1. Albrektsson T, Buser D, Sennerby L. Crestal bone loss and oral implants. Clin Implant Dent Relat Res. 2012;14(6):783-791. doi: 10.1111/cid.12013 [doi].
2. Lang NP, Jepsen S, Working Group 4. Implant surfaces and design (working group 4). Clin Oral Implants Res. 2009;20 Suppl 4:228-231. doi: 10.1111/j.1600-0501.2009.01771.x [doi].
3. Hämmerle CH, Brägger U, Bürgin W, Lang NP. The effect of subcrestal placement of the polished surface of ITI implants on marginal soft and hard tissues. Clin Oral Implants Res. 1996;7(2):111-119. doi: 10.1034/j.1600-0501.1996.070204.x [doi].
4. Norton MR. Multiple single-tooth implant restorations in the posterior jaws: Maintenance of marginal bone levels with reference to the implant-abutment microgap. Int J Oral Maxillofac Implants. 2006;21(5):777-784.
5. Lombardi T, Berton F, Salgarello S, et al. Factors influencing early marginal bone loss around dental implants positioned subcrestally: A multicenter prospective clinical study. J Clin Med. 2019;8(8):1168. doi: 10.3390/jcm8081168. doi: 10.3390/jcm8081168 [doi].
6. Misch CE, Dietsh-Misch F, Hoar J, Beck G, Hazen R, Misch CM. A bone quality-based implant system: First year of prosthetic loading. J Oral Implantol. 1999;25(3):185-197. doi: 10.1563/1548-1336(1999)0252.3.CO;2 [doi].
7. Thoma DS, Mühlemann S, Jung RE. Critical soft-tissue dimensions with dental implants and treatment concepts. Periodontol 2000. 2014;66(1):106-118. doi: 10.1111/prd.12045 [doi].
8. Berglundh T, Lindhe J. Dimension of the periimplant mucosa. biological width revisited. J Clin Periodontol. 1996;23(10):971-973. doi: 10.1111/j.1600-051x.1996.tb00520.x [doi].
9. Linkevicius T, Linkevicius R, Alkimavicius J, Linkeviciene L, Andrijauskas P, Puisys A. Influence of titanium base, lithium disilicate restoration and vertical soft tissue thickness on bone stability around triangular‐shaped implants: A prospective clinical trial. Clinical Oral Implants Research. 2018;29(7):716-724. https://onlinelibrary.wiley.com/doi/abs/10.1111/clr.13263. doi: 10.1111/clr.13263.
10. Linkevicius T, Puisys A, Steigmann M, Vindasiute E, Linkeviciene L. Influence of vertical soft tissue thickness on crestal bone changes around implants with platform switching: A comparative clinical study. Clinical Implant Dentistry and Related Research. 2015;17(6):1228-1236. https://onlinelibrary.wiley.com/doi/abs/10.1111/cid.12222. doi: 10.1111/cid.12222.
11. Vervaeke S, Dierens M, Besseler J, Bruyn H. The influence of initial soft tissue thickness on Peri‐Implant bone remodeling. Clinical Implant Dentistry and Related Research. 2014;16(2):238-247. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1708-8208.2012.00474.x. doi: 10.1111/j.1708-8208.2012.00474.x.
12. Suárez‐López del Amo F, Lin G, Monje A, Galindo‐Moreno P, Wang H. Influence of soft tissue thickness on Peri‐Implant marginal bone loss: A systematic review and Meta‐Analysis. Journal of Periodontology. 2016;87(6):690-699. https://onlinelibrary.wiley.com/doi/abs/10.1902/jop.2016.150571. doi: 10.1902/jop.2016.150571.
13. Linkevicius T, Apse P, Grybauskas S, Puisys A. Influence of thin mucosal tissues on crestal bone stability around implants with platform switching: A 1-year pilot study. J Oral Maxillofac Surg. 2010;68(9):2272-2277. doi: 10.1016/j.joms.2009.08.018 [doi].
14. Jeong SM, Choi BH, Kim J, et al. A 1-year prospective clinical study of soft tissue conditions and marginal bone changes around dental implants after flapless implant surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(1):41-46. doi: 10.1016/j.tripleo.2010.03.037 [doi].
15. Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc. 2006;72(1):75-80.
16. Baumgaertel S, Palomo JM, Palomo L, Hans MG. Reliability and accuracy of cone-beam computed tomography dental measurements. Am J Orthod Dentofacial Orthop. 2009;136(1):19-8. doi: 10.1016/j.ajodo.2007.09.016 [doi].
17. Ko Y, Huang H, Shen Y, Cai J, Fuh L, Hsu J. Variations in crestal cortical bone thickness at dental implant sites in different regions of the jawbone. Clinical Implant Dentistry and Related Research. 2017;19(3):440-446. https://onlinelibrary.wiley.com/doi/abs/10.1111/cid.12468. doi: 10.1111/cid.12468.
18. Moudi E, Haghanifar S, Johari M, Gholinia H, Ghanbarabadi MK. Evaluation of the cone-beam computed tomography accuracy in measuring soft tissue thickness in different areas of the jaws. J Indian Soc Periodontol. 2019;23(4):334-338. doi: 10.4103/jisp.jisp_675_18 [doi].
19. Furtado Á, Furtado G, El Haje O, et al. Soft-tissue cone-beam computed tomography (ST-CBCT) technique for the analysis of skeletal, dental and periodontal effects of orthopedic rapid maxillary expansion. Journal of clinical and experimental dentistry. 2018;10(9):e883-e890. https://www.ncbi.nlm.nih.gov/pubmed/30386521. doi: 10.4317/jced.55139.
20. Siqueira de Lima L, Brunetto DP, da Cunha Gonçalves Nojima, Matilde. Evaluation of facial soft tissue thickness in symmetric and asymmetric subjects with the use of cone-beam computed tomography. American Journal of Orthodontics & Dentofacial Orthopedics. 2019;155(2):216-223. http://dx.doi.org/10.1016/j.ajodo.2018.03.024. doi: 10.1016/j.ajodo.2018.03.024.
21. Chaturvedi S, Haralur S, Addas M, Alfarsi M. CBCT analysis of schneiderian membrane thickness and its relationship with gingival biotype and arch form. Nigerian Journal of Clinical Practice. 2019;22(10):1448-1456. http://www.njcponline.com/article.asp?issn=1119-3077;year=2019;volume=22;issue=10;spage=1448;epage=1456;aulast=Chaturvedi;type=0. doi: 10.4103/njcp.njcp_186_19.
22. Helmi MF, Huang H, Goodson JM, Hasturk H, Tavares M, Natto ZS. Prevalence of periodontitis and alveolar bone loss in a patient population at harvard school of dental medicine. BMC Oral Health. 2019;19(1):254-z. doi: 10.1186/s12903-019-0925-z [doi].
23. Hamlett A., Ryan L., Wolfinger R. On the use of PROC MIXED to estimate correlation in the presence of repeated measures. Proc Statistics and Data Analysis. 2004:129–198. doi: 10.1080/13825585.2019.1653445.
24. Linkevicius T, Apse P, Grybauskas S, Puisys A. The influence of soft tissue thickness on crestal bone changes around implants: A 1-year prospective controlled clinical trial. Int J Oral Maxillofac Implants. 2009;24(4):712-719.
25. Linkevicius T. Zero bone loss concepts. Quintessence Publishing Company, Ltd.; 2019:45.
26. Suárez-López Del Amo F, Lin GH, Monje A, Galindo-Moreno P, Wang HL. Influence of soft tissue thickness on peri-implant marginal bone loss: A systematic review and meta-analysis. J Periodontol. 2016;87(6):690-699. doi: 10.1902/jop.2016.150571 [doi].
27. Díaz-Sánchez M, Soto-Peñaloza D, Peñarrocha-Oltra D, Peñarrocha-Diago M. Influence of supracrestal tissue attachment thickness on radiographic bone level around dental implants: A systematic review and meta-analysis. J Periodontal Res. 2019;54(6):573-588. doi: 10.1111/jre.12663 [doi].
28. Zhang Z, Shi D, Meng H, Han J, Zhang L, Li W. Influence of vertical soft tissue thickness on occurrence of peri-implantitis in patients with periodontitis: A prospective cohort study. Clin Implant Dent Relat Res. 2020;22(3):292-300. doi: 10.1111/cid.12896 [doi].
29. Braut V, Bornstein MM, Belser U, Buser D. Thickness of the anterior maxillary facial bone wall-a retrospective radiographic study using cone beam computed tomography. Int J Periodontics Restorative Dent. 2011;31(2):125-131.
30. Zekry A, Wang R, Chau AC, Lang NP. Facial alveolar bone wall width - a cone-beam computed tomography study in asians. Clin Oral Implants Res. 2014;25(2):194-206. doi: 10.1111/clr.12096 [doi].
31. Januário AL, Duarte WR, Barriviera M, Mesti JC, Araújo MG, Lindhe J. Dimension of the facial bone wall in the anterior maxilla: A cone-beam computed tomography study. Clin Oral Implants Res. 2011;22(10):1168-1171. doi: 10.1111/j.1600-0501.2010.02086.x [doi].
32. Younes F, Eghbali A, Raes M, De Bruyckere T, Cosyn J, De Bruyn H. Relationship between buccal bone and gingival thickness revisited using non-invasive registration methods. . 2016. http://hdl.handle.net/1854/LU-5993705. doi: 10.1111/clr.12618.
33. Esfahanizadeh N, Daneshparvar N, Askarpour F, Akhoundi N, Panjnoush M. Correlation between bone and soft tissue thickness in maxillary anterior teeth. Journal of dentistry (Tehran, Iran). 2016;13(5):302-308. https://www.ncbi.nlm.nih.gov/pubmed/28127323.
34. Fu JH, Yeh CY, Chan HL, Tatarakis N, Leong DJ, Wang HL. Tissue biotype and its relation to the underlying bone morphology. J Periodontol. 2010;81(4):569-574. doi: 10.1902/jop.2009.090591 [doi].
35. Kim Y, Park J, Kim S, et al. New method of assessing the relationship between buccal bone thickness and gingival thickness. Journal of periodontal & implant science. 2016;46(6):372-381. https://www.ncbi.nlm.nih.gov/pubmed/28050315. doi: 10.5051/jpis.2016.46.6.372.
36. Nowzari H, Molayem S, Chiu CH, Rich SK. Cone beam computed tomographic measurement of maxillary central incisors to determine prevalence of facial alveolar bone width ≥2 mm. Clin Implant Dent Relat Res. 2012;14(4):595-602. doi: 10.1111/j.1708-8208.2010.00287.x [doi].
37. Gupta A, Rathee S, Agarwal J, Pachar RB. Measurement of crestal cortical bone thickness at implant site: A cone beam computed tomography study. The Journal of Contemporary Dental Practice. 2017;18(9):785-789. doi: 10.5005/jp-journals-10024-2127.
38. Srebrzyńska-Witek A, Srebrzyńska-Witek A, Koszowski R, Koszowski R, Różyło-Kalinowska I, Różyło-Kalinowska I. Relationship between anterior mandibular bone thickness and the angulation of incisors and canines—a CBCT study. Clin Oral Invest. 2018;22(3):1567-1578. https://www.ncbi.nlm.nih.gov/pubmed/29063382. doi: 10.1007/s00784-017-2255-3.