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Abstract: Upon detecting pathogens or cell stress, several NOD-like receptors (NLRs) form 

inflammasome complexes with the adaptor ASC and caspase-1, inducing activation of IL-1β and 

IL-18, and gasdermin D-dependent cell death. The triggers and activation mechanisms of several 

inflammasome-forming sensors remain poorly understood. Here, we found that mitochondrial 

damage activates the NLRP10 inflammasome, leading to ASC speck formation and caspase-1-

dependent cytokine release. Unlike AIM2, NLRP10 monitors mitochondrial integrity in a 

mitochondrial DNA-independent manner, suggesting the detection of distinct molecular entities 

displayed by the damaged organelles. NLRP10 is highly expressed in differentiated human 

keratinocytes, where it also senses mitochondrial damage. Our study reveals a novel 

inflammasome that surveils mitochondrial integrity, which could lead to further understanding of 

inflammatory diseases. 

 

One-Sentence Summary: NLRP10 senses mitochondrial damage and forms an inflammasome in 

a mitochondrial DNA-independent manner. 
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Main Text: 

 

Inflammasomes are protein complexes that bridge the recognition of pathogens and sterile cell 

damage to gasdermin D-mediated pyroptotic cell death and initiate IL-1b-driven inflammation (1). 

Due to aging and metabolic dysfunction or gain-of-function mutations, chronic inflammasome 

activation can contribute to a broad spectrum of inflammatory diseases (2). Therefore, members 

of this family of innate immune receptors represent possible targets for pharmacological 

intervention (3). 

 

Most inflammasome-forming sensors belong to the NACHT, LRR, and PYD domain-containing 

(NLRP) protein family. Their LRR domains take part in recognizing perturbations of key cellular 

processes and microbe- or stress-associated ligands (4). The roles of several NLRP family 

members and the signals that activate them are incompletely characterized, impeding our 

understanding of disease pathogenesis and productive drug development. 

 

We examined inflammasome activation by m-3M3FBS, a reported PLC agonist (5) that has been 

linked to activation of the NLRP3 inflammasome (6, 7). We confirmed that m-3M3FBS treatment 

leads to an inflammasome-driven response in an ASC- and caspase-1-dependent manner (Fig. 1A 

and fig. S1, A and B) but found no evidence that this process is mediated by NLRP3 (Fig. 1B and 

fig. S1, C-G), in contrast to the canonical NLRP3 activator nigericin. Expression of NLRP10, but 

not other NLRP proteins, enabled ASC speck formation in m-3M3FBS-treated HEK cells with a 

fluorescent ASC reporter (Fig. 1C). This NLRP10-mediated inflammasome response was specific 

to m-3M3FBS, as nigericin and the AIM2 inflammasome activator poly-(dA:dT) did not cause 

ASC speck formation in NLRP10 reporter cells (fig. S2). 

 

To determine the upstream signal for NLRP10 activation, we tracked the subcellular localization 

of fluorescently tagged NLRP10. NLRP10 was a soluble cytosolic protein in resting cells, but it 

translocated to punctate structures in m-3M3FBS-treated cells (Fig. 1D). These puncta partially 

colocalized with the mitochondrial marker TOMM20 (Fig. 1E) but not with other organelle 

markers (fig. S3). Scanning transmission electron microscopy of m-3M3FBS-treated cells revealed 

profound morphological changes of mitochondria (Fig. 1F), consistent with mitochondrial 

permeability transition (mPT) (8). This damage was reflected by cytosolic leakage of 

mitochondrial matrix-targeted mCherry reporter (Fig. 1G), whose subcellular distribution showed 

a rapid loss of granularity, which coincided with NLRP10-driven ASC speck formation (Fig. 1H). 

Notably, the mitochondrial events and NLRP10 activation in m-3M3FBS-stimulated cells were 

not linked to Ca2+ fluxes (fig. S4). 

 

m-3M3FBS-induced mitochondrial rupture and inflammasome activation also occurred in 

macrophages (Fig. 2A), which do not express NLRP10 (9-12), suggesting that another sensor is 

involved. Indeed, we found that, in this cell type, m-3M3FBS triggers AIM2 (Fig. 2B). 

Furthermore, two other mitochondria-targeting molecules, thapsigargin (Fig. 2B and fig. S5, A-C) 

(13) and SMBA1 (fig. S5, D and E) (14), triggered AIM2 inflammasome activation in 

macrophages. In agreement with their mitochondria-damaging activity, thapsigargin and SMBA1 

also elicited NLRP10 translocation to TOMM20-positive mitochondria and induced NLRP10-

driven ASC speck formation in HEK cells (fig. S5, F and G). 

 



Submitted Manuscript: Confidential 

4 

 

It was previously shown that AIM2 can sense mitochondrial DNA (mtDNA) (15). Consistently, 

m-3M3FBS- and thapsigargin-mediated AIM2 activation depended on mtDNA in macrophages 

(Fig. 2C and fig. S6A). In contrast, m-3M3FBS- and thapsigargin-driven NLRP10 activation was 

independent of mtDNA in NLRP10-expressing AIM2-deficient macrophages (Fig. 2C), 

suggesting a new mechanism for the detection of mitochondrial damage. These data were 

corroborated in HEK cells expressing NLRP10 (fig. S6, B and C). 

 

We next assessed the mechanism by which the NLRP10 and AIM2 inflammasome-inducing agents 

damage mitochondria. We determined that the mPT inhibitor cyclosporin A (CsA) (13, 16-18) 

selectively blocked mitochondrial rupture and AIM2 inflammasome activation in thapsigargin- 

and SMBA1- but not m-3M3FBS-treated macrophages (Fig. 2D and fig. S7, A and B). Similarly, 

CsA blocked mitochondrial damage and NLRP10-mediated ASC speck formation in HEK cells 

(Fig. 2E and fig. S7, C and D). These findings suggest that NLRP10 and AIM2 are activated by 

distinct molecular events downstream of mitochondrial damage. The protection from 

mitochondrial damage coincided with inhibition of ASC speck formation and IL-1b release (fig. 

S8, A-C), corroborating that mitochondrial damage triggers AIM2 and NLRP10 activation. Lastly, 

Debio025 and NIM811, non-immunosuppressive CsA analogs with specific mitoprotective 

activity profiles (19, 20), also inhibited inflammasome responses to thapsigargin, but not to m-

3M3FBS (fig. S8, D-I). 

 

Confirming NLRP10 as an inflammasome-forming sensor, NLRP10 colocalized with ASC in m-

3M3FBS- and thapsigargin-treated cells, but not under resting conditions (Fig. 3A). Neither 

individually expressed PYD or NACHT domains nor Walker A and B mutants of NLRP10 (21) 

enabled inflammasome activation (Fig. 3B), demonstrating that the NLRP10-mediated 

inflammasome response required expression of the full-length protein. Since NLRP10 lacks an 

LRR domain, this suggests that the NLRP10 NACHT domain can sense the molecular entities that 

are exposed or produced upon mitochondrial damage. Moreover, AIM2- and NLRP10-driven IL-

1β secretion was blocked by the caspase-1 inhibitor VX-765 (Fig. 3C), indicating that the NLRP10 

inflammasome engages caspase-1. 

 

NLRP10 is highly expressed in the skin epidermis (22-24). We confirmed that NLRP10 mRNA is 

selectively enriched in terminally differentiated keratinocytes in the stratum granulosum (24) (Fig. 

4A). In keeping with this observation, immortalized N/TERT keratinocytes, which represent the 

stem/progenitor compartment of the epidermis, did not display pyroptotic cell death morphology 

(Fig. 4B) or secrete cleaved IL-1β after m-3M3FBS treatment (Fig. 4C). This is consistent with 

low NLRP10 expression at the endogenous level. NLRP10 overexpression in N/TERT cells was 

sufficient to induce pyroptosis (Fig. 4B) and other hallmarks of inflammasome activation in 

response to m-3M3FBS, including the formation of ASC specks and the release of mature IL-1β 

(Fig. 4C and D).  

 

Next, we found that CaCl2-driven in vitro differentiation of primary human keratinocytes led to a 

strong increase in NLRP10 mRNA expression (Fig. 4E). In line with this observation, N/TERT 

keratinocyte differentiation resulted in overall higher levels of IL-1β released upon m-3M3FBS 

stimulation (Fig. 4F). Western blotting analysis confirmed that CaCl2-induced keratinocyte 

differentiation induces NLRP10 protein expression and enables mature IL-1b secretion in response 

to m-3M3FBS (Fig. 4G). Correspondingly, thapsigargin treatment led to formation of NLRP10 

puncta in differentiated primary human keratinocytes (Fig. 4H). 
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Our study demonstrated that NLRP10 nucleates inflammasomes in cells treated with m-3M3FBS, 

thapsigargin, or SMBA1. In contrast to earlier reports suggesting an inflammasome-inhibitory role 

for NLRP10 (25, 26), which is the only NLRP family member lacking the LRR domain (27), we 

found that NLRP10 is a novel sensor of mitochondrial damage. Our results also emphasize the 

capacity of AIM2 to recognize mitochondrial disruption and mtDNA cytosolic leakage (15). 

 

NLRP10 variants have been associated with an increased risk of atopic dermatitis (AD) (28, 29). 

Therefore, it will be important to address whether the inflammasome-forming activity of NLRP10 

is linked to its role in AD pathogenesis. In further support of the pathophysiological importance 

of NLRP10, a study by Zheng et al. (2021) (30), co-submitted with our work, uncovered a 

protective role of NLRP10 inflammasome activation in colitis. Given the reported involvement of 

NLRP10 in regulating innate immune signaling and transcription of inflammatory molecules (10, 

22, 23), it will be interesting to examine under which conditions NLRP10 behaves as an 

inflammasome and when it exerts other functions, and how this distinction is made. Understanding 

the partial redundancy between NLRP10 and AIM2 as sensors of mitochondrial damage, 

especially in in vivo studies, will be vital for dissecting the individual roles of AIM2 and NLRP10 

in host defense against microbes or sterile inflammatory processes. Such studies will likely reveal 

pathological disease mechanisms in which targeting of NLRP10 may provide a therapeutic benefit. 
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Fig. 1. m-3M3FBS triggers mitochondrial damage and NLRP10 inflammasome activation. 

(A) IL-1β secretion from WT, ASC-deficient, or VX-765-pretreated (40 μM) bone marrow-

derived macrophages (BMDMs), primed with LPS (200 ng/ml) and stimulated with nigericin (10 

μM), poly-(dA:dT) dsDNA (2 μg/ml) or m-3M3FBS (85 μM). (B) IL-1β secretion from WT or 

NLRP3-deficient BMDMs, stimulated as in (A). (C) ASC speck formation of ASCTagBFP HEK 

cells expressing an empty vector (EV) or human NLRP1-7, 9-14, stimulated with increasing doses 

of m-3M3FBS (40, 55, 70, or 85 μM). Data normalized to the untreated control. (D) Confocal 

microscopy of HEK cells expressing NLRP10mCitrine or mCitrine as a separate polypeptide, with or 

without m-3M3FBS (85 μM) treatment. (E) Confocal microscopy of HEK cells stably expressing 

NLRP10mCherry and transfected with TOMM20mCitrine mitochondrial marker, with or without m-

3M3FBS (85 μM) treatment. (F) Electron microscopy of HEK cells, with or without m-3M3FBS 

(85 μM) treatment. (G) Time-lapse microscopy of HEK cells expressing NLRP10, ASCTagBFP and 

mCherry targeted to the mitochondrial matrix (using cytochrome c oxidase subunit 8 
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mitochondrial targeting sequence), with or without m-3M3FBS (85 μM) treatment. Images of the 

same field at treatment onset (0 min) or indicated time points. (H) Quantification of mitochondrial 

fluorescence signal granularity and ASC specks per imaging field. N = 2-4 independent 

experiments; individual data points (where applicable) are means of technical duplicates or 

triplicates; all error bars represent SD.  
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Fig. 2. Mitochondrial permeability transition activates NLRP10 and AIM2 inflammasomes. 

(A) Quantification of mitochondrial fluorescence signal granularity and ASC specks per imaging 

field, based on time-lapse microscopy of iMacs expressing NLRP3, ASCmCerulean and mCitrine 

targeted to the mitochondrial matrix (using cytochrome c oxidase subunit 8 mitochondrial 

targeting sequence), with or without m-3M3FBS (85 μM) treatment. (B) IL-1β secretion from WT, 

NLRP3- or AIM2-deficient BMDMs, primed with LPS (200 ng/ml) and stimulated with nigericin 

(10 μM), poly-(dA:dT) dsDNA (2 μg/ml), m-3M3FBS (72 μM) or thapsigargin (20 μM). (C) IL-

1β secretion from iMacsAIM2-/- overexpressing AIM2 or NLRP10, with or without ethidium 

bromide (EtBr) (75 ng/ml) pre-treatment to deplete mtDNA, LPS-primed and stimulated as in (B). 

(D, E) Quantification of mitochondrial fluorescence signal granularity and ASC specks per 

imaging field, based on time-lapse microscopy of iMacs expressing NLRP3, ASCmCerulean and 

mCitrine targeted to the mitochondrial matrix (D) or HEK cells expressing NLRP10, ASCTagBFP 

and mCherry targeted to the mitochondrial matrix (E). Cells were treated with m-3M3FBS (85 

μM) or thapsigargin (20 μM), with or without cyclosporin A (CsA; 15 μM) pre-treatment. N = 3-

4 independent experiments; individual data points (where applicable) are means of technical 

duplicates or triplicates; all error bars represent SD. 
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Fig. 3. NLRP10 engages ASC and caspase-1 to trigger a canonical inflammasome response. 

(A) Confocal microscopy of HEK cells expressing NLRP10mCherry and ASCmCerulean, with or 

without m-3M3FBS (85 μM) or thapsigargin (20 μM) treatments. (B) IL-1β secretion from 

iMacsAIM2-/- expressing an empty vector (EV), AIM2, NLRP10 (WT), the NLRP10 PYD or 

NACHT domains, or Walker A (K179M) or B (D249N) mutants of NLRP10. Cells were LPS-

primed (200 ng/ml) and stimulated with nigericin (10 μM), poly-(dA:dT) dsDNA (2 μg/ml), m-

3M3FBS (85 μM) or thapsigargin (20 μM). (C) IL-1β secretion from iMacsAIM2-/- expressing AIM2 

or NLRP10, with or without VX-765 (25 μM) pre-treatment, LPS-primed and stimulated as in (B). 

N = 3 independent experiments; individual data points (where applicable) are means of technical 

duplicates/triplicates; all error bars represent SD. 
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Fig. 4. Keratinocyte differentiation drives NLRP10 expression, enabling responses to 

mitochondrial damage. 

(A) RNAscope analysis of human skin stained for dabB (bacterial argininosuccinate lyase; 

negative control), PPIB (peptidyl-prolyl cis-trans isomerase B; positive control) or NLRP10. Note 

that positive RNAscope signal appears as pink puncta. Brown staining is caused by endogenous 

skin pigmentation and should not be confused with positive mRNA signals. (B) Phase-contrast 

microscopy of immortalized N/TERT human keratinocytes, with or without NLRP10 

overexpression, with or without m-3M3FBS (50 μM) treatment. Cells with pyroptotic morphology 
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are indicated by arrows. (C) Western blot analysis of NLRP10 levels, ASC oligomerization, 

gasdermin D (GSDMD) cleavage, pro-IL-1b expression, and mature IL-1b release in immortalized 

N/TERT human keratinocytes, with or without NLRP10 overexpression, stimulated with the 

NLRP1 activator Val-boroPro (VbP) (3 µM), the NLRP10 activator m-3M3FBS (80 µM) or the 

AIM2 agonist poly-(dA:dT) dsDNA (2 µg/ml). (D) Immunofluorescence microscopy of ASC and 

NLRP10 in immortalized N/TERT human keratinocytes overexpressing NLRP10, with or without 

m-3M3FBS (80 µM) treatment. (E) qPCR analysis of NLRP10 mRNA expression in primary 

human keratinocytes, undifferentiated or differentiated for 6 days in medium containing CaCl2 

(0.1-1 mM). (F) IL-1b secretion from undifferentiated or differentiated immortalized N/TERT 

human keratinocytes, stimulated as in (C). (G) Western blot analysis of NLRP10 and pro-IL-1b 

expression, and mature IL-1b release in undifferentiated or differentiated immortalized N/TERT 

human keratinocytes, stimulated as in (C). (H) Immunofluorescence staining, confocal 

microscopy, and NLRP10 speckles quantification of differentiated primary human keratinocytes, 

with or without thapsigargin (20 µM) treatment. N = 2-3 independent experiments; individual data 

points (where applicable) are means of technical duplicates; all error bars represent SD. 
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