A 5-year WHO-based HH initiative significantly increased ABHR consumption in a nonteaching secondary hospital in Japan with long-term care wards. In addition, HHSAF scores were also increased with a significant positive correlation with ABHR consumption.
The WHO guidelines recommend repeating the entire cycle of the step-wise approach for a minimum of 5 years. Despite the recommendation, the majority of previous studies reporting the effect of a multimodal WHO-based HH programme focused only on the five strategy components. Although several studies followed the step-wise programme [15,16] or a 5-year programme [22,23], to the best of our knowledge, there have been no previous studies reporting a 5-year programme with five cycles of the step-wise approach. Our 5-year initiative resulted in an eight-fold increase in ABHR consumption, from 4.2 to 34.4 L/1000 PDs, which is similar to the increase reported by Pittet, from 4.1 to 30.6 L/1000 PDs, over 7 years [24]. Additionally, our study is the first to report the 5-year change in the HHSAF score in a single facility, which showed a nearly four-fold increase, from 117.5 to 445 points.
The rationale for the importance of a 5-year programme is not given in the WHO guidelines. The target amount of ABHR consumption recommended in the guidelines is 20 L/1000 PDs (HHSAF: 3.3c), and in Pittet’s study, published prior to the publication of the guidelines, a period of 5 years was necessary to increase ABHR consumption from 4.1 to 20.8 L/1000 PDs [24]. Additionally, previous studies have suggested that behavioural changes are important in the improvement of HH [25-27] and that this improvement took time, sometimes years. Similar results were reported from a 6-year initiative in a tertiary teaching hospital [28] and a 4-year initiative in a paediatric long-term care facility [29].
In our initiative, we put effort into increasing local field staff involvement each year, as our long-term patients had frequent daily contact with staff members from many different departments, and the effective measures differed between them. During the first 3 years, the ICT began implementing new systems for the ICMs to work as active field HH leaders. Then, in the last 2 years, the ICMs led the “local, focused implementation” of the HH initiative with the support of the LNs. From these experiences, we retrospectively recognized that 5 years was a reasonable length of time to change systems and to embed frontline staff engagement for local focused implementation.
Our annual hospital-wide HH compliance, monitored by direct observation, nearly tripled in the first 2 years after initiation of the intervention, which then ranged from 68 to 70% from the second year to the fifth year. We continuously conducted direct observations, but we did not include any of these data as an outcome or quantitative measure, as we were unable to regard our quantitative data as reliable for several reasons. First, prior to the implementation of the initiative, there was a lack of trained auditors who could conduct the direct observations accurately. Second, because our initiative was carried out with no additional staff reinforcement or high-tech recording devices, only overt observations were possible. We observed the “Hawthorn effect” in most of the direct observations, which became more obvious in the latter phase of the initiative. In the final years of the intervention, the behaviours of the HCWs began to change within minutes of the start of each observation session. Third, there was also a large ‘observer bias’, as the auditors tended to follow HCWs with low compliances to determine the main obstacles for improving HH compliance.
On the other hand, we were able to obtain much informative qualitative data by “examining in detail the barriers and opportunities to increase HH compliance” [30]. Therefore, rather than emphasizing the quantitative data, we focused on showing where improvement was most required specifically for the field staff, preparing effective training programmes for the following year, and determining our annual institutional aim based on the findings from the direct observations. For example, the annual aim chosen for the second year was to “Improve compliance for Moment 1 (before touching the patient)”, as this was found to be the most missed of the “5 Moments” throughout the hospital during the previous year.
The current gold standard for HH compliance monitoring is unobtrusive direct observation [31]. However, conducting unobtrusive observations continuously and daily for years is difficult for most hospitals and cannot be widely recommended in terms of feasibility. High-tech recording devices are available, but most nonteaching hospitals in Japan cannot afford them. It is also said that direct observations can only catch a very small proportion of the actual HH events performed [32]. ABHR consumption, a surrogate marker for monitoring HH compliance, can be monitored easily and continuously for years and can also give a 24-hour picture of compliance for all clinicians [33]. ABHR consumption monitoring has been officially recommended in “The surveillance procedures for small and medium sized medical facilities” since 2009 in Japan and has also been applied by the European Centre for Disease Prevention and Control [34] for standardized surveillance purposes. Many reports from Europe [36-38] and a report from Africa [39] have indicated the adoption of indirect monitoring of HH activity based on an ABHR consumption system. As long as direct observations are also conducted for qualitative measures and no punitive approaches are taken, ABHR consumption monitoring be considered as a practical measure, especially for assessing improvement in long-term initiatives, for facilities with limited resources.
The WHO guidelines state that Step 5 of the stepwise approach is a crucial step for developing long-term plans to ensure that improvement is sustained and progresses. Reviewing our present position with ABHR consumption, findings from the direct observations, and the HHSAF score each year provided us with a bird’s eye view of what we have accomplished and what is left to be done. The HHSAF helps to identify key issues requiring attention and the resources and tools useful for achieving them [13,17]. We referred to the “Template Action Plan” (TAP) [40] that was prepared for our HH level when starting our initiative. However, once our HH initiative had started, we made our annual plans for the following year by choosing tools and activities mainly for the components that scored lowest in the HHSAF. This was effective not only because appropriate activities that were required at the moment were selected but also because it provided the frontline staff members convincing reasons why this particular activity was chosen for the year. By continuing this process, we were able to achieve high HHSAF scores for all five strategy components, which further increased the capacity for improvement. As we have reached the Advanced HH level, we are now working on the ‘Leadership Criteria’ of the HHSAF.
We found that ABHR consumption and HHSAF score were significantly positively correlated. We expected that both would increase as a result of the initiative but did not expect that the 2 variables would show such a strong correlation. A prior study from Japan [41] suggested that compliance would be improved by increasing the HHSAF score. In this study, the HH compliance rate obtained by direct observation and the HHSAF scores were compared between 3 Japanese hospitals; they ranked in the same order for both measurements. Our findings supported their results and indicated the possibility of adopting the HHSAF as a process measure in a single facility. This may be useful for some other hospitals as well, especially for those with low baseline compliance and HHSAF scores, when conducting a long-term initiative. Further reports from other hospitals and multi-centre reports are needed to confirm this.
Our study was challenging in several aspects. Although national and subnational HH initiatives based on the WHO HH strategy have been introduced in many countries [3,5-7], such full-scale initiatives had not been introduced in Japan by the time of this study, and the HH initiatives were left to each hospital’s own efforts. In addition, having long-term care wards with many patients on ventilators, as well as daily recreational activities, made our situation even more complex. Furthermore, similar to many other nonteaching hospitals in our country, we could not afford additional personnel for covert observation or high-tech recording devices to assess HH compliance. However, by tracking the ABHR consumption, together with the HHSAF score as a process measure, we were able to complete our HH initiative successfully. Along with working on all five strategy components, repeating the review process at Step 5 of the step-wise approach for 5 consecutive years may have been one of the most important elements of our initiative. This has become a sustainable routine for us over this period of time, and we will continue repeating the cycles of the step-wise approach to sustain our improvement in HH practice.
There are several limitations in this study. First, this is a report from a single Japanese hospital, which provides long-term care for many patients with heavy medical needs and with no previous effective HH campaigns or initiatives. The amount of ABHR required in our hospital may be greater than that in many other hospitals that do not need to set such a high target. In addition, hospitals with higher HH compliance at baseline may not experience such an increase in ABHR consumption.
Second, we could not continuously record direct HH compliance. Some amount of ABHR may have been discarded or used incorrectly. As we did not provide incentives or punishment for the amount of ABHR consumed, we assume that there was not much advantage for each staff member to discard the substance. Although we found from our direct observations that the staff members with high ABHR consumption tended to use ABHR adequately, the possibility of discarded substance and incorrect use cannot be ruled out. In addition, the amount of ABHR that was used by patients and visitors was included in the ABHR consumption. As patient involvement in hand hygiene is recommended to improve the culture and climate of HH and to reduce hospital-acquired infections, we included patient/visitor ABHR consumption as part of the total HH improvement in our hospital.
Third, the amount we adopted as the adequate amount per HH event, 1.3 ml, is much less than the 3 ml said to be recommended by most ABHR manufacturers, and even larger amounts were recommended for HCWs with large hands in a study from Europe [42]. The WHO guidelines recommend 20 to 30 seconds for each hand rub event, but some recent reports show that a 15-second application time is equal to a 30-second application in terms of wettability of hands [43] and is not inferior in terms of reducing bacterial counts on hands under experimental conditions [44]. Shortening the duration of ABHR application to 15 seconds may also improve compliance [45]. In our study, the 1.3 ml ABHR that we used stayed wet for 20 seconds during the routine rubbing procedure for most participants, which may be because of the types of formula we used (mainly gel type, with moisturizing ingredients) [20,21] and/or the fact that Japanese HCWs tend to have smaller hands than European HCWs. For HCWs with larger hands whose hands do not stay wet for at least 15 seconds, we recommended 2 pushes (2.6 ml) per HH event, but this proportion and amount was not analysed in this study.
Fourth, the outbreaks that we experienced within this study period—a two-drug–resistant Acinetobacter baumanii outbreak in 2014 and a multiple-drug–resistant Pseudomonas aeruginosa (MDRP) outbreak in 2016—may have affected our results. Such outbreaks themselves can induce an increase in ABHR consumption, and the possibility of their influence cannot be excluded. However, the effects from these situations were expected to be temporary and limited to the ward in which the outbreak occurred. Our hospital-wide ABHR consumption continued to increase, regardless of the convergence of these outbreaks.
Fifth, the number of patient hospitalization days decreased between the preintervention period and the intervention period. This may be due to a change in the hospital policy in April 2014, which required a referral letter from every first visit patient. It is known that poor HH adherence is associated with higher patient-to-staff ratios [46], so the decrease in the number of patients may have had some influence on the increasing ABHR consumption per patient day. However, the 7.8% decrease in the mean number of patients alone could not have caused the eight-fold increase in the mean annual ABHR consumption (from 2013 to 2018), although it may have provided some positive effect.
Sixth, the HHSAF includes the amount of ABHR consumption as one of its scores. The maximum score given to the ABHR consumption is 5 points, which is 1% of the total score. HH compliance by direct observation is also included, with a maximum score of 30 points. Our score for direct HH compliance remained 20 points for the final 4 years. Altogether, our highest score for direct and indirect HH compliance was 25 points, which is 5% of the total score. This is not a large proportion; nevertheless, it cannot be said that the HHSAF score and ABHR consumption are completely independent variables.