1. Pauschinger M, Chandrasekharan K, Noutsias M, Kühl U, Schwimmbeck L, Schultheiss H (2004) Viral heart disease: molecular diagnosis, clinical prognosis, and treatment strategies. Med Microbiol Immunol 193:65-69. https://doi:10.1007/s00430-003-0213-y
2. Kühl U, Pauschinger M, Seeberg B, et al (2005) Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 112:1965-1970. https://doi:10.1161/circulationaha.105.548156
3. Ashwal-Fluss R, Meyer M, Pamudurti N, et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55-66. https://doi:10.1016/j.molcel.2014.08.019
4. Wang F, Nazarali A, Ji S (2016) Circular RNAs as potential biomarkers for cancer diagnosis and therapy. Am J Cancer Res 6:1167-1176.
5. Memczak S, Jens M, Elefsinioti A, et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333-338. https://doi:10.1038/nature11928
6. Wang Y, Pei L, Yue Z, Jia M, Wang H, Cao L (2021) The Potential of Serum Exosomal hsa_circ_0028861 as the Novel Diagnostic Biomarker of HBV-Derived Hepatocellular Cancer. Front Genet 12:703205. https://doi:10.3389/fgene.2021.703205
7. Wang J, Zhang Y, Zhu F, et al (2021) CircRNA expression profiling and bioinformatics analysis indicate the potential biological role and clinical significance of circRNA in influenza A virus-induced lung injury. J Biosci 46.
8. Wu Y, Zhao T, Deng R, Xia X, Li B, Wang X (2021) A study of differential circRNA and lncRNA expressions in COVID-19-infected peripheral blood. Sci Rep 11:7991. https://doi:10.1038/s41598-021-86134-0
9. Zaccara S, Ries R, Jaffrey S (2019) Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20:608-624. https://doi:10.1038/s41580-019-0168-5
10. Hu B, Wang X, Gu X, et al (2019) N-methyladenosine (mA) RNA modification in gastrointestinal tract cancers: roles, mechanisms, and applications. Mol Cancer 18:178. https://doi:10.1186/s12943-019-1099-7
11. Gokhale N, McIntyre A, McFadden M, et al (2016) N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host Microbe 20:654-665. https://doi:10.1016/j.chom.2016.09.015
12. Xiao Y, Yang Y, Hu D (2021) Knockdown of METTL3 inhibits enterovirus 71-induced apoptosis of mouse Schwann cell through regulation of autophagy. Pathog Dis 79. https://doi:10.1093/femspd/ftab036
13. Li N, Hui H, Bray B, et al (2021) METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection. Cell Rep 35:109091. https://doi:10.1016/j.celrep.2021.109091
14. Dai D, Li X, Wang L, et al (2021) Identification of an N6-methyladenosine-mediated positive feedback loop that promotes Epstein-Barr virus infection. J Biol Chem 296:100547. https://doi:10.1016/j.jbc.2021.100547
15. Baron M (2017) Combining genetic and biophysical approaches to probe the structure and function relationships of the notch receptor. Mol Membr Biol 34:33-49. https://doi:10.1080/09687688.2018.1503742
16. Afaloniati H, Karagiannis G, Karavanis E, et al (2020) Inflammation-induced colon cancer in uPA-deficient mice is associated with a deregulated expression of Notch signaling pathway components. Mol Cell Biochem 464:181-191. https://doi:10.1007/s11010-019-03659-9
17. Giunco S, Celeghin A, Gianesin K, Dolcetti R, Indraccolo S, De Rossi A (2015) Cross talk between EBV and telomerase: the role of TERT and NOTCH2 in the switch of latent/lytic cycle of the virus. Cell Death Dis 6:e1774. https://doi:10.1038/cddis.2015.145
18. Arcaini L, Rossi D, Lucioni M, et al (2015) The NOTCH pathway is recurrently mutated in diffuse large B-cell lymphoma associated with hepatitis C virus infection. Haematologica 100:246-252. https://doi:10.3324/haematol.2014.116855
19. Liang Y, Han H, Xiong Q, et al (2021) METTL3-Mediated mA Methylation Regulates Muscle Stem Cells and Muscle Regeneration by Notch Signaling Pathway. Stem Cells Int 2021:9955691. https://doi:10.1155/2021/9955691
20. Guo X, Dai X, Liu J, Cheng A, Qin C, Wang Z (2020) Circular RNA circREPS2 Acts as a Sponge of miR-558 to Suppress Gastric Cancer Progression by Regulating RUNX3/β-catenin Signaling. Mol Ther Nucleic Acids 21:577-591. https://doi:10.1016/j.omtn.2020.06.026
21. Terragni J, Zhang G, Sun Z, et al (2014) Notch signaling genes: myogenic DNA hypomethylation and 5-hydroxymethylcytosine. Epigenetics 9:842-850. https://doi:10.4161/epi.28597
22. Qin L, Zhou Y, Wu H, et al (2017) Notch Signaling Modulates the Balance of Regulatory T Cells and T Helper 17 Cells in Patients with Chronic Hepatitis C. DNA Cell Biol 36:311-320. https://doi:10.1089/dna.2016.3609
23. Jiang B, Liu X, Liu X, Li Z, Zhu G (2017) Notch Signaling Regulates Circulating T Helper 22 Cells in Patients with Chronic Hepatitis C. Viral Immunol 30:522-532. https://doi:10.1089/vim.2017.0007
24. Wei X, Wang J, Hao C, et al (2016) Notch Signaling Contributes to Liver Inflammation by Regulation of Interleukin-22-Producing Cells in Hepatitis B Virus Infection. Front Cell Infect Microbiol 6:132. https://doi:10.3389/fcimb.2016.00132
25. Jakovljevic A, Nikolic N, Carkic J, et al (2020) Notch - a possible mediator between Epstein-Barr virus infection and bone resorption in apical periodontitis. Acta Odontol Scand 78:126-131. https://doi:10.1080/00016357.2019.1658896
26. Shoham N, Cohen L, Yaniv A, Gazit A (2003) The Tat protein of the human immunodeficiency virus type 1 (HIV-1) interacts with the EGF-like repeats of the Notch proteins and the EGF precursor. Virus Res 98:57-61. https://doi:10.1016/j.virusres.2003.08.016
27. Talora C, Sgroi D, Crum C, Dotto G (2002) Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev 16:2252-2263. https://doi:10.1101/gad.988902
28. Esfandiarei M, McManus B (2008) Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol 3:127-155. https://doi:10.1146/annurev.pathmechdis.3.121806.151534
29. Garmaroudi F, Marchant D, Hendry R, et al (2015) Coxsackievirus B3 replication and pathogenesis. Future Microbiol 10:629-653. https://doi:10.2217/fmb.15.5
30. Kawai C (1999) From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation 99:1091-1100. https://doi:10.1161/01.cir.99.8.1091
31. Pinkert S, Dieringer B, Klopfleisch R, et al (2019) Early Treatment of Coxsackievirus B3-Infected Animals With Soluble Coxsackievirus-Adenovirus Receptor Inhibits Development of Chronic Coxsackievirus B3 Cardiomyopathy. Circ Heart Fail 12:e005250. https://doi:10.1161/circheartfailure.119.005250
32. Jia G, Fu Y, He C (2013) Reversible RNA adenosine methylation in biological regulation. Trends Genet 29:108-115. https://doi:10.1016/j.tig.2012.11.003
33. Roundtree I, Evans M, Pan T, He C (2017) Dynamic RNA Modifications in Gene Expression Regulation. Cell 169:1187-1200. https://doi:10.1016/j.cell.2017.05.045
34. Zhao B, Roundtree I, He C (2017) Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18:31-42. https://doi:10.1038/nrm.2016.132
35. Wang L, Xue Y, Huo R, et al (2020) N6-methyladenosine methyltransferase METTL3 affects the phenotype of cerebral arteriovenous malformation via modulating Notch signaling pathway. J Biomed Sci 27:62. https://doi:10.1186/s12929-020-00655-w
36. Winkler R, Gillis E, Lasman L, et al (2019) mA modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 20:173-182. https://doi:10.1038/s41590-018-0275-z
37. Hao H, Hao S, Chen H, et al (2019) N6-methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Res 47:362-374. https://doi:10.1093/nar/gky1007
38. Liu J, Yue Y, Han D, et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93-95. https://doi:10.1038/nchembio.1432
39. Jia G, Fu Y, Zhao X, et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885-887. https://doi:10.1038/nchembio.687
40. Zheng G, Dahl J, Niu Y, et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18-29. https://doi:10.1016/j.molcel.2012.10.015
41. Kim G, Siddiqui A (2021) N6-methyladenosine modification of HCV RNA genome regulates cap-independent IRES-mediated translation via YTHDC2 recognition. Proc Natl Acad Sci U S A 118. https://doi:10.1073/pnas.2022024118
42. Xu J, Cai Y, Ma Z, et al (2021) The RNA helicase DDX5 promotes viral infection via regulating N6-methyladenosine levels on the DHX58 and NFκB transcripts to dampen antiviral innate immunity. PLoS Pathog 17:e1009530. https://doi:10.1371/journal.ppat.1009530
43. Lichinchi G, Zhao B, Wu Y, et al (2016) Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host Microbe 20:666-673. https://doi:10.1016/j.chom.2016.10.002
44. Corsten M, Heggermont W, Papageorgiou AP, et al (2015) The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. Eur Heart J 36:2909-2919. https://doi:10.1093/eurheartj/ehv321
45. Lei T, Lexun L, Shuo W, et al (2013) MiR-10a* up-regulates coxsackievirus B3 biosynthesis by targeting the 3D-coding sequence. Nucleic Acids Res 41:3760-3771. https://doi:10.1093/nar/gkt058
46. S W, Y W, L L, et al (2014) Protease 2A induces stress granule formation during coxsackievirus B3 and enterovirus 71 infections. Virol J 11:192. https://doi:10.1186/s12985-014-0192-1