1 World Health Organization. World Malaria Report 2020. (Geneva, Switzerland, 2020).
2 Ashley, E. A. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371, 411-423, doi:10.1056/NEJMoa1314981 (2014).
3 Dondorp, A. M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361, 455-467, doi:10.1056/NEJMoa0808859 (2009).
4 van der Pluijm, R. W. et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect Dis 19, 952-961, doi:10.1016/s1473-3099(19)30391-3 (2019).
5 Phyo, A. P. et al. Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai-Myanmar Border (2003-2013): The Role of Parasite Genetic Factors. Clin Infect Dis 63, 784-791, doi:10.1093/cid/ciw388 (2016).
6 Guiguemde, W. A. et al. Global phenotypic screening for antimalarials. Chemistry & biology 19, 116-129, doi:10.1016/j.chembiol.2012.01.004 (2012).
7 Cowell, A. N. & Winzeler, E. A. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med 11, 63, doi:10.1186/s13073-019-0673-3 (2019).
8 Wahlgren, M. & Perlmann, P. Malaria: molecular and clinical aspects. (CRC Press, 2003).
9 Krafts, K., Hempelmann, E. & Skórska-Stania, A. From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy. Parasitology research 111, 1-6, doi:10.1007/s00436-012-2886-x (2012).
10 Jensen, M. & Mehlhorn, H. Seventy-five years of Resochin in the fight against malaria. Parasitology research 105, 609-627, doi:10.1007/s00436-009-1524-8 (2009).
11 Krugliak, M., Zhang, J. & Ginsburg, H. Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol Biochem Parasitol 119, 249-256, doi:10.1016/s0166-6851(01)00427-3 (2002).
12 Aft, R. L. & Mueller, G. C. Hemin-mediated oxidative degradation of proteins. J Biol Chem 259, 301-305 (1984).
13 Aft, R. L. & Mueller, G. C. Hemin-mediated DNA strand scission. J Biol Chem 258, 12069-12072 (1983).
14 Chou, A. C. & Fitch, C. D. Mechanism of hemolysis induced by ferriprotoporphyrin IX. J Clin Invest 68, 672-677, doi:10.1172/jci110302 (1981).
15 Klouche, K. et al. Mechanism of in vitro heme-induced LDL oxidation: effects of antioxidants. Eur J Clin Invest 34, 619-625, doi:10.1111/j.1365-2362.2004.01395.x (2004).
16 Shinar, E. & Rachmilewitz, E. A. Oxidative denaturation of red blood cells in thalassemia. Semin Hematol 27, 70-82 (1990).
17 Vincent, S. H. Oxidative effects of heme and porphyrins on proteins and lipids. Semin Hematol 26, 105-113 (1989).
18 Pandey, A. V. et al. Hemozoin formation in malaria: a two-step process involving histidine-rich proteins and lipids. Biochem Biophys Res Commun 308, 736-743, doi:10.1016/s0006-291x(03)01465-7 (2003).
19 Fitch, C. D., Cai, G. Z., Chen, Y. F. & Shoemaker, J. D. Involvement of lipids in ferriprotoporphyrin IX polymerization in malaria. Biochim Biophys Acta 1454, 31-37, doi:10.1016/s0925-4439(99)00017-4 (1999).
20 Pisciotta, J. M. et al. The role of neutral lipid nanospheres in Plasmodium falciparum haem crystallization. Biochem J 402, 197-204, doi:10.1042/bj20060986 (2007).
21 Sullivan, D. J., Jr., Gluzman, I. Y. & Goldberg, D. E. Plasmodium hemozoin formation mediated by histidine-rich proteins. Science 271, 219-222, doi:10.1126/science.271.5246.219 (1996).
22 Chugh, M. et al. Protein complex directs hemoglobin-to-hemozoin formation in <em>Plasmodium falciparum</em>. Proceedings of the National Academy of Sciences 110, 5392-5397, doi:10.1073/pnas.1218412110 (2013).
23 Jani, D. et al. HDP-a novel heme detoxification protein from the malaria parasite. PLoS Pathog 4, e1000053, doi:10.1371/journal.ppat.1000053 (2008).
24 Nakatani, K., Ishikawa, H., Aono, S. & Mizutani, Y. Heme-binding properties of heme detoxification protein from Plasmodium falciparum. Biochem Biophys Res Commun 439, 477-480, doi:10.1016/j.bbrc.2013.08.100 (2013).
25 Kapishnikov, S. et al. Unraveling heme detoxification in the malaria parasite by in situ correlative X-ray fluorescence microscopy and soft X-ray tomography. Sci Rep 7, 7610, doi:10.1038/s41598-017-06650-w (2017).
26 Foley, M. & Tilley, L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 79, 55-87, doi:10.1016/s0163-7258(98)00012-6 (1998).
27 Weissbuch, I. & Leiserowitz, L. Interplay between malaria, crystalline hemozoin formation, and antimalarial drug action and design. Chem Rev 108, 4899-4914, doi:10.1021/cr078274t (2008).
28 Olafson, K. N., Ketchum, M. A., Rimer, J. D. & Vekilov, P. G. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine. Proc Natl Acad Sci U S A 112, 4946-4951, doi:10.1073/pnas.1501023112 (2015).
29 Sidhu, A. B., Verdier-Pinard, D. & Fidock, D. A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298, 210-213, doi:10.1126/science.1074045 (2002).
30 Ecker, A., Lehane, A. M., Clain, J. & Fidock, D. A. PfCRT and its role in antimalarial drug resistance. Trends in parasitology 28, 504-514, doi:10.1016/j.pt.2012.08.002 (2012).
31 Powles, M. A. et al. MK-4815, a potential new oral agent for treatment of malaria. Antimicrob Agents Chemother 56, 2414-2419, doi:10.1128/aac.05326-11 (2012).
32 Dziekan, J. M. et al. Cellular thermal shift assay for the identification of drug-target interactions in the Plasmodium falciparum proteome. Nat Protoc, doi:10.1038/s41596-020-0310-z (2020).
33 Dziekan, J. M. et al. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. Sci Transl Med 11, doi:10.1126/scitranslmed.aau3174 (2019).
34 Eggleson, K. K., Duffin, K. L. & Goldberg, D. E. Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. The Journal of biological chemistry 274, 32411-32417, doi:10.1074/jbc.274.45.32411 (1999).
35 Murata, C. E. & Goldberg, D. E. Plasmodium falciparum falcilysin: a metalloprotease with dual specificity. J Biol Chem 278, 38022-38028, doi:10.1074/jbc.M306842200 (2003).
36 Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84-87, doi:10.1126/science.1233606 (2013).
37 Wellems, T. E. et al. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345, 253-255, doi:10.1038/345253a0 (1990).
38 Powles, M. A. et al. MK-4815, a potential new oral agent for treatment of malaria. Antimicrobial agents and chemotherapy 56, 2414-2419, doi:10.1128/AAC.05326-11 (2012).
39 Dai, L. et al. Horizontal Cell Biology: Monitoring Global Changes of Protein Interaction States with the Proteome-Wide Cellular Thermal Shift Assay (CETSA). Annu Rev Biochem, doi:10.1146/annurev-biochem-062917-012837 (2019).
40 Murata, C. E. & Goldberg, D. E. Plasmodium falciparum falcilysin: an unprocessed food vacuole enzyme. Mol Biochem Parasitol 129, 123-126, doi:10.1016/s0166-6851(03)00098-7 (2003).
41 Matter, H. et al. Evidence for C-Cl/C-Br...pi interactions as an important contribution to protein-ligand binding affinity. Angewandte Chemie (International ed. in English) 48, 2911-2916, doi:10.1002/anie.200806219 (2009).
42 Johnson, K. A. et al. The closed structure of presequence protease PreP forms a unique 10,000 Angstroms3 chamber for proteolysis. The EMBO journal 25, 1977-1986, doi:10.1038/sj.emboj.7601080 (2006).
43 Rocamora, F. et al. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLoS Pathog 14, e1006930, doi:10.1371/journal.ppat.1006930 (2018).
44 Reiling, S. J., Krohne, G., Friedrich, O., Geary, T. G. & Rohrbach, P. Chloroquine exposure triggers distinct cellular responses in sensitive versus resistant Plasmodium falciparum parasites. Sci. Rep. 8, 11137, doi:10.1038/s41598-018-29422-6 (2018).
45 Ponpuak, M. et al. A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Mol. Microbiol. 63, 314-334, doi:10.1111/j.1365-2958.2006.05443.x (2007).
46 Josling, G. A., Williamson, K. C. & Llinás, M. Regulation of Sexual Commitment and Gametocytogenesis in Malaria Parasites. Annu. Rev. Microbiol. 72, 501-519, doi:10.1146/annurev-micro-090817-062712 (2018).
47 Beck, J. R., Muralidharan, V., Oksman, A. & Goldberg, D. E. PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature 511, 592-595, doi:10.1038/nature13574 (2014).
48 Muralidharan, V., Oksman, A., Iwamoto, M., Wandless, T. J. & Goldberg, D. E. Asparagine repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent affinity tag. Proc. Natl. Acad. Sci. U. S. A. 108, 4411-4416, doi:10.1073/pnas.1018449108 (2011).
49 Muralidharan, V., Oksman, A., Pal, P., Lindquist, S. & Goldberg, D. E. Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nature communications 3, 1310, doi:10.1038/ncomms2306 (2012).
50 Wicht, K. J., Mok, S. & Fidock, D. A. Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria. Annu. Rev. Microbiol. 74, 431-454, doi:10.1146/annurev-micro-020518-115546 (2020).
51 Forte, B. et al. Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS infectious diseases 7, 2764-2776, doi:10.1021/acsinfecdis.1c00322 (2021).
52 Yang, T. et al. MalDA, Accelerating Malaria Drug Discovery. Trends in parasitology 37, 493-507, doi:10.1016/j.pt.2021.01.009 (2021).
53 Goldberg, D. E. Hemoglobin Degradation in Malaria: Drugs, Disease and Post-genomic Biology. (eds R. W. Compans et al.) 275-291 (Springer Berlin Heidelberg, 2005).
54 Combrinck, J. M. et al. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Biol. 8, 133-137, doi:10.1021/cb300454t (2013).
55 Geary, T. G., Jensen, J. B. & Ginsburg, H. Uptake of [3H]chloroquine by drug-sensitive and -resistant strains of the human malaria parasite Plasmodium falciparum. Biochem Pharmacol 35, 3805-3812, doi:10.1016/0006-2952(86)90668-4 (1986).
56 Bray, P. G. et al. PfCRT and the trans-vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX. Molecular microbiology 62, 238-251, doi:10.1111/j.1365-2958.2006.05368.x (2006).
57 Sullivan, D. J., Jr., Gluzman, I. Y., Russell, D. G. & Goldberg, D. E. On the molecular mechanism of chloroquine's antimalarial action. Proc Natl Acad Sci U S A 93, 11865-11870, doi:10.1073/pnas.93.21.11865 (1996).
58 Bray, P. G., Mungthin, M., Ridley, R. G. & Ward, S. A. Access to hematin: the basis of chloroquine resistance. Molecular pharmacology 54, 170-179, doi:10.1124/mol.54.1.170 (1998).
59 Fidock, D. A. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Molecular cell 6, 861-871, doi:10.1016/s1097-2765(05)00077-8 (2000).
60 Sanchez, C. P. et al. Differences in trans-stimulated chloroquine efflux kinetics are linked to PfCRT in Plasmodium falciparum. Mol Microbiol 64, 407-420, doi:10.1111/j.1365-2958.2007.05664.x (2007).
61 Sanchez, C. P., Stein, W. & Lanzer, M. Trans stimulation provides evidence for a drug efflux carrier as the mechanism of chloroquine resistance in Plasmodium falciparum. Biochemistry 42, 9383-9394, doi:10.1021/bi034269h (2003).
62 Fitch, C. D. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life sciences 74, 1957-1972, doi:10.1016/j.lfs.2003.10.003 (2004).
63 Saliba, K. J., Folb, P. I. & Smith, P. J. Role for the plasmodium falciparum digestive vacuole in chloroquine resistance. Biochemical pharmacology 56, 313-320, doi:10.1016/s0006-2952(98)00140-3 (1998).
64 Famin, O. & Ginsburg, H. Differential effects of 4-aminoquinoline-containing antimalarial drugs on hemoglobin digestion in Plasmodium falciparum-infected erythrocytes. Biochem Pharmacol 63, 393-398 (2002).
65 Zhang, Y. Inhibition of hemoglobin degradation in Plasmodium falciparum by chloroquine and ammonium chloride. Experimental parasitology 64, 322-327, doi:10.1016/0014-4894(87)90042-7 (1987).
66 Fitch, C. D. Involvement of heme in the antimalarial action of chloroquine. Transactions of the American Clinical and Climatological Association 109, 97-105; discussion 105-106 (1998).
67 Zarchin, S., Krugliak, M. & Ginsburg, H. Digestion of the host erythrocyte by malaria parasites is the primary target for quinoline-containing antimalarials. Biochem Pharmacol 35, 2435-2442 (1986).
68 Burrows, J. N. et al. New developments in anti-malarial target candidate and product profiles. Malar. J. 16, 26, doi:10.1186/s12936-016-1675-x (2017).
69 Hooft van Huijsduijnen, R. & Wells, T. N. The antimalarial pipeline. Curr Opin Pharmacol 42, 1-6, doi:10.1016/j.coph.2018.05.006 (2018).
70 Wells, T. N., Hooft van Huijsduijnen, R. & Van Voorhis, W. C. Malaria medicines: a glass half full? Nat Rev Drug Discov 14, 424-442, doi:10.1038/nrd4573 (2015).
71 Rohrbach, P. et al. Genetic linkage of pfmdr1 with food vacuolar solute import in Plasmodium falciparum. EMBO J. 25, 3000-3011, doi:10.1038/sj.emboj.7601203 (2006).
72 Reed, M. B., Saliba, K. J., Caruana, S. R., Kirk, K. & Cowman, A. F. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403, 906-909, doi:10.1038/35002615 (2000).
73 Sanchez, C. P., Rotmann, A., Stein, W. D. & Lanzer, M. Polymorphisms within PfMDR1 alter the substrate specificity for anti-malarial drugs in Plasmodium falciparum. Mol. Microbiol. 70, 786-798, doi:10.1111/j.1365-2958.2008.06413.x (2008).
74 Birrell, G. W. et al. Multi-omic Characterization of the Mode of Action of a Potent New Antimalarial Compound, JPC-3210, Against Plasmodium falciparum. Molecular & cellular proteomics : MCP 19, 308-325, doi:10.1074/mcp.RA119.001797 (2020).
75 Creek, D. J. et al. Metabolomics-Based Screening of the Malaria Box Reveals both Novel and Established Mechanisms of Action. Antimicrob Agents Chemother 60, 6650-6663, doi:10.1128/aac.01226-16 (2016).
76 McFadden, G. I. & Yeh, E. The apicoplast: now you see it, now you don't. International journal for parasitology 47, 137-144, doi:10.1016/j.ijpara.2016.08.005 (2017).
77 Jain, V., Yogavel, M. & Sharma, A. Dimerization of Arginyl-tRNA Synthetase by Free Heme Drives Its Inactivation in Plasmodium falciparum. Structure 24, 1476-1487, doi:10.1016/j.str.2016.06.018 (2016).
78 Martinez Molina, D. & Nordlund, P. The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies. Annu Rev Pharmacol Toxicol 56, 141-161, doi:10.1146/annurev-pharmtox-010715-103715 (2016).
79 Mateus, A. et al. Thermal proteome profiling in bacteria: probing protein state in vivo. Mol Syst Biol 14, e8242, doi:10.15252/msb.20188242 (2018).
80 Herneisen, A. L. et al. Identifying the Target of an Antiparasitic Compound in Toxoplasma Using Thermal Proteome Profiling. ACS Chemical Biology 15, 1801-1807, doi:10.1021/acschembio.0c00369 (2020).
81 Favuzza, P. et al. Dual Plasmepsin-Targeting Antimalarial Agents Disrupt Multiple Stages of the Malaria Parasite Life Cycle. Cell host & microbe 27, 642-658.e612, doi:10.1016/j.chom.2020.02.005 (2020).
82 Lu, K.-Y. et al. <em>Plasmodium</em> chaperonin TRiC/CCT identified as a target of the antihistamine clemastine using parallel chemoproteomic strategy. Proceedings of the National Academy of Sciences 117, 5810-5817, doi:10.1073/pnas.1913525117 (2020).
83 Kabsch, W. XDS. Acta crystallographica. Section D, Biological crystallography 66, 125-132, doi:10.1107/s0907444909047337 (2010).
84 McCoy, A. J. et al. Phaser crystallographic software. Journal of applied crystallography 40, 658-674, doi:10.1107/s0021889807021206 (2007).
85 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta crystallographica. Section D, Biological crystallography 60, 2126-2132, doi:10.1107/s0907444904019158 (2004).
86 Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta crystallographica. Section D, Biological crystallography 60, 2256-2268, doi:10.1107/s0907444904026460 (2004).
87 Voss, N. R. & Gerstein, M. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic acids research 38, W555-562, doi:10.1093/nar/gkq395 (2010).
88 Sigurskjold, B. W. Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Analytical biochemistry 277, 260-266, doi:10.1006/abio.1999.4402 (2000).
89 Foucquier, J. & Guedj, M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 3, e00149, doi:10.1002/prp2.149 (2015).
90 Bozdech, Z., Mok, S. & Gupta, A. P. DNA microarray-based genome-wide analyses of Plasmodium parasites. Methods Mol Biol 923, 189-211, doi:10.1007/978-1-62703-026-7_13 (2013).
91 Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, Article3, doi:10.2202/1544-6115.1027 (2004).
92 Gupta, A. P. et al. Histone 4 lysine 8 acetylation regulates proliferation and host-pathogen interaction in Plasmodium falciparum. Epigenetics Chromatin 10, 40, doi:10.1186/s13072-017-0147-z (2017).
93 Wu, Y., Sifri, C. D., Lei, H. H., Su, X. Z. & Wellems, T. E. Transfection of Plasmodium falciparum within human red blood cells. Proc. Natl. Acad. Sci. U. S. A. 92, 973-977, doi:10.1073/pnas.92.4.973 (1995).