1 Barton, K. A., Binns, A. N., Matzke, A. J. M. & Mary-DellChilton. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell32, 1033-1043, DOI:10.1016/0092-8674(83)90288-X (1983).
2 Zagorskaya, A. A. & Deineko, E. V. Plant-expression systems: a new stage in production of biopharmaceutical preparations. Russ. J. Plant Physiol.68, 17-30, DOI:10.1134/S1021443721010210 (2021).
3 Srividhya, V., Kathleen, H., Abdullah, M. & Mounir, A. Combating human viral diseases: will plant-based vaccines be the answer? Vaccines9, 761, DOI:10.3390/vaccines9070761 (2021).
4 Okay, A., Aydin, S., Büyük, l. & Aras, E. S. Plant-derived vaccines. Biol. Divers. Conserv.14, 167-174, DOI:10.46309/biodicon.2021.850360 (2021).
5 Swope, K. et al. Manufacturing plant-made monoclonal antibodies for research or therapeutic applications. Methods Enzymol.660, 239-263, DOI:10.1016/bs.mie.2021.05.011 (2021).
6 Garaeva, L. et al. Delivery of functional exogenous proteins by plant-derived vesicles to human cells in vitro. Sci. Rep.11, 6489, DOI:10.1038/s41598-021-85833-y (2021).
7 Rosales-Mendoza, S., Angulo, C. & Meza, B. Food-grade organisms as vaccine biofactories and oral delivery vehicles. Trends Biotechnol., 124-136, DOI:10.1016/j.tibtech.2015.11.007 (2016).
8 Malabadi, R. B., Chalannavar, R. K., Meti, N. T., Vijayakumar, S. & Mulgund, G. S. Plant viral expression vectors and agroinfilteration: a literature review update. Int. J. Res. Sci. Innov., 32-36 (2016).
9 Hefferon, K. Plant virus expression vectors: a powerhouse for global health. Biomedicines5, 44, DOI:10.3390/biomedicines5030044 (2017).
10 Abiri, R. et al. A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr. Issues Mol. Biol.18, 21-42 (2015).
11 Yu, Y., Yu, P.-C., Chang, W.-J., Yu, K. & Lin, C.-S. Plastid transformation: how does it work? Can it be applied to crops? What can it offer? Int. J. Mol. Sci.21, 4854, DOI:10.3390/ijms21144854 (2020).
12 Saumya, S., Aberami, J. A. & Sankar, P. D. Plastid transformation – a greener and cleaner technique for overexpression of proteins. Res. J. Pharm.Tech.12, 5083, DOI:10.5958/0974-360X.2019.00881.3 (2019).
13 Siddiqui, A., Wei, Z., Boehm, M. & Ahmad, N. Engineering microalgae through chloroplast transformation to produce high‐value industrial products. Biotechnol. Appl. Biochem.67, 30-40, DOI:10.1002/bab.1823 (2020).
14 Chan, H. & Daniell, H. Plant-made oral vaccines against human infectious diseases-Are we there yet? Plant Biotechnol. J.13, 1056-1070, DOI:10.1111/pbi.12471 (2015).
15 Jin, S. & Daniell, H. The engineered chloroplast genome just got smarter. Trends Plant Sci.20, 622-640, DOI:10.1016/j.tplants.2015.07.004 (2015).
16 Ahmad, N., Michoux, F., Lössl, A. G. & Nixon, P. J. Challenges and perspectives in commercializing plastid transformation technology. J. Exp. Bot.67, 5945-5960, DOI:10.1093/jxb/erw360 (2016).
17 Zhang, X. et al. Production of functional native human interleukin-2 in tobacco chloroplasts. Mol. Biotechnol.56, 3693-3676, DOI:10.1007/s12033-013-9717-x (2014).
18 Gisby, M. F. et al. A synthetic gene increases TGFbeta3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule. Plant Biotechnol. J.9, 618-628, DOI:10.1111/j.1467-7652.2011.00619.x (2011).
19 Nasab, M., Javaran, M., M.Cusido, R. & Palazon, J. Purification of recombinant tissue plasminogen activator (rtPA) protein from transplastomic tobacco plants. Plant Physiol. Biochem.108, 139-144, DOI:10.1016/j.plaphy.2016.06.029 (2016).
20 Morgenfeld, M. M., Vater, C. F., Alfano, E. F., Boccardo, N. A. & Bravo-Almonacid, F. F. Translocation from the chloroplast stroma into the thylakoid lumen allows expression of recombinant epidermal growth factor in transplastomic tobacco plants. Transgenic Res.29, 295-305, DOI:10.1007/s11248-020-00199-7 (2020).
21 Fisher, F. M. & Maratos-Flier, E. Understanding the physiology of FGF21. Annu. Rev. Physiol.78, 223-241, DOI:10.1146/annurev-physiol-021115-105339 (2016).
22 Lewis, J. E., Ebling, F. J. P., Samms, R. J. & Tsintzas, K. Going back to the biology of FGF21: new insights. Trends Endocrinol. Metab.30, 491-504, DOI:10.1016/j.tem.2019.05.007 (2019).
23 Hill, C. M. et al. FGF21 and the physiological regulation of macronutrient preference. Endocrinology161, bqaa019, DOI:10.1210/endocr/bqaa019 (2020).
24 Erickson, A. & Moreau, R. The regulation of FGF21 gene expression by metabolic factors and nutrients. Hormone Molecular Biology & Clinical Investigation30, /j/hmbci.2017.2030.issue-2011/hmbci-2016-0016/hmbci-2016-0016.xml. , DOI:10.1515/hmbci-2016-0016 (2016).
25 Kharitonenkov, A. & Shanafelt, A. B. FGF21: a novel prospect for the treatment of metabolic diseases. Curr. Opin. Investig. Drugs10, 359-364 (2009).
26 Zhang, M. et al. Large-scale expression, purification, and glucose uptake activity of recombinant human FGF21 in Escherichia coli. Applied Microbiology & Biotechnology93, 613-621, DOI:10.1007/s00253-011-3427-8 (2012).
27 Hui, Q. et al. Two-hundred-liter scale fermentation, purification of recombinant human fibroblast growth factor-21, and its anti-diabetic effects on ob/ob mice. Appl. Microbiol. Biotechnol.103, 719-730, DOI:10.1007/s00253-018-9470-y (2019).
28 He, K. et al. Stability and glucose regulation of FGF21 after modified with arginines*. Prog. Biochem. Biophys.39, 1089-1098, DOI:10.3724/sp.J.1206.2012.00007 (2012).
29 Li, D., Fu, G., Tu, R., Jin, Z. & Zhang, D. High-efficiency expression and secretion of human FGF21 in Bacillus subtilis by intercalation of a mini-cistron cassette and combinatorial optimization of cell regulatory components. Microb. Cell Fact.18, DOI:10.1186/s12934-019-1066-4 (2019).
30 Ma, Z. et al. Expression of hFGF-21 with optimized codon in P. pastoris. Chin. J. Biotechnol.23, 43-46, DOI:10.13200/j.cjb.2010.01.49.mazhh.002 (2010).
31 Song, Y. et al. Expression and purification of FGF21 in Pichia pastoris and its effect on fibroblast-cell migration. Mol. Med. Rep.13, 3619-3626, DOI:10.3892/mmr.2016.4942 (2016).
32 Kharitonenkov, A. et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest.115, 1627-1635, DOI:10.1172/JCI23606 (2005).
33 Hongqi, F. et al. High levels of expression of fibroblast growth factor 21 in transgenic tobacco (Nicotiana benthamiana). Applied Biochemistry & Biotechnology165, 465–475, DOI:10.1007/s12010-011-9265-4 (2011).
34 Fu, H., Xue, P., Yang, L. & Pang, S. Expression of human fibroblast growth factor 21 in transgenic tobacco (Nicotiana benthamiana) using potato virus X vector. J. Northwest A&F Univ. (Nat. Sci. Ed.)41, 45-51, DOI:10.13207/j.cnki.jnwafu.2013.04.003 (2013).
35 Fu, H. et al. Expression of fibroblast growth factor 21 in transgenic tomato plants. J.Northwest A&F Univ. (Nat. Sci. Ed.)39, 163-170, DOI:10.13207/j.cnki .jnwafu.2011.07.001 (2011).
36 Fu, H. et al. Establishment of an Arabidopsis thaliana oil body-based expression system of human fibroblast growth factor 21. J. Northwest A&F Univ. (Nat. Sci. Ed.)39, 190-196, DOI:10.13207/j.cnki .jnwafu.2011.08.002 (2011).
37 Wang, H., Cai, J. & Zeng, J. Genetic transformation of recombinant human fibroblast growth factor 21 (hFGF21) on Daucus carota L. J. Jinggangshan Univ. (Nat. Sci.), 57-61, DOI:10.3969/j.issn.1674-8085.2016.01.012 (2016).
38 Feng, M. F., Cai, H., Zhang, L. G., Wu, X. J. & Sun, J. Physiological and transcriptome analyses of transgenic FGF21 immature rice seeds. Russ. J. Plant Physiol.67, 360-368, DOI:10.1134/S1021443720020041 (2020).
39 Feng, M. et al. Analyses of transgenic fibroblast growth factor 21 mature rice seeds. Breed. Sci.69, 279-288, DOI:10.1270/jsbbs.18117 (2019).
40 Wang, Y. et al. Stable expression of basic fibroblast growth factor in chloroplasts of tobacco. Int. J. Mol. Sci.17, 19, DOI:10.3390/ijms17010019 (2015).
41 He, Y. et al. Large-scale production of functional human serum albumin from transgenic rice seeds. Proc. Natl. Acad. Sci. U.S. A.108, 19078-19083, DOI:10.1073/pnas.1109736108 (2011).
42 Castiglia, D. et al. High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass. Biotechnol. Biofuels9, 154, DOI:10.1186/s13068-016-0569-z (2016).
43 Kolotilin, I., Kaldis, A., Pereira, E. O., Laberge, S. & Menassa, R. Optimization of transplastomic production of hemicellulases in tobacco: effects of expression cassette configuration and tobacco cultivar used as production platform on recombinant protein yields. Biotechnol. Biofuels6, 65, DOI:10.1186/1754-6834-6-65 (2013).
44 Liu, M. et al. Liver plays a major role in FGF-21 mediated glucose homeostasis. Cell. Physiol. Biochem.45, 1423-1433, DOI:10.1159/000487568 (2018).
45 Liu, M. et al. FGF-21 improves glucose uptake and glycogen synthesis of insulin-resistant liver cells. Prog. Biochem. Biophys., 1327-1333, DOI:10.3724/SP.J.1206.2009.00238 (2006).
46 Takanaga, H., Chaudhuri, B. & Frommer, W. B. GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim. Biophys. Acta1778, 1091-1099, DOI:10.1016/j.bbamem.2007.11.015 (2008).
47 Huang, Z. et al. A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21) modified with polyethylene glycol. PLoS One6, e20669, DOI:10.1371/journal.pone.0020669 (2011).
48 Yao, W., Ren, G., Han, Y., Cao, H. & Li, D. Expression and pharmacological evaluation of fusion protein FGF21-L-Fc. Yao Xue Xue Bao (Acta pharmaceutica Sinica)46, 787-792, DOI:10.1631/jzus.B1000135 (2011).
49 Zimmer, M. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev.102, 759-782, DOI:10.1021/cr010142r (2002).
50 Apel, W., Schulze, W. X. & Bock, R. Identification of protein stability determinants in chloroplasts. Plant J.63, 636-650, DOI:10.1111/j.1365-313X.2010.04268.x (2010).
51 Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum15, 473-497, DOI:10.1111/j.1399-3054.1962.tb08052.x (1962).
52 Wei, Z. et al. Transformation of alfalfa chloroplasts and expression of green fluorescent protein in a forage crop. Biotechnol. Lett.33, 2487-2494, DOI:10.1007/s10529-011-0709-2 (2011).