1. Youssef, G., & Miller, J. J. (2020). Lower Grade Gliomas. Current neurology and neuroscience reports, 20(7), 21. https://doi.org/10.1007/s11910-020-01040-8
2. Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P., & Ellison, D. W. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta neuropathologica, 131(6), 803–820. https://doi.org/10.1007/s00401-016-1545-1
3. Ostrom, Q. T., Cioffi, G., Gittleman, H., Patil, N., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. S. (2019). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro-oncology, 21(Suppl 5), v1–v100. https://doi.org/10.1093/neuonc/noz150
4. Eckel-Passow, J. E., Lachance, D. H., Molinaro, A. M., Walsh, K. M., Decker, P. A., Sicotte, H., Pekmezci, M., Rice, T., Kosel, M. L., Smirnov, I. V., Sarkar, G., Caron, A. A., Kollmeyer, T. M., Praska, C. E., Chada, A. R., Halder, C., Hansen, H. M., McCoy, L. S., Bracci, P. M., Marshall, R., … Jenkins, R. B. (2015). Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. The New England journal of medicine, 372(26), 2499–2508. https://doi.org/10.1056/NEJMoa1407279
5. Incekara, F., Olubiyi, O., Ozdemir, A., Lee, T., Rigolo, L., & Golby, A. (2016). The Value of Pre- and Intraoperative Adjuncts on the Extent of Resection of Hemispheric Low-Grade Gliomas: A Retrospective Analysis. Journal of neurological surgery. Part A, Central European neurosurgery, 77(2), 79–87. https://doi.org/10.1055/s-0035-1551830
6. Martino, J., Taillandier, L., Moritz-Gasser, S., Gatignol, P., & Duffau, H. (2009). Re-operation is a safe and effective therapeutic strategy in recurrent WHO grade II gliomas within eloquent areas. Acta neurochirurgica, 151(5), 427–436. https://doi.org/10.1007/s00701-009-0232-6
7. Kim, Y. H., Nobusawa, S., Mittelbronn, M., Paulus, W., Brokinkel, B., Keyvani, K., Sure, U., Wrede, K., Nakazato, Y., Tanaka, Y., Vital, A., Mariani, L., Stawski, R., Watanabe, T., De Girolami, U., Kleihues, P., & Ohgaki, H. (2010). Molecular classification of low-grade diffuse gliomas. The American journal of pathology, 177(6), 2708–2714. https://doi.org/10.2353/ajpath.2010.100680
8. Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E., Mirimanoff, R. O., European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, … National Cancer Institute of Canada Clinical Trials Group (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England journal of medicine, 352(10), 987–996. https://doi.org/10.1056/NEJMoa043330
9. Wen, P. Y., & Kesari, S. (2008). Malignant gliomas in adults. The New England journal of medicine, 359(5), 492–507. https://doi.org/10.1056/NEJMra0708126
10. Bush, N. A., Chang, S. M., & Berger, M. S. (2017). Current and future strategies for treatment of glioma. Neurosurgical review, 40(1), 1–14. https://doi.org/10.1007/s10143-016-0709-8
11. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
12. Cerella, C., Teiten, M. H., Radogna, F., Dicato, M., & Diederich, M. (2014). From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnology advances, 32(6), 1111–1122. https://doi.org/10.1016/j.biotechadv.2014.03.006
13. Crowley, L. C., Marfell, B. J., Scott, A. P., Boughaba, J. A., Chojnowski, G., Christensen, M. E., & Waterhouse, N. J. (2016). Dead Cert: Measuring Cell Death. Cold Spring Harbor protocols, 2016(12), 10.1101/pdb.top070318. https://doi.org/10.1101/pdb.top070318
14. Li Gang., Shen Feifei., Fan Zhongkai., Wang Yangsong., Kong Xiangquan., Yu Deshui., Zhi Xiaodong., Lv Gang., Cao Yang.(2017). Dynasore Improves Motor Function Recovery via Inhibition of Neuronal Apoptosis and Astrocytic Proliferation after Spinal Cord Injury in Rats. Mol Neurobiol, 54(9), 7471-7482. doi:10.1007/s12035-016-0252-1
15. Tang Peifu., Hou Hongping., Zhang Licheng., Lan Xia., Mao Zhi., Liu Daohong., He Chunqing., Du Hailong., Zhang Lihai.(2014). Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol, 49(1), 276-87. doi:10.1007/s12035-013-8518-3
16. Bao Zhongyuan., Fan Liang., Zhao Lin., Xu Xiupeng., Liu Yinlong., Chao Honglu., Liu Ning., You Yongping., Liu Yan., Wang Xiaoming., Ji Jing.(2019). Silencing of A20 Aggravates Neuronal Death and Inflammation After Traumatic Brain Injury: A Potential Trigger of Necroptosis. Front Mol Neurosci, 12(undefined), 222. doi:10.3389/fnmol.2019.00222
17. Elmore S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), 495–516. https://doi.org/10.1080/01926230701320337
18. Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S., Altucci, L., Amelio, I., Andrews, D. W., Annicchiarico-Petruzzelli, M., Antonov, A. V., Arama, E., Baehrecke, E. H., Barlev, N. A., Bazan, N. G., Bernassola, F., Bertrand, M., Bianchi, K., Blagosklonny, M. V., … Kroemer, G. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell death and differentiation, 25(3), 486–541. https://doi.org/10.1038/s41418-017-0012-4
19. Lee, S. Y., Ju, M. K., Jeon, H. M., Jeong, E. K., Lee, Y. J., Kim, C. H., Park, H. G., Han, S. I., & Kang, H. S. (2018). Regulation of Tumor Progression by Programmed Necrosis. Oxidative medicine and cellular longevity, 2018, 3537471. https://doi.org/10.1155/2018/3537471
20. Jia, C., Chen, H., Zhang, J., Zhou, K., Zhuge, Y., Niu, C., Qiu, J., Rong, X., Shi, Z., Xiao, J., Shi, Y., & Chu, M. (2019). Role of pyroptosis in cardiovascular diseases. International immunopharmacology, 67, 311–318. https://doi.org/10.1016/j.intimp.2018.12.028
21. Jiang, Z., Yao, L., Ma, H., Xu, P., Li, Z., Guo, M., Chen, J., Bao, H., Qiao, S., Zhao, Y., Shen, J., Zhu, M., Meyers, C., Ma, G., Xie, C., Liu, L., Wang, H., Zhang, W., Dong, Q., Shen, H., … Lin, Z. (2017). miRNA-214 Inhibits Cellular Proliferation and Migration in Glioma Cells Targeting Caspase 1 Involved in Pyroptosis. Oncology research, 25(6), 1009–1019. https://doi.org/10.3727/096504016X14813859905646
22. Chen, R., Smith-Cohn, M., Cohen, A. L., & Colman, H. (2017). Glioma Subclassifications and Their Clinical Significance. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 14(2), 284–297. https://doi.org/10.1007/s13311-017-0519-x
23. Koboldt D. C. (2020). Best practices for variant calling in clinical sequencing. Genome medicine, 12(1), 91. https://doi.org/10.1186/s13073-020-00791-w
24. Wang, Q., Jia, P., Li, F., Chen, H., Ji, H., Hucks, D., Dahlman, K. B., Pao, W., & Zhao, Z. (2013). Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers. Genome medicine, 5(10), 91. https://doi.org/10.1186/gm495
25. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., & Storey, J. D. (2012). The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics (Oxford, England), 28(6), 882–883. https://doi.org/10.1093/bioinformatics/bts034
26. Layeghifard, M., Hwang, D. M., & Guttman, D. S. (2018). Constructing and Analyzing Microbiome Networks in R. Methods in molecular biology (Clifton, N.J.), 1849, 243–266. https://doi.org/10.1007/978-1-4939-8728-3_16
27. Wilkerson, M. D., & Hayes, D. N. (2010). ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics (Oxford, England), 26(12), 1572–1573. https://doi.org/10.1093/bioinformatics/btq170
28. Steenwyk, J. L., & Rokas, A. (2021). ggpubfigs: Colorblind-Friendly Color Palettes and ggplot2 Graphic System Extensions for Publication-Quality Scientific Figures. Microbiology resource announcements, 10(44), e0087121. https://doi.org/10.1128/MRA.00871-21
29. Hänzelmann, S., Castelo, R., & Guinney, J. (2013). GSVA: gene set variation analysis for microarray and RNA-seq data. BMC bioinformatics, 14, 7. https://doi.org/10.1186/1471-2105-14-7
30. Chen, H., & Boutros, P. C. (2011). VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC bioinformatics, 12, 35. https://doi.org/10.1186/1471-2105-12-35
31. Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. Omics : a journal of integrative biology, 16(5), 284–287. https://doi.org/10.1089/omi.2011.0118
32. Li, W. H., Han, J. R., Ren, P. P., Xie, Y., & Jiang, D. Y. (2021). Exploration of the mechanism of Zisheng Shenqi decoction against gout arthritis using network pharmacology. Computational biology and chemistry, 90, 107358. https://doi.org/10.1016/j.compbiolchem.2020.107358
33. Williams, C., Lewsey, J. D., Briggs, A. H., & Mackay, D. F. (2017). Cost-effectiveness Analysis in R Using a Multi-state Modeling Survival Analysis Framework: A Tutorial. Medical decision making : an international journal of the Society for Medical Decision Making, 37(4), 340–352. https://doi.org/10.1177/0272989X16651869
34. Kim, S. K., Hwan Kim, J., Yun, S. J., Kim, W. J., & Kim, S. Y. (2014). APPEX: analysis platform for the identification of prognostic gene expression signatures in cancer. Bioinformatics (Oxford, England), 30(22), 3284–3286. https://doi.org/10.1093/bioinformatics/btu521
35. Mehdi, T., Bailey, S. D., Guilhamon, P., & Lupien, M. (2019). C3D: a tool to predict 3D genomic interactions between cis-regulatory elements. Bioinformatics (Oxford, England), 35(5), 877–879. https://doi.org/10.1093/bioinformatics/bty717
36. Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., & Alizadeh, A. A. (2018). Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods in molecular biology (Clifton, N.J.), 1711, 243–259. https://doi.org/10.1007/978-1-4939-7493-1_12
37. Carpenter, C. M., Frank, D. N., Williamson, K., Arbet, J., Wagner, B. D., Kechris, K., & Kroehl, M. E. (2021). tidyMicro: a pipeline for microbiome data analysis and visualization using the tidyverse in R. BMC bioinformatics, 22(1), 41. https://doi.org/10.1186/s12859-021-03967-2
38. Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., Hoang, C. D., Diehn, M., & Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature methods, 12(5), 453–457. https://doi.org/10.1038/nmeth.3337
39. Geeleher, P., Cox, N., & Huang, R. S. (2014). pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PloS one, 9(9), e107468. https://doi.org/10.1371/journal.pone.0107468
40. Gupta, A., & Dwivedi, T. (2017). A Simplified Overview of World Health Organization Classification Update of Central Nervous System Tumors 2016. Journal of neurosciences in rural practice, 8(4), 629–641. https://doi.org/10.4103/jnrp.jnrp_168_17
41. Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor perspectives in biology, 2(1), a001008. https://doi.org/10.1101/cshperspect.a001008
42. Fang, Y., Tian, S., Pan, Y., Li, W., Wang, Q., Tang, Y., Yu, T., Wu, X., Shi, Y., Ma, P., & Shu, Y. (2020). Pyroptosis: A new frontier in cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 121, 109595. https://doi.org/10.1016/j.biopha.2019.109595
43. Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., & Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526(7575), 660–665. https://doi.org/10.1038/nature15514
44. Chan, T. A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S. A., Stenzinger, A., & Peters, S. (2019). Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Annals of oncology : official journal of the European Society for Medical Oncology, 30(1), 44–56. https://doi.org/10.1093/annonc/mdy495
45. Clarke M. F. (2019). Clinical and Therapeutic Implications of Cancer Stem Cells. The New England journal of medicine, 380(23), 2237–2245. https://doi.org/10.1056/NEJMra1804280