construct a type of early fusion model [33].
Here, the PET and CT images were initially fused via pixel intermixing and the intermixed images were used as model inputs.
This approach shared a similar weakness with the separate channel model, and such a limitation reduced the prediction
accuracy.

To interpret the MDL model, we visualized the ROIs of network by generating rough location heat maps. The activated areas in
the heat map were found to be primarily located in the tumor lesion and its surrounding areas according to several MDL models.
All these areas were consistent with the predictive region observed by experienced radiologists. Notably, the contrastive hybrid
learning model paid more precise attention meanwhile avoiding interference of physiological uptake. These common patterns
served as a clue for the working principle of MDL models for analyzing PET/CT data.

Although our results are de�nitely promising, our present work has a few limitations, thereby leaving room for several future
improvements. First, this work is a retrospective study that is based on a relatively small sample size, especially on positive
samples. Although large numbers of PET-CT scans are di�cult to obtain, the addition of in-house data would de�nitely be of
paramount importance to the current work. We are actively working on this task. Notably, after calibration and targeted
optimization, deep learning models would have the natural advantages of stability, repeatability, and ease of migration. As more
PET/CT images from other institutions are supplemented for model developing, our MDL model is quite likely to be applied to
data from different institutions and would achieve better generalizing capabilities. Second, to indicate accurate PTF for planning
personalized treatments, the sensitivity and accuracy should be very high. Thus, the MDL model provided a reference result but
not a direct decision for clinical practice, given the need for a su�ciently high PPV and prospective validation. Finally, we did not
consider other possible prognostic factors. We suggest that integrating biologic markers including blood biomarkers and
pathological and genetic features, may improve the accuracy and robustness of our model.

5. Conclusions
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Our work developed several MDL models, and the best model integrated hybrid learning strategy with contrastive training
objective enhancement that exhibited satisfactory performance in predicting PTF for patients suffering from DLBCL. It enabled
complementary information generation and feature adaptation in multimodal learning. Adequate performance in ablation
experiments proved the effectiveness and superiority of the contrastive hybrid learning model. In addition, it is end-to-end
trainable and avoids the need for radiomics experience and time-consuming manual delineations. Therefore, it provides a proof-
of-concept for multimodal data analysis and further helps clinicians for individualized decision-making in DLBCL clinical
practice.
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Tables
Table 1. Baseline clinical characteristics of the primary and external dataset

Variable Primary dataset (n=205) p-value External dataset (n=44) p-
value

  non-PTF
(n=185)

PTF (n=20)   non-PTF (n=40) PTF (n=4)  

Age (y), median (IQR) 55.00 (45.50–
63.00)

57.50 (42.00–
62.75)

0.671a 54.50 (44.25–
62.25)

49.50 (40.75-
59.00)

0.653 a

Age range     0.162b     0.559 b

≤ 60 years 130 (70.27%) 11 (55.00%)   30 (75.00%) 4 (100.00%)  

> 60 years 55 (29.73%) 9 (45.00%)   10 (25.00%) 0 (0.00%)  

Gender     0.284 b     0.335 b

Female 88 (47.57%) 7 (35.00%)   22 (55.00%) 1 (25.00%)  

Male 97 (52.43%) 13 (65.00%)   18 (45.00%) 3 (75.00%)  

IPI     <0.001 b     1.000 b

 0 85 (45.95%) 1 (5.00%)   19 (47.50%) 2 (50.00%)  

1 100 (54.05%) 19 (95.00%)   21 (52.50%) 2 (50.00%)  

Stage     1.000 b     1.000 b

I–II 174 (94.05%) 19 (95.00%)   33 (82.50%) 2 (50.00%)  

III–IV 11 (5.95%) 1 (5.00%)   7 (17.50%) 2 (50.00%)  

ECOG performance
status

    0.293 b     1.000 b

0 163 (88.11%) 16 (80.00%)   35 (87.50%) 4 (100.00%)  

1 22 (11.89%) 4 (20.00%)   5 (12.50%) 0 (0.00%)  

LDH level     0.543 b     1.000 b

Normal 152 (82.16%) 15 (75.00%)   36 (90.00%) 4 (100.00%)  

Elevated 33 (17.84%) 5 (25.00%)   4 (10.00%) 0 (0.00%)  

Extra-lymphatic
involvement

76 (41.08%) 4 (20.00%) 0.066 b 24 (60.00%) 2 (50.00%) 1.000 b

B-symptoms 23 (12.43%) 3 (15.00%) 0.725 b 2 (5.00%) 0 (0.00%) 1.000 b

https://doi.org/10.1007/s11307-019-01411-9
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a Mann-Whitney U test, b Pearson’s chi-squared test, if necessary, Fisher’s exact test.

Note that data are number of patients; data in parentheses are percentage.

Table 2. The performance comparison of multiple MDL models

Models Cohorts Sensitivity (%) Speci�city (%) Accuracy (%) PPV (%) NPV (%) AUC

Model I

Pixel
intermixing

Test 40.00

(21.88–61.34)

86.49

(80.81–90.68)

81.95

(76.11–86.61)

24.24

(12.83–41.03)

93.02

(88.20–95.96)

0.774

External
validation

50.00

(15.00–85.00)

77.50

(62.50–87.68)

75.00

(60.56–85.43)

18.18

(5.14–47.70)

94.00

(80.39–98.32)

0.688

Model II

Separate
channel

Test 45.00

(25.82–65.79)

87.03

(81.42–91.13)

82.93

(77.18–87.46)

27.27

(15.07–44.22)

93.60

(88.91–96.39)

0.794

External
validation

50.00

(15.00–85.00)

85.00

(70.93–92.94)

81.82

(68.04–90.49)

25.00

(7.15–59.07)

94.44

(81.86–98.46)

0.706

Model III

Separate
branch

Test 50.00

(29.93–70.07)

90.27

(85.15–93.76)

86.34

(80.97–90.38)

35.71

(20.71–54.17)

94.35

(89.91–96.90)

0.810

External
validation

50.00

(15.00–85.00)

85.00

(70.93–92.94)

81.82

(68.04–90.49)

25.00

(7.15–59.07)

94.44

(81.86–98.46)

0.725

Model IV

Quantitative
weighting

Test 45.00

(25.82–65.79)

91.35

(86.41–94.61)

86.83

(81.52–90.79)

36.00

(20.25–55.48)

93.89

(89.39–96.55)

0.844

External
validation

50.00

(15.00–85.00)

87.50

(73.89–94.54)

84.09

(70.63–92.07)

28.57

(8.22–64.11)

94.59

(82.30–98.50)

0.766

Model V

Hybrid
learning

Test 65.00

(43.29–81.88)

92.43

(87.70–95.44)

89.76

(84.85–93.20)

48.15

(30.74–66.01)

96.07

(92.11–98.08)

0.837

External
validation

75.00

(30.06–95.44)

87.50

(73.89–94.54)

86.36

(73.29–93.60)

37.50

(13.68–69.43)

97.22

(85.83–99.51)

0.869

Model VI

Contrastive
hybrid
learning

Test 70.00

(48.10–85.45)

93.51

(89.01–96.25)

91.22

(86.55–94.37)

53.85

(35.46–71.24)

96.65

(92.88–98.45)

0.926

External
validation

75.00

(30.06–95.44)

90.00

(76.95–96.04)

88.64

(76.02–95.05)

42.86

(15.82–74.95)

97.30

(86.18–99.52)

0.925

Comparison between the contrastive hybrid learning model and other models using Delong test

Compared
method

    Model I Model II Model III Model IV Model
V

Test cohort     < 0.001 0.006 0.020 0.028 0.051

External
validation
cohort

    0.030 0.021 0.054 0.018 0.088
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The best metrics are shown in the bold numbers. Numbers in parentheses are 95% con�dence intervals.

Figures

Figure 1

The complete �ow of data collection.
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Figure 2

The work�ow of MDL models based on PET/CT for predicting primary treatment failure (PTF) of patients suffering from diffuse
large B-cell lymphoma (DLBCL). Legend is shown in the bottom right corner.
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Figure 3

Receiver operating characteristic (ROC) curves of compared MDL models for predicting PTF of low-risk DLBCL. a Test cohort. b
External validation cohort.

Figure 4

Confusion matrices of compared MDL models for predicting PTF of low-risk DLBCL in the test cohort.
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Figure 5

Visualization of three PTF-DLBCL patient examples. The activated regions are presented in red with a larger weight, which can
be decoded by the color legend on the right.
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